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140 Million Years of Tropical Biome Evolution

Carlos JARAMILLO1* 

Abstract The origin and development of Neotropical biomes are central to our un-
derstanding of extant ecosystems and our ability to predict their future. During the 
Cretaceous, biomass of tropical rainforests was mostly dominated by gymnosperms 
and ferns, forest structure was poorly stratified and the canopy was open and domi-
nated by gymnosperms. Extant tropical rainforests first developed at the onset of the 
Cenozoic, as a result of the massive extinction of the Cretaceous – Paleocene boundary. 
Paleocene rainforests were multistratified, with an angiosperm–dominated canopy that 
had high photosynthetic potential. Tropical climate has followed global patterns of 
warmings and coolings during the last 60 Ma. Rainforest diversity has increased during 
the warmings while it has decreased during coolings. Several extant biomes, including 
páramos, cloud forest, savannas, and dry/xerophytic forest, have increase significantly 
during the late Neogene at the expense of the reduction of the rainforest. Timing and 
drivers of these changes are still unknown but seem to be related to the onset of our 
modern, cool–state climate since the onset of the Pleistocene, 2.6 Ma ago.
Keywords: Neotropical biomes, tropical rainforest, gymnosperms, angiosperms, evolution.

Resumen El origen y el desarrollo de los biomas neotropicales son fundamentales para 
nuestra comprensión de los ecosistemas actuales y nuestra capacidad para predecir 
su futuro. Durante el Cretácico, la biomasa de los bosques tropicales estaba domina-
da principalmente por gimnospermas y helechos, la estructura del bosque no poseía 
una estratificación marcada y el dosel era abierto y dominado por gimnospermas. Los 
bosques tropicales actuales se desarrollaron por primera vez al inicio del Cenozoico, 
como resultado de la extinción masiva del límite Cretácico–Paleoceno. Los bosques 
tropicales del Paleoceno eran multiestratificados, con un dosel dominado por an-
giospermas con alto potencial fotosintético. El clima tropical ha seguido patrones 
globales de calentamiento y enfriamiento durante los últimos 60 Ma. La diversidad 
del bosque tropical ha aumentado durante los calentamientos y disminuido durante 
los enfriamientos. Varios biomas que hoy existen, incluyendo páramos, bosques nu-
bosos, sabanas y bosques secos/xerofíticos, han crecido significativamente desde el 
Neógeno tardío en áreas ocupadas previamente por el bosque tropical. Las causas y 
temporalidad de este cambio masivo en el paisaje aún se desconocen, pero parecen 
estar relacionadas con el inicio de nuestro clima frío moderno desde el comienzo del 
Pleistoceno, hace 2,6 Ma.
Palabras clave: biomas neotropicales, bosque tropical, gimnospermas, angiospermas, 
evolución.
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1. Introduction

The biota that occupies tropical landscapes is anything but sta-
ble. Over geological time, forests have transformed into deserts 
and vice versa. Entire mountain chains are created while oth-
ers are weathered away. What are the main drivers of tropical 
landscape change? How do geology and climate interact with 
each other to transform plant and animal communities? And 
how does the biota, in turn, affect its landscape, the climate, 
and ultimately our survival?

We are studying a number of dramatic landscape changes 
that have occurred in the tropics over the past 140 million years 
and how they have influenced the extinction and origination of 
tropical biotas: From the extreme effects of global warming 
during the early Cenozoic 50 million years ago to the global 
cooling of the Pleistocene 2.6 million years ago; from the lifting 
of the Andes mountains to the creation of savannas; from peri-
ods with low levels of CO2 to events with extremely high CO2, 
similar to the levels that we will reach by the end of the century.

The most extensive biome within the Neotropics is the 
lowland tropical rainforest. It has the largest number of plant 
species on Earth, about 90 000, most of them (~96%) angio-
sperms (Thomas, 1999). Many hypotheses have been proposed 
to explain why it is so diverse, how it originated, and how its 
diversity is maintained (Connell, 1971; Fine & Ree, 2006; Gas-
ton, 2000; Gillett, 1962; Hoorn et al., 2010; Jablonski, 1993; 
Janzen, 1970; Kreft & Jetz, 2007; Leigh et al., 2004; Leigh-
ton, 2005; Moritz et al., 2000); these are well summarized by 
Leigh et al., 2004. There are hypotheses that consider the key 
factor to be the low rates of extinction and/or high rates of 
origination in the tropics over millions of years while other 
consider the high diversity to be developed during the last 2.6 
Ma during the Quaternary period driven by habitat fragmenta-
tion (Haffer, 1969). The problem to solve is not only how the 
tropics generate more species than other regions but also how 
that diversity is maintained (Leigh et al., 2004). Moreover, 
not only do tropical forests have high diversity, but they also 
have a unique, multistratified forest structure. When did this 
structure originate? What were its effects, if any, on the water 
cycle, nutrients, and carbon at a local, regional, or global level? 
(Boyce & Lee, 2010; Burnham & Graham, 1999; Burnham 
& Johnson, 2004). Such questions have puzzled scientists for 
more than a century but still remain unanswered, yet they are 
critical to understanding how tropical biomes will respond to 
our ongoing climate change.

Extant Neotropical rainforests are dominated mostly by 
angiosperms (flowering plants). A natural starting point to un-
ravel the evolution of extant biomes, therefore, is the time of 
angiosperm origination, which occurred during the Early Creta-
ceous, ca. 145 Ma ago (Sun et al., 2002). The history of extant 
Neotropical biomes comprises a total transformation of how the 
landscape is occupied, from a forest with no angiosperms at the 

onset of the Cretaceous to the extant forest fully dominated by 
them. This change is far more substantial than for temperate 
forests, many of which are still dominated by gymnosperms as 
they were at the onset of the Cretaceous.

There always have been forests in tropical latitudes, there-
fore, it is important to define what I mean by a Neotropical 
rainforest, as this term has various meanings. Here I follow 
the definition of Burnham & Johnson (2004) and Jaramillo 
& Cárdenas (2013), which refers to a forest defined by the 
combination of four parameters: climate, floristic composition, 
vegetation structure, and plant physiognomy. Accordingly, a 
Neotropical rainforest is a lowland forest, with high mean an-
nual precipitation (>1.8 m/y), high mean annual temperature 
(>18 °C), low temperature seasonality (< 7 °C), and domi-
nance–in diversity and abundance–by 11 families of angio-
sperms: Leguminosae, Moraceae, Annonaceae, Euphorbiaceae, 
Lauraceae, Sapotaceae, Myristicaceae, and Palmae repre-
sent ~50% of the diversity, whereas Leguminosae, Palmae,  
Rubiaceae, Violaceae, Euphorbiaceae, Meliaceae, Sapotaceae 
y Moraceae represent ~57% of all trees and shrubs. The for-
est is multistratified, with lianas and epiphytes and a closed 
canopy that is dominated by angiosperms. A high proportion 
of species have large leaves >4500 mm2 (mesophylls), entire 
(smooth) margins, and drip–tips; the density of leaf venation 
has a bimodal distribution, with low density in the understory 
and high density in the canopy.

The development of Neotropical terrestrial communities can 
be divided into two major phases, Cretaceous and Cenozoic. 
During the Cretaceous, angiosperms originated and had a mas-
sive radiation (Crane & Lidgard, 1989; Magallón & Castillo, 
2009; Magallón et al., 1999), terrestrial vertebrate communi-
ties were dominated by Dinosauria, CO2 concentrations were 
high (>1000 ppm) (Royer, 2010; Royer et al., 2012), and by the 
middle Cretaceous, high mean annual temperatures were ~7 °C 
above modern values (Jaramillo & Cárdenas, 2013). In con-
trast, the Cenozoic is characterized by a complete dominance 
of angiosperms (Graham, 2010, 2011), massive radiations of 
mammals that expanded into a variety of habitats (Gingerich, 
2006; Simpson, 1983), and the transition from a warm–mode 
climate to the pre–industrial cool–mode climate (Royer, 2016; 
Royer et al., 2012; Zachos et al., 2001).

2. Cretaceous

The oldest records of angiosperms in both high and low latitudes 
is Barremian (ca. 130 Ma); the fossil pollen Clavatipollenites  
has a worldwide distribution including Israel, England, equa-
torial Africa, and Argentina (Archangelsky & Taylor, 1993; 
Brenner, 1974; Doyle et al., 1977; Gübeli et al., 1984; Kemp, 
1968) and Walkeripollis, a pollen that belongs to Winteraceae, 
is found in equatorial Africa (Doyle et al., 1990). The oldest re-
cords of megafossils (leaves, flowers, fruits) are Archeofructus 
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and Leefructus from the Aptian (ca. 122 Ma) of China (Sun & 
Dilcher, 2002; Sun et al., 2002, 2011). The first angiosperms 
were small, with reduced flowers and small seed size; they were 
opportunistic, early successional colonizers, probably living in 
aquatic habitats or near water bodies that were often submitted 
to disturbance (Doyle, 2012; Friis et al., 2015; Sun et al., 2002). 
A global meta–analysis of the Cretaceous paleobotanical re-
cord (Crane & Lidgard, 1989, 1990) showed that angiosperms 
gradually increased their diversity and abundance throughout 
the Cretaceous, and by the Maastrichtian, they surpassed other 
plant groups in diversity, including cycadophytes, pteridophytes 
(ferns), and Coniferales. This global analysis, however, lacked 
tropical megafossils and had very few sites with quantitative 
palynological data (Mejía–Velásquez, 2007). Thus, patterns of 
dominance, diversification, and distribution of forests within 
tropical zones during the Cretaceous still remain very unclear.

DNA–based phylogenies show a Jurassic (183 Ma) angio-
sperm origin (Bell et al., 2010; Wikström et al., 2001), and 
a rapid radiation of the major angiosperm orders during the 
Cenomanian (ca. 100–90 Ma) (Moore et al., 2010; Wang et al., 
2009). Other genetic studies have shown that by the Cretaceous 
even many of the extant angiosperm families were already pres-
ent (Bell et al., 2010; Davis et al., 2005). These phylogenies, 
however, are in stark contrast with the fossil record, which lacks 
angiosperms in pre–Cretaceous strata (Herendeen et al., 2017). 
It has been proposed that the molecular and fossil records can 
be reconciled if Jurassic angiosperms were restricted to the 
understory of rainforest habitats and did not radiate until the 
Cretaceous (Doyle, 2012). In contrast, some have suggested 
that heterogeneous rates of molecular evolution could push di-
vergence ages in DNA–based analysis to appear much older 
than they truly are (Beaulieu et al., 2015). There is still a large 
disparity that needs to be solved, underscoring the importance 
of plant fossil data from tropical latitudes during the earliest 
Cretaceous and Jurassic.

The disparity between DNA and fossils also exists in the 
genesis of the rainforest structure. Molecular studies have sug-
gested that Cenomanian tropical forests were already domi-
nated by angiosperms (Wang et al., 2009) and were similar in 
structure to extant forests (Davis et al., 2005). However, the 
fossil record of the Cretaceous suggests otherwise. Multiple 
lines of evidence indicate that angiosperms did not dominate 
the biomass of most Cretaceous forests (Wing & Boucher, 
1998). Angiosperm fossil wood is scarce compared to gym-
nosperm wood, indicating that most angiosperms did not oc-
cupy the canopy. Most angiosperms seeds were small (Wing 
& Boucher, 1998), indicating that the canopy was not closed, 
in contrast to modern multistratified forests where there is a 
large variance in seed size, a byproduct of the intense competi-
tion for light in a closed–canopy environment (Muller–Landau, 
2010). Leaf venation density was much lower than in extant 
forests (Feild et al., 2011a), and even during the Maastrichtian 

leaf density venation did not follow the pattern found in extant 
angiosperm–dominated forests (Crifò et al., 2014), suggesting 
the absence of a multistratified forest with a canopy dominated 
by angiosperms where the competition for light is intense. The 
fossil record of lianas, mainly Menispermaceae and Bignoni-
aceae, is very scarce, whereas it is abundant during the Ceno-
zoic (Burnham, 2009; Doria et al., 2008; Jacques et al., 2011). 
In summary, angiosperms, although already diverse, did not 
dominate the forest biomass during the Cretaceous, neither in 
Neotropical nor in temperate regions.

One of the oldest Cretaceous records in tropical latitudes is 
the fossil flora of San Felix (Hauterivian, ca. 135 Ma), in Cal-
das, Colombia (González et al., 1977; Lemoigne, 1984) (Figure 
1). Although it contains angiosperms, it has an abundance of 
Benettitales, ferns, Cycadales, and a few conifers (González 
et al., 1977; Lemoigne, 1984; Sucerquia & Jaramillo, 2008). 
Leaf morphology of the San Felix flora differs greatly from 
extant tropical leaves by having a much smaller leaf area and a 
lower leaf vein density (Feild et al., 2011a), indicating a lower 
photosynthetic capacity and therefore lower rates of biomass 
production. The Barremian – Aptian flora of Villa de Leyva 
(Figure 1), found in marine deposits, is composed mainly of 
ferns and cones of Cycadales and conifers (mainly Cupressi-
oidae and Araucariaceae), which probably floated into the epi-
continental Cretaceous seas. Many of these taxa are related to 
southern Gondwana clades (Huertas, 2003; van Waveren et al., 
2002). Palynofloras from the Upper Magdalena Basin and the 
Llanos Foothills during the Albian – Aptian were dominated by 
pteridophytes and gymnosperms (mainly Araucariacites, cy-
cads, and Classopollis), while angiosperm diversity was very 
low, an average of 3.7% per sample in the Aptian and 3.3% in 
the Albian. Abundance was also low (7.2% for the Aptian, 5.3% 
for the Albian) (Mejía–Velásquez, 2007; Mejía–Velásquez et 
al., 2012) (Figure 1). The abundance of humidity indicators was 
higher than that of aridity indicators (61% versus 10%) (Mejía–
Velásquez et al., 2012), suggesting that northwestern Gondwana 
had humid climates during the Aptian – Albian contrary to the 
widespread aridity that had been assumed for the tropical belt 
(Herngreen et al., 1996). Furthermore, there was an inverted 
latitudinal diversity gradient during the Albian—the tropics had 
fewer species than the temperate regions even though the rate 
of floristic turnover was higher (Mejía–Velásquez et al., 2012). 
Perhaps the modern steep latitudinal diversity gradient is an 
intrinsic angiosperm property.

During the Cenomanian, the low dominance of angiosperms 
continued and a group of gymnosperms, Gnetales, significantly 
increased its diversity and abundance (Herngreen & Dueñas, 
1990; Herngreen et al., 1996), although the high abundance and 
diversity of ferns still continued, suggesting that humid condi-
tions in northwestern Gondwana prevailed, in agreement with 
some hydrological models (Ufnar et al., 2002, 2004, 2008). 
Angiosperm pollen morphology became more variable, sim-
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ilar to the pattern seen in North America (Doyle & Hickey, 
1976; Lupia et al., 1999), although it still needs to be properly 
quantified. No Cenomanian tropical macrofloras have been dis-
covered, and they are highly needed as this is a critical time for 
angiosperm evolution.

Peak temperatures of the last 140 Ma occurred during the 
Cenomanian – Turonian transition (Bice et al., 2006), when 
the tropics were 7 °C warmer than modern values (Jaramillo 
& Cárdenas, 2013) and CO2 levels were >1000 ppm (Royer, 
2006). Eustatic sea level also reached the maximum levels of 
the past 140 Ma, producing epicontinental seas as extensive 
continental areas were flooded (Haq et al., 1988; Miller et al., 
2005). By the early Turonian, the abundance and diversity of 
Gnetales in the Neotropics had greatly diminished, but it is still 
uncertain whether this reduction was gradual or abrupt.

The Late Cretaceous (90–66 Ma) is characterized by a 
gradual reduction of global temperatures together with a re-
duction of CO2 levels, but information about tropical forests 
during most of this period is scarce. During the Maastrichtian 
(70–66 Ma), sea level started to drop rapidly and extensive 
coastal plains covered with forests developed (Nichols & 
Johnson, 2008). The Maastrichtian paleoflora of the Guadu-
as (Figure 1) and Umir Formations indicates a co–dominance 
of angiosperms, cycads, gymnosperms (Araucariaceae), and 

pteridophytes (ferns). The palynological record indicates that 
the angiosperms and ferns co–dominated, with angiosperms 
representing ~50% of assemblages (De la Parra et al., 2008a, 
2008b), a pattern that is also seen in the Oleanane/Opane 
biomarker record (Rangel et al., 2002). Although several an-
giosperm families had been present here, including Palmae, 
Annonaceae, Lauraceae, Piperaceas, Rhamnacea, many oth-
ers had uncertain affinities (Correa et al., 2010; García, 1958; 
Gutiérrez & Jaramillo, 2007; Martínez et al., 2015; Sarmiento, 
1992; Sole de Porta, 1971). Most Maastrichtian fossil seeds 
are small, and Menispermaceae and Bignoniacea, families 
with high abundance of lianas, are missing. Overall, Guaduas 
still does not correspond to a Neotropical forest floristically. 
Guaduas leaf venation density also does not show the bimodal 
distribution of extant forests, suggesting that the canopy was 
not fully closed yet (Crifò et al., 2014), although it had already 
large leaves with entire margins and drip–tips similar to extant 
forests (Feild et al., 2011a). Neotropical Maastrichtian forests 
follow the same pattern as coetaneous forests from Nebraska, 
where angiosperms were the dominant element in floodplains, 
similar to the environment of the Guaduas deposits, but gym-
nosperms and ferns dominated in all other habitats (Wing et 
al., 1993). Angiosperms were mostly herbaceous and had only 
a 12% of the dominance overall (Wing et al., 1993).
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Figure 1. Extant terrestrial biomes of Colombia following the classification given in Figure 2. Biomes distribution was derived from the 
WWF global ecoregion map (Olson et al., 2001). Sites described in the manuscript include: (1) San Felix, (2) Villa de Leyva, (3) Upper 
Magdalena Valley (Mejía–Velásquez et al., 2012), (4) Cretaceous/Paleocene (De la Parra, 2009), (5) Guaduas (Martínez et al., 2015), (6) 
Cerrejón, (7) PETM (Jaramillo et al., 2010b), (8) Villavieja, (9) Ware, (10) Llanos, and (11) 105–AM (Jaramillo et al., 2017b).
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Both forest composition and structure changed radically 
following the impact of a meteorite in the Yucatán peninsula 
and the associated climatic events (Nichols & Johnson, 2008; 
Schulte et al., 2010). The Colombian palynological record in-
dicates a 75% plant extinction of late Maastrichtian taxa (De la 
Parra, 2009) (Figure 1), an extinction level higher than in North 
America, where the palynological extinction levels reached 
~30% (Hotton, 2002). By the Paleocene, as we will see next, 
the flora already resembled that of extant forests.

This floristic change could have had climatic consequences 
as well. Nowadays, a large component of the precipitation over 
Amazonia is produced by forest evapotranspiration (Wright et 
al., 2017), driven by the high photosynthetic capacity of an-
giosperms, much higher than gymnosperms (Boyce & Lee, 
2010). Angiosperm venation density in the Cretaceous is gen-
erally low, and not much higher than gymnosperms (Feild et 
al., 2011a, 2011b), but at the onset of the Cenozoic, leaf vein 
density increases considerably to levels similar to extant forest 
(Crifò et al., 2014; Feild et al., 2011a). Experiments of climate 
sensitivity have shown that replacing an angiosperm forest 
with a conifer forest in Amazonia generates higher mean an-
nual temperatures (3 °C), a 30% drop in annual precipitation, 
and an increase in the length of the dry season by two months, 
changes that are mostly due to the lower venation density of 
gymnosperms and associated lower photosynthetic and evapo-
transpiration rates (Boyce & Lee, 2010). This suggests that the 
change in landscape occupancy at the Cretaceous – Cenozoic 
transition, from a forest dominated by conifers and ferns to one 
of angiosperm dominance, transformed the tropical climate to 
being more humid, less warm, and less seasonal.

Why was angiosperm success and radiation in the Creta-
ceous so closely associated with disturbed and flooded envi-
ronments? That is still an unsolved question. One hypothesis 
suggests that the time needed to generate the pollen tube, a 
critical step in seed production, is part of the answer. While the 
pollen tube in gymnosperms takes a long time to be generated, 
over a year in some cases, angiosperms produce it much fast-
er, even in less than two hours (Williams, 2008). Angiosperms 
therefore might have been able to produce more seeds at a faster 
rate than gymnosperms, and this could have been an advantage 
in flooded and disturbed ecosystems, where the landscape is 
often changing and plants must grow fast and produce seeds 
quickly before the next flooding event occurs.

Overall, the fossil record suggests that Neotropical Creta-
ceous forests lacked multistratification and canopy was open 
and dominated by gymnosperms. Most angiosperms were 
shrubs or small plants, ruderals, dominating both floodplains 
and forest gaps but not most of the landscape. A historical acci-
dent, a meteorite collision, permanently changed the structure 
and composition of the tropical forests, thus delaying the eco-
logical success of the angiosperms following their origination 
during the Early Cretaceous by 55 my.

3. Paleogene

Neotropical floras of the Paleocene were already dominated 
by angiosperms (~80% of palynoflora) (De la Parra, 2009; 
Doubinger, 1973; Jaramillo et al., 2006, 2007; Pardo–Trujillo, 
2004; Pardo–Trujillo & Jaramillo, 2002; Pardo–Trujillo et al., 
2003; van der Hammen, 1958), as is also indicated by biomark-
ers (Rangel et al., 2002), a foliar physiognomy typical of trop-
ical forests (entire margins, large leaves, and drip–tips) (Wing 
et al., 2009), and a floristic composition similar to modern 
Neotropical forests including Fabaceae, Moraceae, Annonace-
ae, Euphorbiaceae, Lauraceae, Sapotaceae, Arecaceae, Araceae, 
Flacourtiaceae, Anacardaceae, Tiliaceae, and Meliaceae (Car-
valho et al., 2011; Doria et al., 2008; Gómez–Navarro et al., 
2009; Herrera et al., 2008; Jaramillo et al., 2007, 2014a; Pons, 
1988; Wing et al., 2009). Forests also have abundant Meni-
spermaceae (Doria et al., 2008), a family rich with lianas; this, 
together with the bimodal distribution of leaf venation density 
(Crifò et al., 2014; Feild et al., 2011a) and a high variance in 
seed size reaching up to 20 cm (Gómez–Navarro et al., 2009; 
Herrera et al., 2011, 2014b; Stull et al., 2012), indicates that 
the Paleocene forests were competing for light and the canopy 
was closed and dominated by angiosperms, characteristics of 
a multistratified forest. The high abundance of Fabaceae in the 
Paleocene, the most abundant family of trees/shrubs in all ex-
tant tropical forests (Ricklefs & Renner, 2012) but absent from 
the Cretaceous record, also indicates a profound transformation 
of the forest across the Cretaceous – Paleocene boundary. There 
are also aquatic ferns including Salvinia (Pérez–Consuegra et 
al., 2017). This large body of information about Paleocene 
forests comes mainly from the fossil record of the Cerrejón 
Formation gathered at the Cerrejón Coal mine (Figure 1), the 
largest open–pit coal mine in the world, which offers large–
scale exposures (Jaramillo et al., 2014a). The fauna indicates 
a productive ecosystem: freshwater turtles up to 2 m long and 
related to the charapas of the Orinoco Basin; several species 
of crocodiles, mostly Dyrosauridae, some reaching 12–15 m; 
snakes related to boas reaching 13–15 m in length and 1 m in 
diameter; 2–m–long lungfishes; and several mollusks (Bayona 
et al., 2011; Cadena & Jaramillo, 2006; Cadena & Schweitzer, 
2014; Cadena et al., 2012a, 2012c; Hastings et al., 2010, 2011, 
2014; Head et al., 2009a, 2009b). In 16 years of exploration, no 
mammals have been found, suggesting that they were scarce. 
The Cerrejón deposits represent the oldest multistratified trop-
ical forest known, similar to extant rainforests but with two 
marked differences. First, the mean annual temperature was 
~1.5–2 °C higher than in extant forests and CO2 was almost 
double (~500 ppm) (Royer, 2010). Mean annual temperature in 
Cerrejón and nearby areas has been estimated at ~29 °C using a 
variety of techniques including TEX86 (Jaramillo et al., 2010b), 
leaf margin analysis (Peppe et al., 2011; Wing et al., 2009), 
and snake paleothermometry (Head et al., 2009a, 2009b). The 

http://en.wikipedia.org/wiki/Dyrosauridae
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second difference is a significantly lower plant diversity than in 
extant forests (Jaramillo et al., 2007; Wing et al., 2009), which 
is accompanied by a lower abundance of specialized herbivores 
(Carvalho et al., 2014; Wing et al., 2009). This difference could 
be explained by soil control, as the water table in Cerrejón prob-
ably was very high all year long. However, this low Paleocene 
diversity is observed in the palynological record throughout 
Colombia and Venezuela across a wide variety of deposition-
al settings (Jaramillo, 2002; Jaramillo & Dilcher, 2000, 2001; 
Jaramillo et al., 2006, 2010b). An alternative hypothesis is that 
recovery following the K–Pg mass extinction was slow and 
took several million years to reach prior diversity levels, as has 
been observed in others mass extinctions (Erwin, 2008).

At the onset of the Eocene, a short–lived (ca. 200 ky) warm-
ing event known as the PETM (Paleocene Eocene Thermal 
Maximum) occurred (McInerney & Wing, 2011). Beginning 
ca. 56.3 Ma, temperature increased globally 5–7 °C over ca. 
10 000–50 000 years (Frieling et al., 2017; Kennett & Stott, 
1991; Westerhold et al., 2009; Zachos et al., 2003). The rapid 
and intense warming was produced by the addition to the atmo-
sphere of ~10 000 Pg of carbon during a 50 ky interval, derived 
from volcanism in the North Sea (Gutjar et al., 2017); this input 
is roughly equivalent to adding 1300 ppm of CO2 to a Paleo-
cene atmosphere that had ~500 ppm of CO2. The PETM is the 
most rapid addition of CO2 to the atmosphere over the past 140 
million years and produced a greenhouse effect similar to the 
warming we are currently experiencing but at a rate ten times 
slower than today (McInerney & Wing, 2011). It is estimated 
that by the year 2250, we will reach ~2000 ppm of CO2. In 
other words, in just 400 years we will have increased CO2 to 
the same levels that it took 50 000 years to reach following the 
onset of the PETM.

The PETM is a good analogue for understanding the con-
sequences of our ongoing warming. The main process that can 
effectively remove CO2 from the atmosphere is weathering of 
carbonates and silicates, but this is a process that operates at 
geological scales. During the PETM, it took ca. 180 000 years 
to return to previous levels (Bowen & Zachos, 2010). For our 
modern climate, and assuming that no more CO2 is added, it 
would take geological time—thousands of years—to return to 
preindustrial values (Archer et al., 2009). After 1000 years, 
25 to 60% of the injected CO2 would still remain in the at-
mosphere (Archer et al., 2009). Was discovered in the deep 
ocean by the Ocean Drilling Project (Kennett & Stott, 1991; 
Westerhold et al., 2009; Zachos et al., 2003). At the Paleocene 
– Eocene boundary, marine paleontologists had long recognized 
a stratigraphic interval where all carbonate was dissolved; this 
interval was also associated with a negative excursion of ~4–5 
‰ in δ13C. The same interval was later recognized in terrestrial 
sediments worldwide (Wing et al., 2005). Both changes in this 
interval could only be explained by a massive release of carbon 
with negative values of δ13C. Several hypotheses have been 

proposed to explain the source of this carbon and the subject 
is still controversial (McInerney & Wing, 2011). One proposed 
source is the release of methane hydrates that are trapped at 
the bottom of the ocean and contain massive amounts of car-
bon. About ~2500 to 4500 Gt of highly 13C–depleted marine 
methane clathrates that rapidly oxidizes to CO2 (Bralower et al., 
1997; Dickens et al., 1995, 1998), increasing CO2 by ~500 ppm 
(Gehler et al., 2016). However, the volume of methane trapped 
in the hydrates is still uncertain. Another explanation, which has 
recently received large support, is the massive release of CO2 

by North Sea volcanism (Gutjar et al., 2017).
Whatever the source, the PETM produced large changes 

in the ocean with a massive extinction of benthic foraminifera 
(Thomas & Shackleton, 1996) and radiations of planktonic 
foraminifera. On land, changes were even more drastic. Most 
modern mammal orders originated during the PETM, including 
artiodactyls (deer), perissodactyls (horses), and primates (ex-
cluding plesiadiforms), and these quickly dispersed across Asia, 
Europe, and North America (Clyde & Gingerich, 1998; Gin-
gerich, 2006). The effect on plants was diverse; for example, 
in midlatitudes such as Wyoming (midwestern USA), there is 
rapid immigration by southern angiosperms, which replaced the 
existing vegetation of conifers and angiosperms (Wing et al., 
2005). This PETM vegetation also experienced more intense 
herbivory than the pre–PETM floras (Currano et al., 2008). 
Once the event ended, the pre–PETM flora returned to Wyo-
ming and replaced the immigrant vegetation.

In this process, there are very few originations or extinc-
tions and most of the changes are the product of migrations. 
In the Neotropics the effects of the PETM were different (Fig-
ure 1). The fossil record of three sites in northeast Colom-
bia and northwest Venezuela indicated that the mean annual 
temperature increased ~3.5 °C during the PETM (Jaramillo 
& Cárdenas, 2013; Jaramillo et al., 2010b), similar to the in-
crease in oceanic temperatures of tropical oceans (Frieling 
et al., 2017; Zachos et al., 2003). The vegetation rapidly be-
came more diverse, by about 30%, with the addition of a new 
group of taxa (Jaramillo et al., 2010b), e.g., Tetracolporopol-
lenites maculosus (Sapotacea), Retitrescolpites? irregularis  
(Phyllantacea), Striatopollis catatumbus (Fabaceae),  
Margocolporites vanwijhei (Fabaceae). Extinction rates did 
not change while origination rates doubled, with many taxa 
appearing for the first time all across the Neotropics, suggest-
ing that these new taxa were a product of evolution rather than 
migration from other latitudes. This radiation can also be seen 
in DNA–based phylogenies of many tropical clades, including 
epiphytic ferns, typical of Neotropical forests, orchids, and 
leaf–cutter ants (Ramírez et al., 2007; Schuettpelz & Pryer, 
2009; Schultz & Brady, 2008). There is also no evidence of 
an increase in aridity, but plant water use became more effi-
cient due to high concentrations of CO2, as seen in the deute-
rium isotopic record (Jaramillo et al., 2010b); similar results 
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have been seen in greenhouse experiments with extant plants  
(Cernusak et al., 2011, 2013).

These results contradict paleoclimatic global models that pre-
dict temperatures >45 °C for most of the Neotropics and a major 
collapse of Neotropical vegetation due to heat stress (Bowen & 
Zachos, 2010; Huber, 2008; Huber & Caballero, 2011; Huber & 
Sloan, 2000). In order to simulate the PETM, climatic models add 
large volumes of CO2 to the atmosphere (Huber & Sloan, 1999; 
Huber et al., 2003; Shellito et al., 2003; Sloan & Barron, 1992; 
Sloan & Morrill, 1998; Sloan & Rea, 1996; Sloan & Thomas, 
1998; Sloan et al., 1995), making the tropical temperature too 
hot compared to empirical data. There must be a mechanism, 
still unknown, that is heating poles at a much higher pace than 
the tropics during periods of global warming.

The rapid ending of the PETM is also an enigma. The 
PETM ends ten times faster than expected by the standard rates 
of the weathering process (Bowen & Zachos, 2010). One hy-
pothesis is that both onset and termination of the PETM were 
facilitated by the collapse of the tropical vegetation (Bowen 
& Zachos, 2010; Huber, 2008). However, the empirical record 
demonstrates that tropical vegetation did not collapse during 
the PETM and that plant water use efficiency (WUE) increased 
(Jaramillo et al., 2010b). The WUE is the proportion of water 
that the plant uses for photosynthesis and to produce biomass 
versus the proportion of water that is lost by transpiration. An 
increase in WUE at the continental scale could indirectly pro-
moted capture of atmospheric CO2 in two ways: first, it could 
have increased biomass production (this effect is seen in diver-
sity, as there is strong correlation between biomass and diversi-
ty). Second, it could decrease the water that the plant transpires, 
this “excess” water not used by the plant could therefore reach 
the water–table and the drainage systems, raising the weather-
ing potential and thus increasing the trapping of atmospheric 
CO2 (De Boer et al., 2011; Lammertsma et al., 2011). In sum-
mary, tropical forests could have facilitated the termination of 
the PETM by increasing biomass production and accelerating 
weathering, both of which quickly trapped atmospheric CO2.

From the Eocene (56 Ma) to the early Miocene (ca. 16 
Ma), global temperature varied greatly, with a gradual increase 
during the early Eocene until it peaked during the Early Eo-
cene Thermal Maximum (ETM), which began at the end of the 
early Eocene and lasted until the start of the middle Eocene. 
Following the ETM, there is a long and slow drop in tempera-
ture during the middle and late Eocene. At the Eocene – Oli-
gocene transition, ca. 34 my ago, there is sharp cooling that is 
coetaneous with the earliest glacial development in Antarctica 
(Anderson et al., 2011; Liu et al., 2009; Zachos et al., 2001). 
First glaciations in Antarctica appear to be correlated with the 
onset of South America’s separation from Antarctica, which 
made possible a circumpolar current and thus the cooling of 
Antarctica. However, some models have not been able to re-
produce a massive glacial buildup in Antarctica without a sharp 

drop in CO2 below a threshold value of ~450 ppm (Lefebvre 
et al., 2012), values that are not reached until the Pliocene. It 
seems then, that the extensive modern Antarctic glacial cover 
is a recent phenomenon, probably occurring within the last 5 
my (Anderson et al., 2011). As further evidence, the evolution 
of antifreeze glycoproteins in Antarctic notothenioid fishes, 
which are uniquely adapted to freezing waters, occurs only 
during the late Neogene (Near et al., 2012), and the distribution 
of the limpet Nacella was also recently established (González–
Wevar et al., 2016).

During the Oligocene, global temperatures remained largely 
stable, with a small warming at the end of the Oligocene that 
was followed by another cooling at the onset of the Miocene 
(Zachos et al., 2001). The overall trend in the diversity of the 
Neotropical forest follows the same variations as the global 
temperature, increasing during warming periods and dropping 
during cooling intervals (Jaramillo & Cárdenas, 2013; Jaramillo 
et al., 2006). This relation could reflect the positive effect of 
temperature increases on rates of molecular mutations (Wright 
et al., 2006) and on biotic interactions, including herbivory, due 
to higher energy in the system (Jaramillo & Cárdenas, 2013). 
Some authors have proposed that Neotropical forests expand-
ed during global warmings, thus increasing diversity by the 
area–diversity effect (larger area leads to more species) (Fine 
& Ree, 2006; Fine et al., 2008; Rosenzweig, 1995). However, 
the empirical paleobotanical record of South America shows 
that Neotropical forests do not expand beyond the tropical lat-
itudes during warmings, especially the early Eocene warming 
(Jaramillo & Cárdenas, 2013) (Figure 2b). Instead, a non–ana-
logue biome, the “mixed forest,” occupied most of the temper-
ate regions during warming events. This biome does not exist 
nowadays, as temperate regions are much cooler today than in 
the early Eocene (Hinojosa & Villagrán, 2005).

Several authors have predicted that tropical terrestrial eco-
systems will collapse as a consequence of the ongoing cli-
mate warming, under the assumption that the extant tropical 
vegetation lives close to its climatic optimum (Huber, 2008; 
Stoskopf, 1981; Tewksbury et al., 2008). Several deleterious 
effects in plants are observed when temperature rises, includ-
ing an increase in respiration that decreases net production, a 
decrease in photosynthesis, and increases in photoinjuries, leaf 
stress, and the emission of isoprenes (Bassow et al., 1994; Cer-
nusak et al., 2013; Huber, 2008, 2009; Lerdau & Throop, 1999; 
Lewis et al., 2004; Stoskopf, 1981; Tewksbury et al., 2008), 
although recent studies have shown that the upper thermal 
stress of canopy leaves is ~50–53 °C (Krause et al., 2010) and 
tropical trees can acclimate very fast (Slot & Winter, 2017). 
How to explain that tropical plants did not collapse during past 
global warmings but rather increased in diversity and biomass? 
Leaf temperature, a critical factor for plants, mainly depends 
on three factors: air temperature, levels of atmospheric CO2, 
and soil moisture. The combination of all three factors deter-
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Figure 2. Terrestrial biome reconstruction for the past 55 my of the Neotropics. (a) Reconstruction from 0 to 14 Ma. (b) Reconstruction 
from 15.5 to 55 Ma. The reconstruction is an orthographic projection based on the plate tectonic model of GPlates 1.5.0, using the plate 
reconstruction of Seton (Seton et al., 2012). Terrestrial biomes include the tropical rainforest, which was divided into South America and 
North American (Central American) rainforests; the montane forest (forest > 2000 m of elevation), which is divided into the Andean South 
American forest and the Central American Montane forest; the Andean South American grasslands (or páramos, grasslands above the 
tree line in the Andes of South America); and the tropical South and North American savannas, which includes the xerophytic forests. 
Terrestrial biomes adapted from Jaramillo & Cárdenas (2013) and Jaramillo (2018). The exhumation evolution of the Isthmus of Panamá 
from the Montes models (Farris et al., 2011; Montes et al., 2012a, 2012b, 2015).
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Figure 2. Terrestrial biome reconstruction for the past 55 my of the Neotropics. (a) Reconstruction from 0 to 14 Ma. (b) Reconstruction 
from 15.5 to 55 Ma. The reconstruction is an orthographic projection based on the plate tectonic model of GPlates 1.5.0, using the plate 
reconstruction of Seton (Seton et al., 2012). Terrestrial biomes include the tropical rainforest, which was divided into South America and 
North American (Central American) rainforests; the montane forest (forest > 2000 m of elevation), which is divided into the Andean South 
American forest and the Central American Montane forest; the Andean South American grasslands (or páramos, grasslands above the 
tree line in the Andes of South America); and the tropical South and North American savannas, which includes the xerophytic forests. 
Terrestrial biomes adapted from Jaramillo & Cárdenas (2013) and Jaramillo (2018). The exhumation evolution of the Isthmus of Panamá 
from the Montes models (Farris et al., 2011; Montes et al., 2012a, 2012b, 2015) (continued).

mines a plant’s response to ambient temperature. Warming 
events during the Cretaceous and Paleogene are characterized 
by elevated levels of CO2 together with high precipitation (Ja-

ramillo et al., 2010b; Royer, 2010; Ufnar et al., 2002, 2004, 
2008; Wing et al., 2009) and short dry seasons (Jaramillo et 
al., 2010b). Physiological studies indicate that plants are more 
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efficient at photosynthesis at higher temperatures (up to 10 °C) 
provided that levels of both CO2 and soil moisture are high 
(Aber et al., 2001; Berry & Björkman, 1980; Lloyd & Farquhar, 
2008; Niu et al., 2008). Furthermore, WUE increases when 
levels of CO2 increase (Cernusak et al., 2011). The genes that 
regulate photosynthesis are deeply rooted in plant phylogeny 
and it would be expected that photosynthesis in Eocene and Pa-
leocene plants was fundamentally the same as in extant plants. 
The plant fossil record of the Neotropics suggests, therefore, 
that modern plants might already have the genetic variability 
to cope with increases in temperature and CO2, as some have 
proposed (Lloyd & Farquhar, 2008).

4. Neogene

The Neogene represents a new chapter in the history of tropical 
biomes with the dramatic expansion of several biomes includ-
ing savannas, dry forests, xerophytic forests, deserts, montane 
forests, and páramos (Figure 2a, 2b). Today, savannas occupy 
30% of land on earth. They provide most of the food we con-
sume and most of the land we inhabit (Jacobs et al., 1999). 
Grasses of tropical savannas comprise <2% of plant species 
(Sage et al., 1999), but nevertheless capture 20% of terrestrial 
carbon (Lloyd & Farquhar, 1994). Despite the importance of 
savannas, we still know very little about their origin and the fac-
tors that control them, especially in the South American tropics 
(Edwards et al., 2010).

The main factor that determines the type of vegetation 
within tropical lowland is precipitation rather than tem-
perature. Variations in mean annual temperature within the 
tropical zone are minimal, from 23 to 28 °C, with very low 
variations throughout the year. In contrast, there are drastic 
variations in precipitation, both in the total amount through-
out the year and in the length of the dry season. Biomes 
change as precipitation conditions changes (Jaramillo & 
Cárdenas, 2013; Lehmann et al., 2011), shifting from humid 
forest to dry forest, savanna, xerophytic forest, and desert 
as precipitation decreases (Jaramillo & Cárdenas, 2013). 
Another important factor during the Neogene is diminishing 
CO2 levels. This trend began at the start of the Oligocene 
(ca. 34 Ma) and continued until the onset of the Pleistocene 
when CO2 levels reached <200 ppm during glacial times (De 
Boer et al., 2010; Royer, 2006, 2010; Royer et al., 2011). 
There is a rapid increase during the middle Miocene climat-
ic optimum (MMCO) ca. 17–14 Ma, characterized period 
of relative warmth, with global mean surface temperatures 
likely increasing by 2–3 °C (Zachos et al., 2001), and anoth-
er during the late Pliocene (5–3 Ma) also characterized by 
warmer temperatures (Filippelli & Flores, 2009; Ravelo et al., 
2006). During the glacial/interglacial times of the last 2.6 my, 
CO2 has oscillated in concordance with global temperature, 
ranging from ~280 ppm during interglacial periods to 180 

ppm during glacial periods (Lüthi et al., 2008; Monnin et al., 
2001; Siegenthaler et al., 2005; Tripati et al., 2009).

Four main groups of plants are characteristic of dry envi-
ronments: Cactaceae, Agavaceae, Poaceae, and the so–called 
“ice plants” of South Africa (Arakaki et al., 2011). Many of 
them have one of two paths for photosynthesis, either C4 or 
CAM, whereas most trees use C3 photosynthesis. Photosyn-
thetic pathways C4 and CAM are much more efficient than 
C3 in areas where temperature is very high and there is hydric 
stress and/or low CO2 levels (Edwards et al., 2010). Under such 
conditions, C3 photosynthesis becomes difficult because the 
water–loss by transpiration is too high (Edwards et al., 2010). 
The phylogeny of the aforementioned groups of plants indicates 
that they originated towards the end of the Eocene/beginning of 
the Oligocene, probably associated with the pronounced global 
decrease in CO2 at the end of the Eocene, ca. 34–36 Ma (Araka-
ki et al., 2011). However, their radiation occurred millions of 
years later, during the late Miocene to Pleistocene (Arakaki et 
al., 2011; Edwards et al., 2010). This phylogenetic radiation 
seems to coincide with the expansion of the area occupied by 
savannas, as deduced from the fossil record.

Savanna expansion appears not to be coeval on a global 
scale, although the fossil record is still scarce (Edwards et al., 
2010). Most empirical data indicate that 15 my ago savannas 
had not yet expanded (Edwards et al., 2010) (Figure 2a). In 
Kenya, the expansion of the savannas with C4–Poaceae occurs 
around 6–8 Ma (Uno et al., 2011). In Pakistan, the savannas C4 
expand around 7 Ma (Morgan et al., 1994). In the Neotropics, 
the information about when the savannas developed is scarce 
(Wijmstra & van der Hammen, 1966). Areas that nowadays 
correspond to xerophytic/dry forests and savannas, like the 
Upper Magdalena Valley (Villavieja) (Figure 1), were humid 
forests 13–11 my ago (Kay et al., 1997) (Figure 2a). In Falcón 
province, northwestern Venezuela, fossil records of the upper 
Miocene (ca. 9 Ma) indicate the presence of a more humid 
forest, very different from the xerophytic vegetation present 
in the region today (Aguilera, 2004; Díaz de Gamero & Li- 
nares, 1989; Hambalek, 1993; Hambalek et al., 1994; Linares, 
2004; Quiroz & Jaramillo, 2010; Sánchez–Villagra & Aguilera, 
2006). The fossil record of the late Neogene and Quaternary in 
the Llanos Orientales of Colombia has mostly focused on the 
Holocene (Wijmstra & van der Hammen, 1966). Palynofloras 
of the Miocene, up to ca. 6 Ma, indicate that the region was 
not a savanna (Jaramillo et al., 2006, 2017b), therefore, the 
expansion of the savannas in the north of South America must 
have occurred very recently, at some point over the past 6 my 
(Figures 1, 2a).

What factors could have induced the expansion of the sa-
vanna in the Neotropics? The amount of precipitation, as well 
as its seasonality, determines in large part the presence of sa-
vannas (Lehmann et al., 2011). Precipitation on a macroscale 
in northern South America is controlled by the amplitude and 
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migration of the intertropical convergence zone (ITCZ). When 
summer occurs in the Southern Hemisphere, the ITCZ migrates 
to the south and positions itself over southern Colombia, Ecua-
dor, and the basin of the Amazon (Poveda et al., 2006), leaving 
large portions of northern South America under dry conditions. 
Precipitation increases over northern South America when the 
ITCZ migrates north during the boreal summer (Poveda et 
al., 2006). This shift of the ITCZ produces a long dry season 
over the region occupied by savannas and xerophytic forests in 
northern South America. Therefore, the ITCZ must have shifted 
at some point within the last 6 my in order to yield the modern 
climate configuration.

Two mechanisms affecting the ITCZ have been proposed. 
First, the closure of the isthmus of Panamá during the late Plio-
cene, 4.2–3.5 Ma, enhanced the thermohaline circulation, which 
pushed the ITCZ southward to its modern position (Billups et 
al., 1999; Chaisson, 1995; Chaisson & Ravelo, 1997; Haug & 
Tiedemann, 1998; Haug et al., 2001; Hovan, 1995; Keigwin, 
1982; Mikolajewicz et al., 1993). However, recent studies in-
dicate that the onset of the thermohaline circulation was ca. 
10–12 Ma, a consequence of the closure of the Central Amer-
ican Seaway (Bacon et al., 2015a; Jaramillo, 2018; Jarami- 
llo et al., 2017a; Montes et al., 2015; Sepulchre et al., 2014). 
Second, the onset of permanent extensive ice in the Northern 
Hemisphere at 2.6 Ma would have pushed the ITZC south to 
its current position (Chiang & Bitz, 2005; Flohn, 1981; Shack-
leton et al., 1984).

An additional element that may have influenced the expan-
sion of the savannas is the uplift of the Andes (Figure 2a). Mod-
els of climate sensibility (Sepulchre et al., 2010) indicate that 
the uplift of the northern Andes above 2000 m augmented the 
seasonality of northern South America, which could have facili-
tated expansion of the Neotropical savannas. Something similar 
occurred in southern South America, where precipitation from 
the Pacific Ocean is blocked by the western side of the Andes, en-
hancing the aridity in Patagonia (Sepulchre et al., 2010). Models 
of climate sensitivity have also shown that the rising the Central 
Andes above 2500 m may have intensified the Humboldt Current 
(Sepulchre et al., 2009). This current plays an important role in 
the regulation of the depth of the thermocline and the temperature 
of surficial waters of the eastern Pacific. Changes in the intensity 
of the Humboldt Current and/or in the depth of the thermocline in 
the tropical Pacific generate variations in the distribution and in-
tensity of the atmospheric convection cells (circulation of Walker 
and Hadley), affecting the latitudinal position and intensity of the 
ITZC over the eastern Pacific (Chiang, 2009; Martínez, 2009; 
Rincón–Martínez et al., 2010).

The uplift of the Andes also produced substantial modifica-
tions in the landscape. While the majority of the riverine flux 
was northbound during most of the Cenozoic, the uplift of the 
Andes shifted the hydrographic system towards the east, pro-
ducing the modern configuration of the Amazon and Orinoco 

hydrographic basins (Figueiredo et al., 2009; Hoorn, 1994a, 
1994b; Hoorn et al., 1995, 2010, 2017; Jaramillo et al., 2010a). 
The process of uplifting also caused significant modifications 
in the patterns of subsidence across all Amazonian basins. The 
dynamic topography generated by the uplift/subsidence pro-
duced extensive floodplains in western Amazonia during most 
of the Cenozoic that, during the late Miocene, were shifted to 
the modern system of incisive rivers and reduced floodplains 
(Latrubesse et al., 2010; Sacek, 2014; Shephard et al., 2010).

Nowadays, floodplains constitute only 20% of the Amazon 
region (Toivonen et al., 2007), but during the Miocene they 
were much more extensive, allowing the existence of large 
reptiles and mammals, such as 3–m–long turtles (Stupende-
mys), crocodiles over 14 m long (Purussaurus), and rodents 
(Phoberomys) more than 1.8 m in length and weighing 700 kg 
(Antoine et al., 2007; Cozzuol, 2006; Frailey, 1986; Kay et al., 
1997; Sánchez–Villagra, 2006; Sánchez–Villagra & Aguilera, 
2006; Sánchez–Villagra et al., 2003). This high–subsidence sys-
tem is called Pebas, and it is a biome that does not have a mod-
ern analogue (Jaramillo et al., 2017b), but it is closely related 
to the rainforest (Figure 2a). It is dominated by a unique depo-
sitional environment, termed “marginal,” that includes greenish 
to gray–colored, laminated, bioturbated, and locally fossil–rich 
mudstones coarsening up to very fine to medium–grained sand-
stones with coal interbeds. The association of these lithofacies 
represents accumulation on deltaic plains, low–energy wetlands 
with swamps, ponds, and channels, and shallow fresh–water 
lacustrine systems (Jaramillo et al., 2017b) (Figure 1). Asso-
ciated with the high–subsidence system, and probably eustasy, 
are two distinct marine intervals in the Llanos Basin, an early 
Miocene interval that lasted ca. 0.9 my (18.1 to 17.2 Ma) and 
a middle Miocene interval that lasted ca. 3.7 my (16.1 to 12.4 
Ma) (Figure 2a). These two marine intervals are progressively 
later toward the southern basins of western Amazonia, and in 
the Amazonas/Solimões Basin are much shorter in duration, ca. 
0.2 my (18.0 to 17.8 Ma) and ca. 0.4 my (14.1 to 13.7 Ma), re-
spectively (Jaramillo et al., 2017b). The Miocene lake systems 
that are produced all along the Magdalena valley, e.g., La Cira 
beds and the Barzalosa Formation, may also be related to these 
two marine flooding periods but correlations are still uncertain. 
The disappearance of the Pebas system occurred at ca. 10–11 
Ma (Jaramillo et al., 2017b), concomitant with the onset of the 
Amazon River (Hoorn et al., 2017). This major shift probably 
precipitated the extinction of flora associated with the “mar-
ginal” environment of the Pebas systems and its fauna of large 
reptiles and abundant mollusks.

The Andes reached their modern elevation by the end of the 
Miocene (ca. 5–6 Ma; Garzione et al., 2006, 2008, 2014; Ghosh 
et al., 2006; Kar et al., 2016; Wallis et al., 2016), thus generat-
ing two brand new biomes, the páramo and the cloud (montane) 
forest (Figure 2a). The species composition of these two biomes 
is roughly 50% derived from lowland tropical plants (tropical 
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Gondwanan lineages), ~25% from temperate latitudes in South 
America (temperate Gondwanan lineages), and ~25% from 
temperate latitudes in North America (temperate Laurasian lin-
eages) (Gentry, 1982a, 1982b). The slopes of the Andes have 
also been considered a sort of engine of speciation because the 
topographic complexity generates diverse microenvironments 
(Gentry, 1982a; Hoorn et al., 2010). The history of the vege-
tation of the Andes during the late Neogene has been studied 
by professor van der Hammen and his team for more than four 
decades (Hooghiemstra & van der Hammen, 1998; Hooghiem-
stra et al., 2006; van der Hammen, 1989, 1995, 2003; van der 
Hammen & Hooghiemstra, 2000; van der Hammen et al., 1973; 
Wijninga, 1996). Nonetheless, when the extant páramo origi-
nated is still an open question.

The cool–mode climate of today, which emerged 2.6 my 
ago at the onset of the Pleistocene, is fundamentally different 
from the warm–mode, pre–Pleistocene climates (Fedorov et 
al., 2013). Four major characteristics define our modern cli-
mate: a permanent and extensive ice–cap at the North Pole, 
CO2 levels below 200 ppm, a steep latitudinal temperature 
gradient pole–to–equator (~50 °C), and a steep longitudinal 
temperature gradient along the equatorial Pacific (Pagani et 
al., 2010). Understanding how those four components arose 
is fundamental to understanding our modern climate and mak-
ing future predictions, yet we still lack satisfactory answers. 
The consequences of this major shift in climate mode are still 
being researched, but it seems to have greatly modified the ex-
tent and distribution of most biomes, including the expansion 
of savannas, páramos, and dry and xerophytic forests and the 
contraction of the rainforest (Jaramillo et al., 2015) (Figure 
2a). One striking example of this shift is the Ware Forma-
tion in the northeastern region of the Guajira Peninsula (Fig-
ure 1). The Ware Formation is an upper Pliocene (3.4–2.78 
Ma) fluvio–deltaic deposit (Hendy et al., 2015; Moreno et 
al., 2015) with a rich fossil record that includes sloths, cin-
gulates, rodents, toxodontids, a procyonid, a camelid, large 
crocodiles, turtles, fossil wood, and a diverse fish assemblage 
(Aguilera et al., 2013a, 2013b, 2017; Amson et al., 2016; Ca-
dena & Jaramillo, 2015; Carrillo et al., 2018; Carrillo et al., 
2015; Forasiepi et al., 2014; Hendy et al., 2015; Jaramillo et 
al., 2015; Moreno–Bernal et al., 2016; Moreno et al., 2015; 
Pérez et al., 2017; Suárez et al., 2016), indicating that there 
were rivers with permanent water derived from local precip-
itation (Pérez–Consuegra et al., 2018); this is a stark contrast 
with the desertic environment of that region today. These 
profound changes, however, were not limited to terrestrial 
environments. The world’s oceans, too, experienced a major 
extinction of marine megafauna at the onset of the Pleistocene 
(Pimiento et al., 2017).

The last large change in the history of the Neotropics oc-
curred during the late Neogene with the terrestrial connection 
of Central America with South America across the Isthmus of  

Panamá, which facilitated a large–scale interchange of biota 
across the Americas, often known as GABI (the Great American 
Biotic Interchange) (MacFadden, 2006a; Simpson, 1983; Webb, 
1976, 1978, 1994, 1995, 2006; Woodburne, 2010). Many studies 
have used 3.5 Ma as the a priori date for this event (Bacon et al., 
2015a), although several genetic studies of taxa with low dis-
persal capabilities, including bees (Roubik & Camargo, 2011), 
tree frogs (Pinto–Sánchez et al., 2012), salamanders (Elmer et 
al., 2013), freshwater Poecilia fishes (Alda et al., 2013), and 
Amazilia hummingbirds (Ornelas et al., 2013), among many oth-
ers, have reported evidence of earlier exchanges. A recent meta–
analysis across a broad range of taxa, both marine and terrestrial, 
indicated a large increase in the rate of migrations/vicariance 
migration starting at 10 Ma, rather than at 3.5 Ma as was often 
assumed (Bacon et al., 2015a, b; Jaramillo, 2018; Jaramillo et 
al., 2017a). The fossil record of Panamá indicates a similar pat-
tern in plants (Cody et al., 2010; Graham, 1988a, 1988b, 1991, 
1992, 1999, 2010, 2011; Herrera et al., 2010, 2014a, 2014c; 
Jaramillo et al., 2014b; Jud et al., 2016; Rodríguez–Reyes et 
al., 2014, 2017a, 2017b) and vertebrates other than mammals 
(Cadena et al., 2012b; Hastings et al., 2013; Head et al., 2012; 
Scheyer et al., 2013). Panamanian mammals of the early – 
middle Miocene in contrast are dominated by North American 
lineages including camels, horses, peccaries, bear–dogs, anthra-
cotheriums, rhinocerids, geomyoid rodents, dogs, oreodonts, and 
protoceratids (MacFadden, 2006a, 2006b, 2009; MacFadden & 
Higgins, 2004; MacFadden et al., 2010, 2012; Rincon et al., 
2012, 2013; Slaughter, 1981; Whitmore & Stewart, 1965); there 
are only two South American lineages, a monkey (Bloch et al., 
2016) and a bat. Recently O’Dea et al. (2016) proposed that 
findings of a Miocene closure of the Central American Seaway 
were unsupported and provided a new age for the formation of 
the Isthmus at 2.8 Ma. However, both conclusions have been 
rejected (Jaramillo et al., 2017a; Molnar, 2017).

Most of what is written about GABI in the paleontological 
literature is derived from the mammal fossil record. Therefore, 
the mammal–derived GABI has been accepted as the de facto 
pattern for all other organisms, even though mammals repre-
sent only ~0.02% of all species in the Americas. Both the fos-
sil and genetic records show that mammal exchange starts at 
10 Ma and accelerates greatly at ca. 2.5 Ma rather than at 3.5 
Ma (Bacon et al., 2015a; Carrillo et al., 2015; Forasiepi et al., 
2014; Jaramillo, 2018; Leite et al., 2014; Webb, 1976, 2006; 
Woodburne, 2010). The timing for the onset of massive GABI 
mammal migrations has been used to suggest that factors other 
than a land connection drove GABI, mainly the onset of the 
Pleistocene cool–climate mode and all the changes that pro-
duced in the hydrological patterns of the Americas as it was 
discussed above (Bacon et al., 2016; Leigh et al., 2013; Molnar, 
2008; Smith et al., 2012; Webb, 1976, 1978, 2006).

The development of extant Neotropical biomes has been 
affected by a series of historical accidents, climate changes, 
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and tectonic processes, many of which are still unknown. They 
are, however, important if we are going to be able to predict 
how biomes will respond to the ongoing rapid perturbations 
of our climate.
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