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are crucial to document the series of ice ages that characterise the Pleistocene. While in the 
northern hemisphere ice sheets expanded and shrunk periodically, in the tropical mountains 
the altitudinal vegetation distribution shifted downslope during relatively cold glacials and 
stadials and upslope during relatively warm interglacials and interstadials. This poster focus on 
development  age models for the sediments in the basins of Bogotá and Fúquene (Fig. 1), the 
climate history of the northern Andes and the evolution of its high elevation biota.

In the Bogotá basin (4°N, 2550 m elevation) 586 m of sediments have been cored. The 2200-sample record of grain size 
distributions shows changes in sedimentary environments (1). The pollen record starts at 540 m core depth and samples at 20-
cm increments along the core provide a record of 2100-samples (1). The record of aquatic vegetation reflects changes in water 
depth. The record of trees, shrubs and herbs shows changes in the vegetation that covered the mountains around the lake.

The 357-m deep Funza-1 core (2) and the 586-m deep Funza-2 core (1) have 
been coupled at the first appearance event of Alnus (Fig. 2). Changing 
percentages of arboreal pollen (AP%) in the composite record Funza09 (540-
1.6 m) show altitudinal shifts of the upper forest line (UFL) (3). Using a lapse rate 
of 0.6°C/100 m UFL displacement and a mean annual temperature (MAT) at 
the UFL of ~9.5°C paleo-temperatures have been calculated.

During warm interglacial conditions the tree Alnus mainly forms swamp forest 
around the lake reflected as high peaks in the AP% record. The sequence 
of Alnus-based interglacials have been matched with the marine record of 
glacial-interglacial cycles as shown by the LR04 benthic ∂18O stack record 
(Fig. 3) (4). The immigration event of Alnus has been dated 1.018 Ma. We used 

cyclostratigraphy to develop the 
age model for the lower part of the 
Funza09 record. Frequency analysis 
in the depth domain shows peaks 
of 9.5-m and 7.6-m (Fig. 4). Wavelet 
analysis shows a stable presence of 
the 9-m frequency band which could 
be robustly linked obliquity as the 
main driver of climate change. The 
age model shows the Funza09 record 
reflects the period from 2,250,000 to 
27,000 years BP (Fig. 5). 

The AP%-based temperature record reflects marine isotope stages (MIS) 85 to 3 (Fig. 6 lower panel). The record 
of aquatics shows deep-water vs. shallow-water conditions reflecting climate change superimposed by effects of 
basin evolution (Fig. 6 top panel). In the period of 2.25-1.47 Ma wetlands, fluvial channels and swamps prevailed. 
The basin floor subsided rapidly between 1.47 and 1.23 Ma and a lake developed. Between 1.23 and 0.86 Ma 
lacustrine sediments accumulated in waters up to 50 m deep. Water depth was lower during the last 860,000 
years but fluctuated in conjunction with the 100-kyr dominated glacial-interglacial cycles of the middle and late 
Pleistocene (3). Around 27,000 BP the lake disappeared probably because the Bogotá basin became overfilled with 
sediments.

The Bogotá basin record shows 5 stages in the evolution of montane forest and páramo vegetation (Fig. 6 middle 
panels) (3). 
(1) Period 2.25-2.02 Ma: vegetation above the UFL was poor in species (protopáramo). Aragoa occasionally reached 
high abundance. In the Andean forest Podocarpus increased in abundance. Proper lake conditions had not yet 
developed. In absence of Alnus, Morella (Myrica) formed swamp forest and thickets on the basin floor.
(2) From 2.02 Ma (MIS 75) onwards increasing proportions of Aragoa, Ericaceae and Hypericum indicate that shrub 
vegetation developed as a structural transition zone between upper montane forest and herbaceous páramo. 
Polylepis, originating from the southern Andes, started its presence 2.1 Ma (MIS 78).
(3) From 1.58 Ma (MIS 54) onwards Borreria had developed as an element of the upper montane forest and was no 
longer an exclusive constituent of open vegetation. The páramo reached more closely its modern structure and 
taxonomic composition. In the montane forest the share of Podocarpus decreased.
(4) After the closure of the Panamanian Isthmus several Holarctic trees immigrated into South America. Alnus 
immigrated 1.01 Ma (MIS 29). In the swamp forest around the lake Alnus replaced Morella (Myrica). On the north 
Andean slopes Alnus changed the composition of montane forests.
(5) At 430,000 yr BP (MIS 12) Quercus (oak) arrived in the northern Andes and changed forest composition 
dramatically. At high elevations Quercus competed with Weinmannia and Podocarpus. Near the UFL Quercus 

partially replaced Polylepis. However, Quercus expanded slowly and 
reached as late as 240,000 yr BP (MIS 7) significant proportions. 
Most of the Pleistocene vegetation assemblages have no modern 
analogue. However, modern ecological constraints of suites of taxa 
allow a robust reconstruction of environmental and climate change.
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We revisited the age models of pollen records Fq-3 (12, 15) and Fq-7C (13) with the new approach of cyclostratigraphy 
and we obtained a basin-wide biostratigraphy (15) constrained in time (Fig. 10). We recognised periods with distinct 
sediment compositions (14) and abundance of geochemical elements (6).

For a comparison of temperature records we show Greenland ∂18O ice core record (10) for the past 180,000 years 
and the record from Antarctic core Epica Dome C (11) and our near equatorial record Fq-BC (Fig. 9) (7). During the last 
130,000 years ice cores show 28 millennial-scale climate oscillations (Fig. 9, bottom panel), known as Dansgaard-
Oeschger (DO) cycles. Most DO cycles are reflected in equatorially located Fq-BC pollen record (Fig. 9, top panel) The 
clear signature of the Younger Dryas (constrained by 14C dates), and the interstadial DO cycles 8, 12, 14, 19 and 20 in 
the reconstructed MAT record suggest an unprecedented North Atlantic-equatorial link.

Sediments centrally located in the lake contain low percentages of carbon preventing robust 14C-dating (8). Cyclostratigraphy is 
a challenging alternative. Frequency analysis of the AP% record in the depth domain show peaks at 907 and 2265 cm. Wavelet 
power spectra show that the strengths of these frequencies are stable throughout the core in depth and time. These frequencies 
were explored and appear to be linked to the obliquity (41-kyr) and eccentricity (~100-kyr) cycles of orbital forcing of climate 
change (Fig. 8). Remarkable is the absence of a clear imprint of the precession-related 21-kyr cycle (7). Fig. 8A shows the Fq-9C AP% 
record as raw data and Fig. 8B as a detrended and interpolated depth series overlain by a ~9 m Gaussian filter. Fig. 8C shows the 
LR04 benthic ∂18O stack record (4) overlain by a Gaussian filter centered at the 41-kyr cycle. We correlated the filtered 9-m signal 
in Fq-9C to the filtered 41-kyr obliquity-related component of the LR04 benthic ∂18O stack record to develop the age model. The 
4768-points Fq-9C record reflects the interval from 284,000 to 27,000 yr BP. The Fq-9C record was extended to late Holocene 
time by adding part of the Fq-2 pollen record (9): the Fúquene Basin Composite (Fq-BC) record. The connection with modern 
instrumental data allows to calculate mean annual temperatures (MAT) throughout the record.

In Lake Fúquene (5°N, 2540 m), a colluvial damm blocked lake (5), the upper 60 m of sediments have been collected from a floating 
raft in two parallel cores (Fig. 1). Downcore measurements at 1-cm increments revealed multiple 4768-points records. Pollen 
and carbon content show biome changes in the area and grain size distributions and XRF-based geochemistry show the abiotic 
changes in the basin. Downcore changes in lithology (5), Fe and Zr (6) in cores Fq-9 and Fq-10 allowed to develop the composite 
record Fq-9C (7). Geochemical records show changes in erosion and sediment transport in the basin. Downcore grain size 
distributions show changing sedimentary environments (Fig. 7). Downcore aquatic pollen show changes in water-levels (Fig. 7). 
Downcore regional pollen show temperature-driven changes in the altitudinal vegetation distribution.
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