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Abstract The Cretaceous tectonic evolution of the western margin of South America 
involves a shift from an extensional convergent margin toward a more compressional 
setting that marks the beginning of the Andean Orogeny. In the Colombian Andes, this 
changing scenario is recorded in the Cretaceous sedimentary and magmatic rocks of 
the Central Cordillera. A review of field relationships, together with analysis of inte-
grated provenance constraints, including sandstone petrography and detrital zircon 
geochronology from various localities, suggests that during the Early Cretaceous until 
the Aptian – Albian, siliciclastic basin fills were characterized by transgressive fining–
upward trends, with prominent first–cycle quartzose provenances that indicate strong 
chemical weathering in the source areas. Jurassic, Triassic, and older detrital zircon 
U–Pb ages suggest that the igneous and metamorphic rocks forming the basement 
of the Central Cordillera were the main sources. Furthermore, the presence of Early 
Cretaceous detrital ages between 120 and 100 Ma, together with interlayered volcanic 
rocks at the top of the sequence characterized by mixed arc–like, MORB, and E–MORB 
geochemical signatures, can be related to the evolution of an extensional arc with 
associated back–arc basin formation. Plutonic rocks with ca. 98 Ma crystallization ages 
show Nd, Sr, Hf, and O isotope evidence for the existence of thinned continental crust 
that may account for the dominant mantle signature. By ca. 93 Ma, the Early Creta-
ceous sedimentary sequences were deformed and intruded by plutonic rocks, which 
conversely show isotopic fingerprints characteristic of crustal signatures that can be 
explained by the involvement of thicker crust that promoted melt interaction with the 
more radiogenic host rocks.

This tectonic change from a Mariana– to an Andean–type subduction style was 
probably triggered by regional–scale plate kinematic reorganizations, as suggested by 
similar coeval tectonic scenarios along the entire South American margin, and set the 
conditions for the construction of the Andean chain.
Keywords: Cretaceous, back-arc, intra–arc, Andean Orogeny, Geochemistry.

Resumen La evolución tectónica del borde occidental de Suramérica durante el Cre-
tácico está marcada por el cambio de un margen convergente extensional hacia una 
configuración más compresiva que marca el inicio de la Orogenia Andina. En los Andes 
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colombianos, este cambio está registrado en las rocas sedimentarias y magmáticas 
cretácicas de la cordillera Central. La revisión de las relaciones de campo, junto con 
el análisis de procedencia de rocas siliciclásticas (petrografía de areniscas y geocro-
nología en circones detríticos de varias localidades), sugiere que durante el Cretácico 
Temprano hasta el Aptiano–Albiano el relleno siliciclástico de la cuenca se caracterizó 
por tener un carácter transgresivo granodecreciente y una composición cuarzosa con 
componentes de primer ciclo asociados a condiciones de meteorización intensa en el 
área fuente. Las edades U–Pb en circón jurásicas, triásicas y más antiguas sugieren que 
las fuentes principales fueron las rocas ígneas y metamórficas que conforman el basa-
mento de la cordillera Central. Además, la presencia de edades detríticas del Cretácico 
Temprano entre 120 y 100 Ma, junto con la de rocas volcánicas intercaladas al tope de 
la secuencia que se caracterizan por una mezcla de firmas geoquímicas de arco, MORB 
y E–MORB, puede estar relacionada con la evolución de un arco extensional y la for-
mación de una cuenca de retroarco. Las rocas plutónicas con edades de cristalización 
de ca. 98 Ma muestran evidencias isotópicas de Nd, Sr, Hf y O de afinidad mantélica 
que estarían asociadas a la existencia de una corteza continental adelgazada. A los ca. 
93 Ma, las secuencias sedimentarias del Cretácico Temprano fueron deformadas e in-
truidas por rocas plutónicas, las cuales en cambio muestran características isotópicas 
corticales que pueden explicarse por la participación de una corteza más gruesa que 
promovió la interacción del fundido con las rocas caja más radiogénicas.

Este cambio tectónico de un estilo de subducción de tipo Marianas a uno de tipo 
andino es común en toda la margen continental suramericana y estaría asociado con 
reorganizaciones cinemáticas a escala de placas que marcarían el inicio de la cons-
trucción de la cadena andina.
Palabras clave: Cretácico, retroarco, intraarco, Orogenia Andina, geoquímica.

1. Introduction

During the Cretaceous, the western margin of South Ameri-
ca experienced a major change from a dominantly extensional 
system (Mariana–type) toward a more compressional tecton-
ic style (Chile–type; Uyeda & Kanamori, 1979; Stern, 2012), 
which marks the initiation of the Andean orogeny (see reviews 
in Tunik et al., 2010; Horton, 2018). Whereas the Mesozoic 
– Cenozoic tectonic evolution of the central and southern An-
dean segments was characterized by a subduction–dominated 
orogeny, the northern Andes constitutes a classic accretionary 
orogen in which interspersed terrane accretion and subduction 
tectonics were responsible for orogenic growth (see a review 
in Ramos, 2009). With such a complex scenario and the con-
tinuous superimposition of tectonic events, clear discrimination 
between subduction–dominated extensional and compressional 
tectonics remains a major challenge.

The long–term spatiotemporal and compositional changes 
in magmatic rocks integrated with the stratigraphic and prove-
nance evolution of contemporaneous basins are sensitive mark-
ers of the evolution of convergent margins and can be used to 
address alternating settings between extension and compression 
(Busby, 2012; Cawood et al., 2009; Marsaglia, 2012).

In this contribution, we present a review of published 
field observations and petrographic, geochronological, and 

geochemical data, together with new results from magmatic 
and detrital zircon U–Pb geochronology, whole–rock geo-
chemistry, zircon Hf and O isotopes, sandstone petrography, 
and field relationships of Cretaceous units from selected lo-
calities exposed between the two flanks of the Central Cor-
dillera of the Colombian Andes (Figure 1). The analysis of 
available data and the new data presented here allows doc-
umenting an Aptian – Albian extensional margin associat-
ed with the formation of different intra–arc and back–arc 
extensional domains, which were inverted and deformed 
before 90 Ma and subsequently experienced the formation 
of a younger Late Cretaceous arc and the collision of an  
intra–oceanic terrane.

The Early to Late Cretaceous record in the Central Cor-
dillera provides additional constraints on the continental–scale 
transition from extension to compression that gave rise to the 
Andean Orogeny (Horton, 2018; Tunik et al., 2010).

2. Geological Setting

Within the Colombian Andes, the Cretaceous geological re-
cord is found in three different tectonostratigraphic domains, 
which closely coincide with major morphostructural features 
represented by the three main cordilleras and the intervening 
Magdalena and Cauca valleys (Figures 1, 2).



337

Cretaceous Record from a Mariana– to an Andean–Type Margin in the Central Cordillera of the Colombian Andes

C
re

ta
ce

ou
s

In the Magdalena valley and the Eastern Cordillera, Creta-
ceous sedimentary rocks accumulated over Jurassic volcanic 
and siliciclastic units and correspond to a former extensional 
basin filling interval that ended in the Berriasian (Kammer & 

Sánchez, 2006; Sarmiento–Rojas et al., 2006). These units are 
considered para–autochthonous and/or northward–transported 
domains that nearly achieved their modern paleogeographic 
positions west of the reference craton during the Late Jurassic 
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(Bayona et al., 2006). The Early Cretaceous extension–dom-
inated setting switched to eustatic–dominated sedimentation 
with coeval tectonic quiescence and thermal subsidence. This 
sedimentary record can be traced eastward in the Llanos Basin 
and includes associated volcanogenic clays and tuffs ranging in 
age from the Hauterivian to the Turonian (Villamil & Arango, 
1998; Villamil, 1999; Sarmiento–Rojas et al., 2006), as well as 
minor gabbroic bodies with Ar–Ar ages between 136 and 74 
Ma (Vásquez et al., 2010).

In the Central Cordillera, the Early Cretaceous units are 
represented by a series of discontinuous siliciclastic sequences 
that crop out on both flanks and along its axis (Figure 2). These 
sequences overlie Permian – Triassic and Jurassic metamorphic 
rocks and are characterized by an apparent fining–upward pat-
tern from predominantly sandstone/conglomeratic beds toward 
a mudstone–dominated sequence (see review in Nivia et al., 
2006; Zapata et al., 2018). Fossil remnants, including ammo-
nites, bivalves, and gastropods, have shown that sedimentary 
accumulation extended from the Berriasian to the Aptian (see 
compilation in Botero & González, 1983; González, 2001). 
Volcanic flows and small gabbroic bodies have been found in 
association with some of these sedimentary sequences (Rodrí-
guez & Celada–Arango, 2018; Zapata et al., 2018).

Two different hypothetical geodynamic settings have been 
considered for the evolution of the Central Cordillera sedimen-
tites: a passive margin that collided with an intra–oceanic arc 
(Toussaint, 1996; Moreno–Sánchez et al., 2008) or a back–arc 
basin that formed during the Early Cretaceous (Nivia et al., 
2006; Villagómez et al., 2011; Cochrane et al., 2014a; Spikings 
et al., 2015; Zapata et al., 2018). The paleogeographic position 
where these basins accumulated also remains controversial, 
with some authors considering an autochthonous origin con-
nected to depocenters located in the Eastern Cordillera domains 
(Etayo–Serna et al., 1969) and other authors arguing for exotic 
positions farther to the south probably correlated with coeval 
terranes in Ecuador (Toussaint, 1996; Pindell & Kennan, 2009).

In the western flank of the Central Cordillera and the Cauca 
Valley that separates it from the Western Cordillera, a series 
of highly deformed volcano–sedimentary units also considered 
Aptian – Albian in age crop out and are affected by a major 
fault system (Cauca–Romeral; Nivia et al., 2006). These units 
include gabbroic rocks associated with serpentinized peridotites 
(Álvarez, 1987; González, 2001) and are in fault contact with 
intermediate– to high–pressure metamorphic rocks with Lu–Hf 
and Ar–Ar peaks and cooling ages between 137 and 110 Ma 
(García–Ramírez et al., 2017), as well as younger ages of ca. 64 
Ma (Bustamante et al., 2011). These units are also interspersed 
with Triassic and older igneous and metamorphic rocks (Vinas-
co et al., 2006; Cochrane et al., 2014a; Zapata et al., 2018). The 
volcano–sedimentary units have been considered either as part 
of a fringing arc associated with the formation of a back–arc 
basin (Nivia et al., 2006; Villagómez et al., 2011; Cochrane et 

al., 2014b; Spikings et al., 2015) or as an allochthonous oceanic 
arc that collided with a passive margin (Toussaint, 1996; More-
no–Sánchez & Pardo–Trujillo, 2003).

Following the formation of these extensional basins related 
to a back–arc or intra–arc setting, prominent plutonic activi-
ty formed intrusions with ages between 98 and 72 Ma in the 
Early Cretaceous and older basement of the Central Cordillera 
(Ibañez–Mejia et al., 2007; Ordóñez–Carmona et al., 2007; Re-
strepo–Moreno et al., 2007; Leal–Mejía, 2011; Villagómez et 
al., 2011). This magmatism represents the construction of a con-
tinental arc that was active until the Maastrichtian – Paleocene 
collision of the South American margin with an intra–oceanic 
arc (Villagómez et al., 2011; Spikings et al., 2015; Jaramillo et 
al., 2017). Several plutonic bodies with ages between 90 Ma 
and 78 Ma also intrude the Cretaceous extensional related vol-
cano–sedimentary unit exposed to the west (Villagómez et al., 
2011; Jaramillo et al., 2017).

In contrast, the Western Cordillera includes a high–density 
basaltic sequence characterized by deformed and undeformed 
lava flows, pillow lavas, and minor pyroclastic rocks, which 
have been interpreted as remnants of an oceanic plateau likely 
related to the Caribbean Large Igneous Province that formed in 
southern latitudes (CLIP; Kerr et al., 1997; Villagómez et al., 
2011; Zapata et al., 2017; Hincapié–Gómez et al., 2018). This 
basaltic province presents minor intercalations of mudstones 
and cherts with Berriasian to Albian fossil remnants that are 
intruded by plateau–related gabbroic and tonalitic bodies with 
ca. 98 Ma crystallization ages (Villagómez et al., 2011; We-
ber et al., 2015). These units are also intruded by arc–related 
granitoids and gabbroic rocks with zircon U–Pb ages between 
80 and 90 Ma (Villagómez et al., 2011; Zapata et al., 2017), 
which are locally associated with volcanic units of Campanian 
age (Spadea & Espinosa, 1996). Late Cretaceous and younger 
sandstones with quartz–rich compositions overlie these volca-
nic units and represent the stratigraphic record of their juxtapo-
sition against the continental margin (León et al., 2018).

Several lines of evidence, including exhumation trends in the 
Central and Western Cordilleras (Villagómez & Spikings, 2013), 
changes in the nature of the magmatic record along the western 
flank of the Central Cordillera (Jaramillo et al., 2017) and ma-
jor changes in the sedimentary environments and the associated 
provenances in the eastern basins (Villamil, 1999), have sug-
gested that during the Late Cretaceous – Paleocene, the different 
units described above were fully juxtaposed (Toussaint, 1996; 
Villagómez et al., 2011; Spikings et al., 2015) and subsequently 
segmented and dispersed by strike–slip fault systems along the 
margin (Pindell & Kennan, 2009; Montes et al., 2010).

3. Methods and Approach

In this contribution, we present a review of published geolog-
ical constraints from Lower to Upper Cretaceous sedimentary 



339

Cretaceous Record from a Mariana– to an Andean–Type Margin in the Central Cordillera of the Colombian Andes

C
re

ta
ce

ou
s

and magmatic rocks of the Central Cordillera. Although some 
of the available constraints are mainly from basic geological 
cartography, the descriptions are remarkably objective and 

remain valid. These results are integrated with new field ob-
servations together with sandstone petrography, geochemical 
analyses, U–Pb zircon geochronology, and zircon oxygen and 
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hafnium isotopes from two localities of the Cretaceous units ex-
posed in the western and eastern flanks of the Central Cordillera 
in the Department of Antioquia near the city of Medellín and 
cross section B (Figures 2 and 3).

Our approach follows the concept of tectonic facies (Rob-
ertson, 1994), which integrates field and laboratory analysis to 
identify tectonostratigraphic associations, which can be used 
to recognize discrete tectonic settings and test their geological 
evolution. 

To avoid repetition, we integrated both the published and 
the new data in a single section. The locations of the samples 
analyzed in this study are presented in Table 1, and the results 
from sandstone petrography of samples from the San Luis Sed-
imentites in Table 2.

3.1. Zircon U–Pb LA–ICP–MS Geochronology

After zircon separation using conventional techniques, includ-
ing crushing, pulverization, water table, and heavy liquid grav-
ity concentration, LA–ICP–MS U–Pb zircon analyses were 
obtained from 4 granitic rocks and 4 sandstone samples at the 
Washington State University Geoanalytical Lab, using a New 
Wave Nd:YAG UV 213–nm laser coupled to a Thermo Fin-
nigan Element 2 single collector, double–focusing, magnetic 
sector ICP–MS following the analytical protocol of Chang et 
al. (2006). For this study, the Plešovice zircon was used as the 
main standard, which is characterized by a 238U/206Pb age of 
337.13 ± 0.37 Ma (Sláma et al., 2008). Common Pb represents 
a large proportion of the total Pb in Mesozoic and younger U–
poor zircons. However, common Pb is typically not significant 
in LA–ICP–MS analyses, most likely because it is concentrated 
in cracks and inclusions, which can be avoided by appropriately 
selecting the crystals. When this is not possible, the influence of 
common Pb is easy to recognize on Tera–Wasserburg diagrams 
because analyses tend to line up on a steep linear trajectory 
that can be anchored at a reasonable 207Pb/206Pb common lead 
composition (y–intercept) (DeGraaff–Surpless et al., 2002). 
Common Pb corrections were made on these analyses using 
the 207Pb method (Williams, 1998). Uranium–lead ages were 
processed and calculated using Isoplot 4.15 (Ludwig, 2003). 
Analytical data from the detrital zircons are presented in Table 
1, Supplementary Information, and data from the magmatic 
rocks are presented in Table 3.

3.2. Whole–Rock Geochemistry

Whole–rock geochemical analyses of five magmatic rocks from 
the Cretaceous Altavista Stock and San Diego Gabbro were 
conducted at the ALS Minerals Laboratories (the results are 
presented in Table 4).

After crushing, splitting, and pulverizing, an aliquot of 0.1 g 
is added to a LiBO2/Li2B4O7 flux, mixed and fused in a furnace 

at 1000 °C. The resulting melt is then cooled and dissolved in 
100 mL of 4%HNO3/2%HCl. This solution is then analyzed 
for major oxides by inductively coupled plasma atomic emis-
sion spectroscopy (ICP–AES), and the results are corrected for 
spectral interelement interferences. For trace and rare earth ele-
ments, an aliquot of 0.1 g is added to a LiBO2/Li2B4O7 flux (1.8 
g), mixed and fused in a furnace at 1025 °C. The resulting melt 
is cooled and dissolved in a mixture containing HNO3, HCl, and 
HF. This solution is then analyzed by ICP–MS. Data handling, 
plotting, and interpretation are performed using the software 
GCD Toolkit 4.1 (Janoušek et al., 2006).

3.3. Hafnium Isotopes

Hf isotope geochemistry was determined at the GeoAnalytical 
Lab of Washington State University using a Thermo Finnigan 
Neptune™ MC–ICP–MS equipped with 9 Faraday collectors 
interfaced with a New Wave™ 213 nm UP Nd–YAG laser. The 
results are presented in Table 5.

The laser was operated at a pulse rate of 10 Hz and a fluence 
of 10–12 J/cm2. The laser spot size was 30 μm. The carrier gas 
consisted of purified He plus small quantities of N2 to minimize 
oxide formation and increase Hf sensitivity. The total Hf sig-
nal achieved was between 2 and 6 V. The data were acquired 
in static mode with 60 s integrations. Details of the analytical 
procedures and data treatment were after (Vervoort et al., 2004; 
Dufrane et al., 2007). For the Hf–depleted mantle model ages 
(Hf TDM), we used 176Hf/177Hf and 176Lu/177Hf for the individ-
ual zircon samples to determine their initial 176Hf/177Hf ratios 
at their crystallization ages. Projection back from zircon crys-
tallization was calculated using a present value of 0.0093 for 
176Lu/177Hf in the crust (Vervoort & Patchett, 1996; Amelin et 
al., 2002). The depleted mantle Hf evolution curve was calcu-
lated from present–day depleted mantle values of 176Hf/177Hf 
DM(0) = 0.283225 and 176Lu/177Hf DM(0) = 0.038512 (Vervoort 
& Blichert–Toft, 1999).

3.4. Oxygen Isotopes

Oxygen isotopes in zircon were analyzed using the CAMECA 
IMS 1280–HR ion microprobe at Heidelberg University. The 
procedures of multicollection analysis of oxygen isotopes (16O 
and 18O) using two Faraday cup (FC) detectors were similar to 
those presented in Trail et al. (2007) as modified by Schmitt et 
al. (2017).

A 2–3 nA Cs+ primary beam was focused to 10–15 μm using 
a focused beam rastered over 10 μm. FC backgrounds were 
recorded during an initial 30 s of presputtering and averaged 
over the duration of the analysis session. Mass fractionation 
was corrected by analyzing the 91 500 reference zircon in 
pairs with interspersed blocks of six unknowns (91500 δ18O = 
+9.86‰; Wiedenbeck et al., 2004; δ values are relative to Vien-
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Sample code N W Geologic unit Lithology Analysis

JCA–045 6.27423 –75.62193 Altavista Stock Qartz monzonite U–Pb LA–ICP–MS

JCA–046 6.22818 –75.56890 San Diego Gabbro Gabbroic diorite U–Pb LA–ICP–MS

DM–056 5.57991 –75.36080   Porphyry andesitic U–Pb LA–ICP–MS and Hf

AG–01 6.01612 –74.94476 Antioquian Batholith Quartz diorite U–Pb LA–ICP–MS

QG–W–01 5.07222 –75.44886 Quebradagrande Complex Sandstone Detrital U–Pb LA–ICP–MS

MQA–4A 5.07197 –75.44895 Quebradagrande Complex Quartz conglomerate Detrital U–Pb LA–ICP–MS

JCA036 6.27423 –75.62193 Altavista Stock Quartz diorite Geochemistry

JCA037 6.27423 –75.62193 Altavista Stock Gabbro Geochemistry

JCA038 6.27423 –75.62193 Altavista Stock Andesitic porphyry Geochemistry

JCA043 6.22818 –75.56890 San Diego Gabbro Gabbro Geochemistry

DM–TM–084 5.99307 –75.03510 San Luis Sedimentites Sandstone Petrography

DM–TM–076 5.99593 –75.02480 San Luis Sedimentites Sandstone Petrography

Table 1. Sample locations.

Table 2. Petrographical results from the San Luis Sedimentites.

Sample Qzm Qzi Qzmet Ltmet Ltsed Pg K

DM–TM–084 85 85 46 3 8 22 8

DM–TM–076 70 65 29 1 3 18 3

(Qzm) monocrystalline quartz; (Qzi) polycrystalline igneous quartz; (Qzmet) 
polycrystalline metamorphic quartz; (Ltmet) metamorphic lithic; (Ltsed) sedi-
mentary lithic; (Pg) plagioclase; (K) alkaline feldspar.

lera, the eastern and western belts are separated more than 50 
km by the pre–Cretaceous metamorphic basement.

In the western flank of the Central Cordillera, between the 
Departments of Antioquia and Caldas, different names have 
been used to refer units with similar lithofacies, including the 
Abejorral Formation (González, 1980), the Aranzázu–Maniza-
les Metasedimentary Complex (Lozano et al., 1975), the “Valle 
Alto”, “San Félix”, and “El Establo” units (Rodríguez & Rojas, 
1985), and the “Eastern” interval near the city of Manizales 
(Gómez–Cruz et al., 1995).

These sequences include basal oligomictic quartzose con-
glomerates and coarse–grained sandstones with thicknesses 
between 40 and 240 m. Interlayered fine–grained sandstones, 
mudstones, siliceous mudstones, and chert with polymictic con-
glomerate beds overlie the coarse–grained units and may reach 
thicknesses between 160 and 1910 m. The greater stratigraphic 
thicknesses may be an artifact of repetition associated with the 
superimposed deformation (Figure 4). These units yield Berri-
asian to middle Albian fossil fauna and have been interpreted 
as transgressive successions that evolved from fluvial–deltaic to 
marine platform environments (Lozano et al., 1975; Etayo–Ser-
na, 1985; Rodríguez & Rojas, 1985; Gómez–Cruz et al., 1995; 
Quiroz, 2005; Zapata et al., 2018). Magmatic activity associat-
ed with fine–grained facies has recently been recognized in the 
form of interlayered tuffs and dikes near the town of Abejorral 
(Antioquia), which suggests that sedimentation and volcanism 
were contemporaneous (Zapata et al., 2018). In this contribu-
tion, we report the presence of a porphyritic body that intrudes 
a sequence of mudstones and siltstones of the Abejorral Forma-
tion near the town of Salamina in the state Caldas Department.

Several segmented and deformed siliciclastic units also crop 
out along the eastern flank of the Central Cordillera approximate-
ly 50 km to the east and both north and south from the main ex-
posures of the Abejorral Formation. These sequences trend N–S, 

na standard mean ocean water, VSMOW; 18O/16O = 0.0020052; 
Baertschi, 1976). The reproducibility in δ18O was 0.15‰ (1 
standard deviation, n = 24). A secondary reference zircon FC1 
(δ18O = 5.4‰; Ickert et al., 2008) was analyzed under the same 
conditions, and a δ18O value of 5.56 ± 0.15‰ (n = 6) was ob-
tained, attesting to the accuracy of the method within stated 
uncertainties.

4. Results

4.1. Review of the Early Cretaceous 
Sedimentary Record in the Central Cordillera 
and New Observations

Several discontinuous belts of fossiliferous siliciclastic Lower 
Cretaceous rocks are exposed along the axis and both flanks 
of the Central Cordillera (Figure 2). All of them are overlying 
Triassic or Jurassic schist and gneissic rocks that have been 
included in the Cajamarca Complex (Vinasco et al., 2006; Blan-
co–Quintero et al., 2014; Cochrane et al., 2014b; Bustamante 
et al., 2017; Rodríguez et al., 2018) and show local evidence 
of intense deformation by folding and faulting, as well as local 
low–grade metamorphic overprinting that formed slates and 
flattened metaconglomerates. In some segments of the cordil-
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Cretaceous Record from a Mariana– to an Andean–Type Margin in the Central Cordillera of the Colombian Andes
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Sample JCA036 JCA037 JCA038 JCA043

Rock type Quartz diorite Gabbro Andesitic 
porphyry Gabbro

Unit Altavista Altavista Altavista San Diego

SiO2 67.4 63.9 56.9 54.6

Al2O3 16.8 15.6 15.8 16.15

Fe2O3 4.12 5.36 6.71 7.19

MgO 0.83 2.67 3.42 5.93

CaO 2.87 5.23 7.48 9.36

Na2O 6.51 5.48 2.99 3.73

K2O 1.59 0.67 0.8 0.43

TiO2 0.51 0.92 0.76 0.85

P2O5 0.15 0.2 0.23 0.12

MnO 0.06 0.14 0.15 0.14

Cr2O3   0.01 0.01 0.01

Ni 0 0 0 0

Sc 0 0 0 0

LOI 0.36 0.44 4.5 1.03

Sum 101.28 100.67 99.85 99.59

Cr 30 60 60 100

Pb        

Ba 487 193.5 356 169.5

Co 0 0 0 0

Cs 2.05 1.25 0.59 0.49

Ga 21.2 18.9 18.2 14.7

Hf 8.4 4 3.4 2.7

Nb 10.6 14.4 4.3 5

Rb 48.6 27.8 18.1 9.4

Sn 3 3 2 2

Sr 243 240 493 289

Ta 0.6 0.9 0.3 0.3

Th 4.42 3.26 1.64 1.41

U 1.99 1.39 0.73 0.47

V 87 95 148 172

W 1 1 1 1

Zr 406 168 122 98

Y 25 37.2 21 22

La 21.2 14.4 10.3 8.5

Ce 43.3 37.7 23.4 21.2

Pr 4.96 4.98 3.23 2.93

Nd 18.3 20.9 14.1 13.3

Sm 4.02 4.87 3.02 3.23

Eu 1.31 1.21 1 1.28

Gd 4.28 5.64 3.68 4.13

Tb 0.65 0.9 0.63 0.75

Table 4. Whole–rock geochemistry from the Altavista and San Di-
ego Plutons.

Table 4. Whole–rock geochemistry from the Altavista and San Di-
ego Plutons (continued). 

Sample JCA036 JCA037 JCA038 JCA043

Rock type Quartz diorite Gabbro Andesitic 
porphyry Gabbro

Unit Altavista Altavista Altavista San Diego

Dy 3.82 6.11 3.44 4.35

Ho 0.9 1.28 0.73 0.8

Er 2.66 4.13 2.42 2.4

Tm 0.41 0.62 0.32 0.35

Yb 2.96 4.67 2.18 2.27

Lu 0.49 0.62 0.36 0.39

Rb/Sr 0.20 0.12 0.04 0.03

Sr/Y 9.72 6.45 23.48 13.14

Sr/Y thick-
ness 18.84 15.21 34.11 22.63

have received different lithostratigraphic names (e.g., San Luis, 
Amalfi, and Berlin Sedimentites, and the San Pablo and La Sole-
dad Formations), overlie Triassic and older metamorphic rocks 
of the Cajamarca Complex, and are also intruded by Upper Cre-
taceous plutons (Feininger et al., 1972; Hall et al., 1972; Barrero 
& Vesga, 1976; Naranjo, 1983). The fossil content of mudstones 
from these units suggests Valanginian to Aptian – Albian accu-
mulation ages. Although precise stratigraphic analysis from these 
units is still missing, cartographic and field observations indicate 
that they are represented by fining–upward sequences in which 
coarse–grained conglomeratic and sandstone levels are overlain 
by upper fine–grained siliciclastic facies associations.

The coarse–grained association includes intercalations of 
sandstones and conglomerates, which in the San Luis Sedimen-
tites are characterized by thicknesses of a few centimeters to hun-
dreds of meters (Feininger et al., 1972). Sandstones are mainly 
quartzose in composition, whereas conglomerates include oligo-
mictic (white quartz and chert) or polymictic conglomerates that 
may include metavolcanic, schist, and/or gabbroic clasts in the 
San Luis Sedimentites, as well as in the San Pablo Formation and 
the Berlin Sedimentites (Feininger et al., 1972; Hall et al., 1972; 
Naranjo, 1983). The quartzose conglomerates have been reported 
overlying the metamorphic basement (Feininger et al., 1972; Hall 
et al., 1972; Naranjo, 1983; Pimiento, 2011). 

The fine–grained facies include mostly fossiliferous Lower 
Cretaceous black shales (up to 80%; see review in González, 
2001) intercalated with chert, siltstones, graywackes, and intra-
formational conglomerates with shale and sandstone fragments, 
which may reach thicknesses of 600–1000 m (Feininger et al., 
1972; Hall et al., 1972; Gómez & Lizcano, 1990). Significant 
variations and lateral differences in the stratigraphic thickness 
between distinct localities is a commonly reported feature. The 
La Soledad Formation, which is one of the northern expressions 
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C
re

ta
ce

ou
s

measured corrected                              

Sample 176Hf/177Hf 176Hf/177Hf 2SE 176Lu/177Hf 2SE 176Yb/177Hf 2SE 178Hf/177Hf 2SE 180Hf/177Hf 2SE
Total Hf 

beam
Age 176Hf/177Hfi EHf0 2SE EHfi

DM56_1 0.282958 0.2830121 0.000036 0.002089 0.000067 0.0504 0.0018 1.467149 0.000041 1.88694 0.0001 14.5 94.4 0.283008412 8.0 1.3 10.0

DM56_2 0.282949 0.2830031 0.00003 0.001171 0.000018 0.0263 0.0004 1.467186 0.000042 1.887079 0.000091 16.44 97.2 0.283000967 7.7 1.1 9.8

DM56_3 0.282937 0.2829911 0.000026 0.000881 0.000039 0.01948 0.00082 1.46717 0.000033 1.887001 0.000084 17.68 98.7 0.282989468 7.3 0.9 9.4

DM56_4 0.282966 0.2830201 0.000026 0.001068 0.00005 0.0232 0.001 1.467173 0.000032 1.88699 0.00011 17.41 93.9 0.283018224 8.3 0.9 10.3

DM56_5 0.283019 0.2830731 0.000028 0.00319 0.00025 0.0805 0.0064 1.467178 0.000031 1.887 0.000082 14.78 99.0 0.283067207 10.2 1.0 12.2

DM56_6 0.282946 0.2830001 0.000033 0.001426 0.000071 0.0336 0.0017 1.467165 0.000037 1.88695 0.000081 18.13 98.0 0.282997483 7.6 1.2 9.7

DM56_7 0.282946 0.2830001 0.000025 0.001099 0.000022 0.02485 0.00048 1.467187 0.000035 1.886991 0.000081 15.49 98.5 0.282998071 7.6 0.9 9.7

DM56_8 0.282928 0.2829821 0.000024 0.001542 0.000048 0.037 0.0014 1.467171 0.000035 1.88695 0.000071 15.9 97.2 0.282979289 7.0 0.8 9.0

DM56_9 0.282965 0.2830191 0.000036 0.00128 0.000093 0.0306 0.0021 1.467153 0.000042 1.88694 0.00012 18.56 96.2 0.283016797 8.3 1.3 10.3

DM56_10 0.282955 0.2830091 0.000029 0.001196 0.000021 0.02749 0.00065 1.467133 0.000031 1.887 0.00011 16.33 99.6 0.28300687 7.9 1.0 10.1

DM56_11 0.282972 0.2830261 0.00003 0.00195 0.00024 0.0476 0.0061 1.467147 0.000032 1.886874 0.000095 15.13 97.2 0.283022557 8.5 1.1 10.6

DM56_12 0.282974 0.2830281 0.000023 0.00176 0.00012 0.0406 0.0029 1.467179 0.000034 1.886947 0.000084 16.97 97.2 0.283024902 8.6 0.8 10.6

DM56_13 0.282982 0.2830361 0.000032 0.001103 0.000059 0.0243 0.0013 1.46714 0.000031 1.886876 0.00009 17.18 97.2 0.283034097 8.9 1.1 11.0

of the Lower Cretaceous sedimentites of the Central Cordillera, 
presents interlayered spilitized basaltic lava flows at its top, 
which include embedded fragments of the host sedimentary 
rocks (Hall et al., 1972).

All the units described above are intruded by Upper Creta-
ceous granodioritic to quartz dioritic rocks, which are part of 
the composite Antioquian Batholith with a protracted magmatic 
history spanning from 97 Ma to 84 Ma (Figures 2, 3; Ibañez–
Mejia et al., 2007; Leal–Mejía, 2011; Villagómez et al., 2011; 
Duque–Trujillo et al., 2018). Our new field and petrographic 
observations of the San Luis Sedimentites, together with similar 
published results in the same unit as well as in the La Soledad 
Formation and Berlin Sedimentites (Feininger et al., 1972; Hall 
et al., 1972), have shown that granitoid bodies intrude formerly 
folded and foliated low–grade Lower Cretaceous metasedimen-
tary rocks (Figure 4), producing an undeformed thermal aure-
ole. In the San Luis Sedimentites, petrographic observations of 
andalusite porphyroblasts and mica needles cut the schistose 
fabric defined by the orientation of white mica and suggest that 
contact metamorphism reached the hornblende–hornfels facies.

Field observations in the Abejorral Formation and in the San 
Luis Sedimentites near the towns of Aguadas and San Luis, as 
well as previously published maps and reports from correlatable 
units (Zapata et al., 2018), show that all of these rocks are char-
acterized by the presence of asymmetric folding with relatively 
steep limbs and are commonly faulted against the metamorphic 
basement (Figure 4).

West of the Abejorral Formation, in the western flank 
of the Central Cordillera, a series of Cretaceous siliciclas-
tic sequences crops out and is characterized by interlayered 
fine–grained sandstones and mudstones with volcanic (pyro-
clastic and effusive) rocks (Gómez–Cruz et al., 1995; Tamayo 
& Correa, 2010; Zapata et al., 2018). These sequences are 

often exclusively composed of volcanic rocks with basaltic 
composition, including pillow lavas, and are locally associ-
ated with gabbroic bodies and highly deformed serpentinized 
peridotites, which have been included in the Quebradagrande 
Complex and/or the Cauca Ophiolitic Complex (González, 
1980, 2001; Álvarez, 1987; Rodríguez & Cetina, 2016; Zapata 
et al., 2018).

4.2. Sandstone Petrography

Quantitative published petrographic data from the Abejo- 
rral Formation and Quebradagrande Complex were reviewed 
(Quiroz, 2005; Tamayo & Correa, 2010; Zapata et al., 2018), 
together with two newly analyzed samples from the San Luis 
Sedimentites. Additionally, qualitative descriptions were re-
vised in order to assess the compositional character and prov-
enance of the Lower Cretaceous sedimentary units exposed in 
the Central Cordillera of Colombia. Both the Folk (1974) and 
Garzanti (2016) classification and provenance diagrams were 
used to analyze sandstone compositions.

Sandstones from the Abejorral Formation and the upper seg-
ment of the Valle Alto Formation are medium– to coarse–grained, 
with angular to subangular and low–sphericity particles domi-
nantly composed of monocrystalline and polycrystalline quartz 
and metamorphic lithic fragments, with minor muscovite and 
sedimentary lithic fragments (Gómez–Cruz et al., 1995; Quiroz, 
2005; Tamayo & Correa, 2010; Zapata et al., 2018). In the QFL 
diagram of Folk (1974), samples plot within the litharenite, 
sublitharenite, and quartzarenite fields, whereas in the tectonic 
discrimination diagram of Garzanti (2016), they plot within the 
recycled orogen and continental block fields (Figure 5).

The Lower Cretaceous sandstones included in the Que-
bradagrande Complex and the upper Abejorral segment include 

Table 5. Hf isotope results for zircons from the Aguadas porphyritic unit.
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schistose and volcanic lithics, as well as abundant (<70%) foli-
ated polycrystalline and monocrystalline quartz with undulatory 
and straight extinction (Tamayo & Correa, 2010; Jaramillo et 
al., 2017; Zapata et al., 2018).

The San Luis Sedimentites include medium– to coarse–
grained sandstones, with angular to subangular and low–sphe-
ricity particles, also dominantly composed of monocrystalline 
igneous and polycrystalline metamorphic quartz, with minor 
sedimentary and metamorphic lithic fragments and feldspar. In 
the QFL diagram of Folk (1974), the samples plot within the 
subarkose field, whereas in the tectonic discrimination diagram 
of Garzanti (2016), they plot within the continental block field 
(Figure 5).

Descriptions of sandstones from the San Pablo and La Sole-
dad Formations in the northern segment of the Central Cordil-
lera, as well as the Berlin Sedimentites, suggest that they are 
fine– to medium–grained rocks, with angular particles mainly 
composed of quartz, which is consistent with a sialic continen-
tal block affinity. However, more definitive details are missing 
and waiting for new provenance research.

4.3. Detrital Zircon Geochronology

The results of four new detrital zircon U–Pb analyses are pre-
sented and compared with previously published geochrono-
logical data to complement the sedimentary provenance of the 

Lower Cretaceous units exposed in both the western and eastern 
flanks of the Central Cordillera. We report the maximum accu-
mulation age based on the three youngest overlapping grains 
approach of Dickinson & Gehrels (2009), but only when it is 
close to the stratigraphic age previously suggested by the fossil 
content, since older ages are meaningless for the purpose of an-
alyzing accumulation ages. Single– or two–grain ages are also 
noted when necessary, although we are aware that such types 
of ages are not statistically robust (Dickinson & Gehrels, 2009).

One sample collected from the Quebradagrande Complex 
exposed northwest of the city of Medellín (Figures 1, 2) yielded 
only seven individual zircon U–Pb ages clustered at approxi-
mately 190 Ma, with additional Early Cretaceous, Paleozoic, 
and Neoproterozoic ages (Figure 6).

Two samples were analyzed from the Abejorral Formation 
and the Quebradagrande Complex (eastern and western inter-
vals in the sense of Gómez–Cruz et al., 1995) exposed in the 
western flank of the Central Cordillera near the city of Ma- 
nizales (Figures 1, 2). A total of 95 individual zircon grains 
were dated from the eastern interval (Abejorral Formation 
equivalent). The sample is characterized by major age peaks in 
the Permian – Triassic (240–296 Ma), early Paleozoic (340–530 
Ma), and Proterozoic (ca. 630–1400 Ma). Thirty–six individual 
grains were analyzed from a sample from the western interval. 
This sample has a major Early Cretaceous peak (ca. 105 Ma) 
with additional Permian – Triassic, Paleozoic, and Proterozoic 
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Figure 5. Sandstone petrography compilation and new data from the Abejorral Formation (Tamayo & Correa, 2010) and the San Luis 
Sedimentites. (a) Sandstone classification after Folk (1974). (b) Sandstone classification diagram after Garzanti (2016). Abbreviations: 
(MA) magmatic arc; (RO) recycled orogen; (CB) continental block.
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zircon ages and a well–defined maximum accumulation age of 
103.4 ± 1.1 Ma (Figure 6).

One hundred and twenty–seven individual zircon U–Pb 
ages were also obtained from one sample collected from the 
San Luis Sedimentites close to the town of San Luis (Figure 
6). The sample is characterized by Late Jurassic (145–150 
Ma), Permian – Triassic (ca. 220–270 Ma), Paleozoic (ca. 
340–540 Ma), and Proterozoic ages (ca. 560–1800 Ma). Al-
though this sample also includes minor Early Cretaceous ages 
of ca. 120–127 Ma and 136–137 Ma, the three youngest over-
lapping grains suggest a maximum accumulation age of 146.1 
± 2.0 Ma.

4.4. Zircon Geochronology of Magmatic Rocks

Early Cretaceous magmatic rocks from the Central Cordillera 
have yielded ca. 129 Ma U–Pb crystallization ages obtained 
from stock–sized plutons in the eastern flank of the cordillera, 
which intrude Jurassic metamorphic rocks of the Cajamarca 
Complex (Bustamante et al., 2016) and are exposed immediate-
ly to the south of the San Luis and Berlin Sedimentites.

Cretaceous magmatism in the Central Cordillera of Co-
lombia includes both plutonic and volcanic units. The plutonic 
record is widely exposed in a ca. 8000 km2 trapezoidal body 
that has been defined as the Antioquian Batholith (Figures 1, 2; 
Feininger & Botero, 1982). Compositionally, it varies between 
gabbro and monzogranite, although it is mainly composed of 
medium– to coarse–grained tonalite and granodiorite facies. 
The mafic minerals are hornblende and biotite, which are typ-
ical of hydrated sources for magmas generated at convergent 
margins. These plutons intrude Triassic and older metamorphic 
rocks of the Cajamarca Complex as well as the Lower Creta-
ceous sedimentary rocks, forming well–defined contact aure-
oles (Botero, 1963; Feininger et al., 1972; González, 2001). 
Different small bodies with similar tonalite, granodiorite, and 
gabbro compositions include the La Union, La Culebra, Ovejas, 
Belmira, San Diego, and Altavista Stocks, which have also been 
interpreted as associated with the different pulses that formed 
the Antioquian Batholith.

Available U–Pb zircon crystallization ages obtained by 
multigrain TIMS and single grain LA–ICP–MS analyses 
have yielded ages between 95 and 59 Ma (Correa et al., 2006; 
Ibañez–Mejia et al., 2007; Restrepo–Moreno et al., 2007; Leal–
Mejía, 2011; Villagómez et al., 2011), without any particular 
spatial trend. Although areas of this broad plutonic province 
remain to be analyzed, available whole–rock geochemical data 
have indicated a typical convergent margin setting for its or-
igin with a well–defined calc–alkaline signature and Nb–Ti 
anomalies that suggest a magmatic arc affinity (Leal–Mejía, 
2011; Villagómez et al., 2011). Farther to the south, Leal–Me-
jía (2011) described ca. 90 Ma plutonic rocks that intrude the 
Lower Cretaceous rocks of the Mariquita Stock (Bustamante et 

al., 2016) and therefore extend the latitudinal distribution of the 
Late Cretaceous magmatism.

Volcanic rocks are exposed in the western flank of the Cen-
tral Cordillera, forming a quasi–continuous and highly deformed 
belt that has been grouped as the Quebradagrande Complex 
(Maya & González, 1995). This unit is within the San Jerónimo 
Fault system that separates it from the eastern Lower Cretaceous 
and Triassic metamorphic rocks of the cordillera and is also in 
fault contact with ultrabasic units. Its lithostratigraphy includes 
basaltic to andesitic lavas and pyroclastic rocks with intercalat-
ed mudstones and fine–grained sandstones (Nivia et al., 2006;  
Villagómez et al., 2011; Jaramillo et al., 2017). A coarser silici-
clastic sequence, including sandstones and conglomerates, has 
also been reported (González, 1980). This unit is in fault contact 
to the west with Lower Cretaceous greenschist– to amphibolite–
facies metamorphic rocks included in the Arquía Complex (Maya 
& González, 1995), as well as Triassic meta–igneous bodies and 
metasedimentary rocks that resemble those found to the east in the 
Central Cordillera (Vinasco et al., 2006; Cochrane et al., 2014a).

Published geochemical data suggest the existence of multi-
ple compositional groups within the Quebradagrande Complex. 
A MORB to E–MORB character (Nivia et al., 2006; Villagómez 
et al., 2011; Rodríguez & Cetina, 2016) and an arc–like signa-
ture are represented by lavas and pyroclastic rocks (review in 
Jaramillo et al., 2017). These geochemical patterns have been 
interpreted in terms of the evolution of a single back–arc sys-
tem that might have resulted from the progressive reduction 
of the supra–subduction zone mantle signature (Nivia et al., 
2006). Nevertheless, Jaramillo et al. (2017) suggested that the 
compositional evolution followed a trend from MORB–like 
signatures toward arc–related signatures as a consequence of 
ongoing crustal thickening.

Available temporal constraints for the magmatic units of the 
Quebradagrande Complex include local stratigraphic relations 
with Aptian – Albian mudstone levels (Grosse, 1926; Botero, 
1963; González, 1980; Botero & González, 1983; Arévalo et al., 
2001), in which basaltic volcanic rocks intrude and are deposited 
over the fossiliferous strata (Grosse, 1926; Botero, 1963; Aréva-
lo et al., 2001). Zircon U–Pb ages from diorite and tuff samples 
have yielded ages between 112 Ma and 114 Ma (Villagómez 
et al., 2011; Cochrane et al., 2014b). Zapata et al. (2018) also 
documented U–Pb crystallization ages between 103 Ma and 115 
Ma in different tuffs and andesitic bodies that are related to the 
Abejorral Formation and the Quebradagrande Complex. Al-
though a more extensive discussion is beyond the scope of this 
contribution, it is arguable that the Aptian – Albian volcanic and 
sedimentary records exposed in the western flank of the Central 
Cordillera (Quebradagrande Complex and Abejorral Formation) 
are part of a continuous Aptian – Albian domain.

Elsewhere, Upper Cretaceous fossil content has been rec-
ognized in two localities where a sequence of interlayered 
pyroclastic rocks and mudstones associated with the Que-
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bradagrande Complex is found (Botero & González, 1983; 
Gómez–Cruz et al., 2002). Although these rocks are not exten-
sively discussed, Cochrane (2013) reported U–Pb zircon ages of 
80.2 ± 0.7 Ma and 82.1 ± 0.7 Ma from deformed agglomerates 
near the city of Manizales. These agglomerates are also asso-
ciated with cherts that include Hastigerinoides watersi Cush-
man, foraminifera characteristic of the Turonian – Campanian 
(Hall et al., 1972). Similarly, Zapata et al. (2018) documented 
the existence of ca. 80 Ma volcanic rocks overlying the Early 
Cretaceous volcano–sedimentary sequence.

Several plutonic bodies of tonalitic and gabbroic compo-
sitions with an arc–related geochemical affinity and intrusive 
relations with volcanic rocks of the Quebradagrande Complex 
have yielded U–Pb zircon crystallization ages of ca. 80 Ma and 
90 Ma (Villagómez et al., 2011; Jaramillo et al., 2017).

It is therefore concluded that the magmatic record of the 
Quebradagrande Complex represents long–term Cretaceous 
magmatic evolution between 114 Ma and 80 Ma, which likely 
occurred through different tectonic scenarios.

Although scarcely studied, in the northern axial zone of the 
Central Cordillera, in association with the La Soledad Forma-
tion, two different volcanic units have been reported: an eastern 
basaltic unit interlayered with the upper levels of the siliciclas-
tic rocks (Hall et al., 1972) and a prominent pyroclastic unit 
that includes agglomerates and tuffs, as well as several por-
phyritic intrusive rocks. The latter is located west of La Sole-
dad Formation, is limited to the west by ultramafic bodies and 
apparently Triassic gneisses and has been correlated with the 
Quebradagrande Complex and tentatively assigned to the Late 
Cretaceous (Hall et al., 1972).
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Figure 6. (a) U–Pb zircon geochronology of detrital samples from the Abejorral Formation, Quebradagrande Complex, and San Luis Sed-
imentites. (b) Published results from the same units and the Eastern Cordillera are also included (see text for references). (c) Expanded 
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4.5. New U–Pb Zircon Geochronology of 
Plutonic Rocks

U–Pb LA–ICP–MS ages were obtained from four samples that 
intruded the Cajamarca Complex (2 samples) and the Lower 
Cretaceous sedimentary rocks exposed in the western and east-
ern flank of the Central Cordillera (2 samples; see red triangles 
in Figure 2). We attempted to refine the timing of the Creta-
ceous magmatic history and test the temporal relations among 
magmatism, sedimentation, and deformation.

4.5.1. San Diego Gabbro and Altavista Stock

Both units crop out on the western flank of the Central Cordil-
lera in the city of Medellín (Figures 1, 2). The Altavista Stock 
intrudes micaceous schists with graphite, biotitic gneisses, and 
amphibolites, which are part of the pre–Cretaceous Cajamar-
ca Complex (Rodríguez & Montoya, 1993), whereas the San 
Diego Gabbro intrudes only Triassic gneisses (Rendón, 1999).

In the sampled area, two different facies are recognized 
in the Altavista Stock; one facies has a predominantly me-
dium–grained granodioritic composition represented by an-
desine plagioclase (40%), quartz (20%), K–feldspar (15%), 
hornblende (15%), and biotite (8%), with accessory miner-
als including apatite, zircon, titanite, and opaque minerals. 
A second and more mafic diorite facies commonly found as 
enclaves within the felsic facies is characterized by intermedi-
ate plagioclase (40%), quartz (10%), amphibole (40%), biotite 
(10%), and ~3% accessory minerals including titanite, opaque 
minerals, and apatite. 

The San Diego Gabbro is characteristically a medium–
grained, highly altered rock that includes saussuritized pla-
gioclase (50%), hornblende altered to actinolite (45%), and 
quartz (2%) with titanite, apatite, and opaque minerals as ac-
cessory minerals.

Twenty zircon crystals in a granodiorite sample from the 
Altavista Stock (JCA–045) and twenty more in a diorite sample 
from the San Diego Gabbro (JCA–046) were analyzed. Crystal 
sizes vary between 40 and 200 µm and exhibit prismatic habits 
with (length:width) L:W ratios of 3:1 and 2:1. Cathodolumines-
cence images are characterized by a single oscillatory zoning 
pattern that is characteristic of igneous–related zircons (Vavra 
et al., 1999). The Th/U ratio varies between 0.91 and 5.05 and 
can also be related to zircons with a magmatic origin (Rubatto, 
2002). U–Pb zircon crystallization ages from the two stocks 
are strongly similar, with weighted mean ages of 97.0 ± 1.4 
Ma and 98.2 ± 1.4 Ma, Altavista Stock and San Diego Gabbro, 
respectively (Figure 7). Previously published multigrain TIMS 
analyses yield ages of 96 ± 0.4 Ma and 87 ± 0.5 Ma for a mafic 
and a felsic facies, respectively, of the Altavista Stock and 94 ± 
0.9 Ma for the San Diego Gabbro (Correa et al., 2006). Whereas 
the older TIMS ages for the Altavista Stock overlap with our 

new results, the other two ages are younger and may reflect a 
protracted magmatic history.

4.5.2. Aguadas Porphyritic Andesite

Thirty–one zircons were analyzed from a porphyritic andesite 
with hornblende phenocrysts that intrudes a sequence of in-
terlayered gray and black mudstones from the Abejorral For-
mation (sample DM–056), located farther to the south of the 
Altavista Stock and San Diego Gabbro. Zircon crystal sizes 
range between 60 and 300 µm and show prismatic shapes with 
L:W of 3:1. Cathodoluminescence images show single oscilla-
tory zoning patterns characteristic of igneous zircons (Vavra et 
al., 1999). The Th/U ratio varies between 0.4 and 1.6, consis-
tent with a magmatic character for the analyzed zircons (Rub-
atto, 2002). The analyzed individual grains yield a weighted 
mean age of 97.3 ± 1.3 Ma (Figure 7), which is related to the 
magmatic crystallization. No previous geochronological data 
are available for this porphyritic unit, which has been related 
to the Sonsón Batholith, considered Eocene in age based on 
U–Pb zircon geochronology (Ordóñez–Carmona et al., 2001; 
Leal–Mejía, 2011).

4.5.3. Antioquian Batholith

We analyzed the zircon U–Pb geochronology of a quartz dio-
rite sample with hornblende and biotite from the Antioquian 
Batholith near the Samaná River (AG–01), where it intrudes 
the Lower Cretaceous San Luis Sedimentites and the Triassic 
Samaná Gneiss. The twenty analyzed zircon crystals range 
from 75 to 200 µm in size and have a L:W ratio of 2:1. Cath-
odoluminescence images show a single oscillatory zoning pat-
tern characteristic of igneous zircons (Vavra et al., 1999). The 
Th/U ratio varies between 0.91 and 3.67, which may suggest 
a magmatic character for the analyzed grains (Rubatto, 2002). 
Zircons yield a weighted average age of 89.7 ± 1.3 Ma (Figure 
7), which is related to the magmatic crystallization. Three U–
Pb ages between 84.5 Ma and 93.5 Ma have previously been 
obtained by single–grain LA–ICP–MS and multigrain TIMS 
within the same region and are consistent with the new re-
sults presented in this contribution (Ibañez–Mejia et al., 2007;  
Villagómez et al., 2011).

4.6. Whole–Rock Geochemistry from Plutonic 
Rocks: New and Published Data

Four whole–rock geochemical analyses were conducted on 
three samples from the Altavista Stock and one from the San 
Diego Gabbro. SiO2 varies between 54.6 and 67.4 wt %; total 
alkalis (Na2O + K2O), between 3.79 and 8.1 wt %; and CaO and 
MgO, from 2.87 to 9.36 wt % and 0.83 to 5.93 wt %, respec-
tively. Al2O3 and Fe2O3 range from 15.6 to 16.8 wt % and 4.12 
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Figure 7. U–Pb zircon geochronology and cathodoluminescence images for: (a) Altavista Stock, (b) San Diego Gabbro, (c) porphyritic 
rock near Aguadas, and (d) Antioquian Batholith.



354

CARDONA et al.

to 7.19 wt %, respectively, and these values are characteristic 
of basic to acidic compositions, which allows the classification 
of these rocks as diorite–gabbro to quartz monzonite (Figure 
8a; TAS diagram after Middlemost, 1994), associated with the 
calc–alkaline magmatic series (Figure 8b, 8c; AFM diagram 
after Irvine & Baragar, 1971).

REE patterns normalized to the chondrite composition of 
Nakamura (1974) are characterized by enrichments in light rare 
earth elements (LREE), with (La/Sm)N ratios between 1.64 and 
3.29, (La/Yb)N between 2.06 and 4.79, and a flat trend in the 
heavy rare earth elements (Figure 9; HREE). Only one sample 
presents a negative Eu anomaly with a Eu/Eu* value of 0.71, 
while the other three samples show flat trends in the MREE and 
HREE with Eu/Eu* between 0.92 and 1.08.

Multielemental patterns, normalized to the N–MORB compo-
sition of Sun & McDonough (1989), are characterized by nega-
tive anomalies in some high field strength elements (HFSE) such 
as Nb and Ti and enrichments in large ion lithophile elements 
(LILE), such as Cs, Ba, Th, and K, which may be correlated to 
subduction–related magmas (Figure 9; Pearce et al., 1984).

The available geochemical data for the Antioquian Batholith 
show that this body ranges in composition between gabbro and 
granite (Figure 8; TAS diagram after Middlemost, 1994) and 
exhibits a typical calc–alkaline affinity (Figure 8; AFM diagram 
after Irvine & Baragar, 1971). REE patterns normalized to the 
chondrite composition of Nakamura (1974) are characterized by 
a well–defined enrichments in LREE and depletions in HREE 
with both negative and positive Eu anomalies, which could be 
related to plagioclase fractionation (Figure 9). Multielemental 
patterns normalized to N–MORB (Sun & McDonough, 1989) 
show negative anomalies in some HFSE such as Nb and Ti, 
together with enrichments in LILE such as Cs, Rb, Ba, Th, and 
K, which suggest the geochemical signature of a magmatic arc 
(Figure 9; Pearce et al., 1984).

It is noteworthy that the Altavista Stock and San Diego Gab-
bro, when compared with samples from the Antioquian Batho-
lith, show flatter HREE patterns and more limited enrichments 
in LREE and Th (Figure 9).

In the tectonic discrimination diagrams, all samples plot in 
the arc–related pluton field (Figure 10; Pearce et al., 1984). The 
Th/Yb and Nb/Yb relations also suggest a continental magmatic 
arc setting. However, the older plutons, including Altavista and 
San Diego, show relatively less Th enrichment (Figure 10).

4.7. Isotopic Constraints

Isotopic analyses of plutonic rocks from the Cretaceous mag-
matism are still scarce (Ordóñez–Carmona & Pimentel, 2001; 
Correa et al., 2006; Leal–Mejía, 2011); however, with the avail-
able data, some general observations are possible regarding the 
temporal changes in isotopic fingerprints and their potential 
relations with changes in tectonic scenarios.

We have considered data from those samples whose crys-
tallization ages are within the ca. 90–100 Ma time span in 
order to avoid those that could be related to younger magmatic 
phases, which are preferentially exposed along the northwest-
ern and northeastern flanks of the Central Cordillera (Jarami- 
llo et al., 2017).

Published Nd–Sr results from the Altavista Stock at 98 Ma are 
characterized by εNd(98 Ma) values between +7.4 and +9.8 and ini-
tial 87Sr/86Sr values ranging from 0.70402 to 0.70456, whereas the 
values for the San Diego Gabbro vary between +2.8 and +6.2 and 
0.70326–0.70331, respectively (Ordóñez–Carmona & Pimentel, 
2001; Correa et al., 2006). Conversely, available data from young-
er samples (ca. 90 Ma) of the Antioquian Batholith on the western 
and eastern flanks of the cordillera, including samples near the 
San Diego and Altavista Plutons, yield more radiogenic values 
with εNd(90 Ma) varying between –2.47 and +2.6 and initial 87Sr/86Sr 
between 0.70405 and 0.70734 (Ordóñez–Carmona et al., 2001;  
Leal–Mejía, 2011).

We obtained zircon Hf isotope data from the above–de-
scribed porphyritic andesite sample that intrudes the Abejorral 
Formation (DM–056), which yield a U–Pb crystallization age 
of ca. 97 Ma. The initial 176Hf/177Hf ratios in thirteen zircons 
range from 0.282989 to 0.283067, with positive values of initial 
ɛHfi(97 Ma) ranging from 9.0 to 12.2 (Figure 11).

As Hf and Nd isotopes behave in a similar fashion, we can 
use them for the same petrogenetic considerations (Chapman 
et al., 2017). Therefore, older plutons (ca. 98 Ma) are charac-
terized by a more depleted mantle source and differ from the 
younger Upper Cretaceous magmatic units, which are more 
radiogenic and may include additional older crustal input.

4.8. Oxygen Isotopes

Oxygen isotope analyses were conducted on zircons from the 
samples of the Altavista Stock, San Diego Gabbro (98 Ma), and 
the Antioquian Batholith (90 Ma) dated by U–Pb LA–ICP–MS 
geochronology. The δ18O values for the Altavista Stock (24 
magmatic crystals) range between 4.9‰ and 6.1‰, and those 
for the San Diego Gabbro (24 magmatic crystals) show similar 
values between 5.0‰ and 5.9‰, with mean values of 5.6‰ and 
5.5‰, respectively. In the case of the Antioquian Batholith, the 
13 analyzed crystals have δ18O values between 6.8‰ and 7.9‰. 
(Table 6). These results show that the older plutons have values 
characteristic of mantle–derived oxygen isotope compositions, 
whereas a stronger crustal signature characterizes the younger 
Antioquian Batholith (Figure 12), buttressing the considerations 
drawn from the radiogenic isotopes.

5. Discussion

The Jurassic to Early Cretaceous tectonic evolution of the 
northwestern margin of South America has been related to 
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the growth of a series of magmatic arcs, which record major 
spatial and compositional changes related to modifications in 
the obliquity of plate convergence as well as in the subduc-
tion angle (recent reviews in Spikings et al., 2015; van der 
Lelij et al., 2016; Bustamante et al., 2017). During this time 
interval and until the Early Cretaceous, along–strike trans-
lation of Jurassic arc–related units from southern latitudes 
toward the Colombian margin has also been suggested by 
paleomagnetic data (Bayona et al., 2006, 2010). Conversely, 
metamorphic rocks included within the Cajamarca and Ar-
quía Complexes on both flanks of the Central Cordillera have 
been related to different accretionary events at ca. 157–146 
Ma (Blanco–Quintero et al., 2014) and between 137 and 112 
Ma (Toussaint, 1996; Villagómez et al., 2011). Although we 
are aware that the Jurassic magmatic evolution and the Early 
Cretaceous metamorphic record of the Arquía Complex must 
have influenced the younger magmatic and sedimentary re-
cord presented in this contribution, in the next paragraphs, we 
consider them as already incorporated into a common domain 
that formed part of the Central Cordillera when the units dis-
cussed in this contribution were forming.

5.1. Early Cretaceous Sedimentary Provenance 
and Tectonostratigraphic Implications

Although more stratigraphic constraints are still necessary, 
the Early Cretaceous siliciclastic record found in the different 
belts exposed along the Central Cordillera is characterized by a 
well–defined fining–upward trend with interlayered chert levels 

that implies a basin–deepening pattern. The fossiliferous record 
extends from the Berriasian to the Aptian for these sedimentary 
successions, which are characterized by initial coarse–grained 
sequences that most likely accumulated in fluvial–deltaic envi-
ronments (particularly well defined on the western flank). A ma-
jor environmental change is registered upward in the sequence 
when sedimentation began to reflect marine turbiditic settings 
(Feininger et al., 1972; Hall et al., 1972; Etayo–Serna, 1985; 
Rodríguez & Rojas, 1985; Gómez–Cruz et al., 1995; González, 
2001; Gómez–Cruz et al., 2002; Quiroz, 2005) and may include 
relatively distal subenvironments, as suggested by the presence 
of interlayered chert levels.

Although sedimentation may be as old as the Berriasian, the 
most abundant paleontological record, the estimated maximum 
accumulation ages from zircon U–Pb data, and geochronologi-
cal constraints from associated volcanism (see former temporal 
considerations), coincide between the Aptian and Albian (126.3 
to 100.5 Ma after Gradstein et al., 2012), and we therefore con-
sider this time interval for the main Early Cretaceous tectonos-
tratigraphic evolution of the transgressive basin discussed in 
this contribution.

Petrographic constraints from different sandstone levels 
are characterized by significant textural immaturity and dom-
inantly quartz–rich compositions. Lithic fragments are mostly 
metamorphic (schists) with minor sedimentary (sandstones and 
mudstones) rocks. Such components can be related to proxi-
mal depocenters adjacent to first–cycle crystalline metamorphic 
rocks as well as siliciclastic sedimentary sources that were be-
ing eroded and rapidly buried. 
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The origin of quartz–rich compositions in sandstones is 
commonly a consequence of multiple parameters (Dott, 2003; 
Smyth et al., 2008), as it may reflect sedimentary recycling in 
the source area, intense chemical weathering conditions, dia-
genetic modifications, or strong eolian or littoral derivation. In 
the case of the Cretaceous sandstones from the Central Cordil-
lera, diagenetic and environmental controls on composition are 
discarded since petrographic evidence of intense cementation, 
mineral replacement, or extreme roundness is not observed. 
Therefore, some recycling (as suggested by the sedimentary 
lithic fragments) and particularly relatively high weathering 
rates in the source areas are considered the major controls for 

the observed quartz enrichment. Similar high quartz contents 
have been documented in the eastern basins of Colombia within 
the Upper Magdalena Valley and the Eastern Cordillera (Figure 
13; Moreno, 1990, 1991; Duarte et al., 2018), as well as in sev-
eral deformed Cretaceous siliciclastic units from the Cordillera 
Real of Ecuador (Litherland et al., 1994), which may be tempo-
rally and geologically related (Spikings et al., 2015). Chemical 
and fossil data have shown that during the Early Cretaceous, 
particularly the Aptian – Albian, climate conditions in some 
of the eastern Colombian basins were characterized by high 
humidity (Campos–Álvarez & Roser, 2007; Suárez et al., 2010; 
Mejía–Velásquez et al., 2012), which favored strong chemical 
weathering that facilitated the formation of stable quartzose 
sediments, as discussed for the origin of high quartz contents 
in the northern Andean basins. 

A comparison shows that the detrital geochronological sig-
natures of the San Luis Sedimentites, the Abejorral Formation, 
and the Quebradagrande Complex are characterized by similar 
pre–Jurassic zircon U–Pb age distributions (Figure 6; Cochrane 
et al., 2014b; Jaramillo et al., 2017), which suggests that they 
probably shared common regional source areas and could have 
been part of the same crustal domain. Published zircon U–Pb geo-
chronological data from metasedimentary rocks of the Cajamarca 
Complex are included in Figure 6 to test whether they could be 
considered the main source areas (Martens et al., 2012; Cochrane 
et al., 2014a; Bustamante et al., 2017; Jaramillo et al., 2017).

The Permian – Triassic detrital zircon age peaks found in 
the Early Cretaceous sedimentites resemble those yielded by 
the meta–igneous basement of the Central Cordillera (Cajamar-
ca Complex; Vinasco et al., 2006; Restrepo et al., 2011; Villagó-
mez et al., 2011; Bustamante et al., 2017), which borders the 
basins at present. Likewise, the older Paleozoic and Proterozoic 
detrital ages are also associated with the erosion of both gneis-
sic and metasedimentary units of the same complex (Cochrane 
et al., 2014a; Martens et al., 2014; Jaramillo et al., 2017).

The Middle and Upper Jurassic detrital ages are likely de-
rived either from a long–lived magmatic arc exposed along the 
axis and the eastern flank of the Central Cordillera (i.e., Ibagué 
Batholith, Mariquita Stock; Villagómez et al., 2011; Rodríguez 
et al., 2018; Bustamante et al., 2016 and references therein) or 
from the recently identified Jurassic metavolcano–sedimentary 
belt and hidden arc, which crop out in the core of the Central Cor-
dillera (Blanco–Quintero et al., 2014; Bustamante et al., 2017). 

The Early Cretaceous detrital ages between 127 Ma and 
105 Ma identified in sandstones from the Abejorral Formation 
and the Quebradagrande Complex (Cochrane et al., 2014b; 
Zapata et al., 2018; this contribution) suggest that active 
magmatism accompanied basin filling. Stratigraphic relation-
ships in the Abejorral Formation (Quiroz, 2005; Zapata et al. 
2018), the Quebradagrande Complex (Arévalo et al., 2001), 
and the San Pablo Formation (Hall et al., 1972; Rodríguez & 
Celada–Arango, 2018) show that volcanic rocks with Early 
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Sample 16O 18O 18O/16O Raw
18O/16O Raw 

1σ
18O/16O Corr

18O/16O Corr 
1σ

δ18O
δ18O  1σ 

(internal)
δ18O  1σ 

(external)
Age 
(Ma)

Altavista Stock

Altavista_1 3688114048 7449863.765 0.002019966 1.02055E-07 0.002016377 1.01874E-07 5.574058437 0.050523335 0.145198714 97

Altavista_2 3664205016 7402418.776 0.002020198 1.00256E-07 0.002016609 1.00078E-07 5.689597941 0.049626932 0.145198714 97

Altavista_3 3682975462 7440542.502 0.002020253 8.3584E-08 0.002016664 8.34355E-08 5.717133239 0.041373026 0.145198714 97

Altavista_4 3654928559 7382951.554 0.002019999 1.01673E-07 0.00201641 1.01493E-07 5.59058503 0.050333378 0.145198714 97

Altavista_5 3651019532 7372580.95 0.002019321 8.60402E-08 0.002015734 8.58874E-08 5.253203371 0.042608494 0.145198714 97

Altavista_6 3684495700 7444167.771 0.002020403 9.55637E-08 0.002016814 9.5394E-08 5.791985504 0.047299339 0.145198714 97

Altavista_7 3666162780 7404152.036 0.002019592 1.03906E-07 0.002015902 1.03717E-07 5.337225934 0.051449243 0.145198714 97

Altavista_8 3559797233 7189990.625 0.002019775 8.61823E-08 0.002016085 8.60249E-08 5.428619019 0.042669253 0.145198714 97

Altavista_9 3779521491 7636316.983 0.002020445 9.07805E-08 0.002016754 9.06147E-08 5.762198472 0.044930934 0.145198714 97

Altavista_10 3677779704 7428959.815 0.002019958 1.10197E-07 0.002016268 1.09996E-07 5.519454125 0.054554033 0.145198714 97

Altavista_11 3766601349 7610365.013 0.002020486 1.07642E-07 0.002016795 1.07445E-07 5.782349073 0.053275372 0.145198714 97

Altavista_12 3616035500 7302963.015 0.002019605 8.24489E-08 0.002015915 8.22982E-08 5.343781496 0.040824248 0.145198714 97

Altavista_13 3647100442 7370919.576 0.002021036 8.18711E-08 0.002017445 8.17256E-08 6.10637449 0.040509483 0.145198714 97

Altavista_14 3733251978 7541150.441 0.002019995 1.007E-07 0.002016406 1.00521E-07 5.588237328 0.049851515 0.145198714 97

Altavista_15 3642221912 7358367.421 0.002020296 1.13869E-07 0.002016706 1.13666E-07 5.73821049 0.056362361 0.145198714 97

Altavista_16 3651394559 7376470.8 0.002020179 1.19009E-07 0.002016589 1.18798E-07 5.679846786 0.058910187 0.145198714 97

Altavista_17 3682717208 7439367.36 0.002020076 7.37248E-08 0.002016486 7.35938E-08 5.628529859 0.036496049 0.145198714 97

Altavista_18 3656727727 7388212.236 0.002020444 9.40272E-08 0.002016854 9.38601E-08 5.811715483 0.04653789 0.145198714 97

Altavista_19 3704404268 7477398.233 0.002018516 9.78316E-08 0.002014929 9.76578E-08 4.851967357 0.048467115 0.145198714 97

Altavista_20 3683194245 7442038.138 0.002020539 1.30672E-07 0.002016949 1.3044E-07 5.859263637 0.064671709 0.145198714 97

Altavista_21 3623706784 7321114.318 0.002020338 8.93737E-08 0.002016749 8.92149E-08 5.759379322 0.044237004 0.145198714 97

Altavista_22 3643404245 7360750.653 0.002020295 9.66362E-08 0.002016705 9.64645E-08 5.737468393 0.047832709 0.145198714 97

Altavista_23 3734672516 7544317.434 0.002020075 9.61603E-08 0.002016485 9.59894E-08 5.627894597 0.047602352 0.145198714 97

Altavista_24 3693810456 7462291.118 0.002020215 8.2551E-08 0.002016625 8.24043E-08 5.69771896 0.040862491 0.145198714 97

San Diego Gabbro

SanDiego_1 3650642115 7372414.213 0.002019484 8.98598E-08 0.002016082 8.97084E-08 5.426775849 0.044496419 0.145198714 98

SanDiego_2 3634562415 7340497.673 0.002019637 1.05268E-07 0.002016015 1.05079E-07 5.39360339 0.052122045 0.145198714 98

SanDiego_3 3646294898 7363187.8 0.002019362 8.98188E-08 0.00201574 8.96577E-08 5.256364219 0.044478816 0.145198714 98

SanDiego_4 3632609938 7337608.241 0.002019927 1.04179E-07 0.002016305 1.03992E-07 5.538023628 0.05157555 0.145198714 98

SanDiego_5 3679460339 7430391.551 0.002019424 6.88846E-08 0.002016022 6.87685E-08 5.396925428 0.034111011 0.145198714 98

SanDiego_6 3644024017 7359343.877 0.002019565 1.14924E-07 0.002016163 1.1473E-07 5.467053992 0.056905228 0.145198714 98

SanDiego_7 3676308415 7427076.792 0.002020254 8.86218E-08 0.00201685 8.84725E-08 5.810012987 0.04386668 0.145198714 98

SanDiego_8 3671901676 7417947.225 0.002020192 1.15873E-07 0.002016789 1.15678E-07 5.779257241 0.057357541 0.145198714 98

SanDiego_9 3664735153 7403568.957 0.002020219 9.3783E-08 0.002016816 9.3625E-08 5.792772709 0.046422186 0.145198714 98

SanDiego_10 3628969778 7329395.226 0.00201969 9.11728E-08 0.002016068 9.10093E-08 5.420030348 0.045141967 0.145198714 98

SanDiego_11 3664209716 7399398.551 0.002019371 1.00423E-07 0.002015749 1.00242E-07 5.261018193 0.049729639 0.145198714 98

SanDiego_12 3675246379 7424036.598 0.002020011 1.04105E-07 0.002016388 1.03918E-07 5.579449645 0.051536869 0.145198714 98

SanDiego_13 3593837725 7255573.938 0.002018893 7.50014E-08 0.002015514 7.48759E-08 5.143402247 0.037149788 0.145198714 98

SanDiego_14 3629458641 7328088.292 0.002019058 7.67725E-08 0.002015683 7.66442E-08 5.227903504 0.038023917 0.145198714 98

SanDiego_15 3580149828 7227834.793 0.002018864 1.40919E-07 0.002015489 1.40684E-07 5.131096342 0.069801207 0.145198714 98

SanDiego_16 3614330705 7298068.753 0.002019203 1.14343E-07 0.002015828 1.14151E-07 5.300172878 0.056627566 0.145198714 98

SanDiego_17 3607217243 7286212.498 0.002019898 7.39302E-08 0.002016517 7.38065E-08 5.643966011 0.036600952 0.145198714 98

SanDiego_18 3702243622 7473173.912 0.002018553 1.10825E-07 0.002015174 1.10639E-07 4.97396946 0.054902959 0.145198714 98

SanDiego_19 3644848397 7362778.447 0.002020051 1.19558E-07 0.002016669 1.19358E-07 5.719754622 0.059185539 0.145198714 98

SanDiego_20 3658102880 7391030.78 0.002020455 1.40003E-07 0.002017073 1.39769E-07 5.920856995 0.069292906 0.145198714 98

Table 6. Oxygen isotope results for zircons from the Altavista, San Diego, and Antioquia plutonic units.
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Table 6. Oxygen isotope results for zircons from the Altavista, San Diego, and Antioquia plutonic units (continued).

Sample 16O 18O 18O/16O Raw
18O/16O Raw 

1σ
18O/16O Corr

18O/16O Corr 
1σ

δ18O
δ18O  1σ 

(internal)
δ18O  1σ 

(external)
Age 
(Ma)

SanDiego_21 3613283980 7296616.05 0.002019386 9.77497E-08 0.002016006 9.75861E-08 5.388969282 0.048405652 0.145198714 98

SanDiego_22 3633779270 7339641.028 0.002019837 9.81263E-08 0.00201646 9.79623E-08 5.615527566 0.048581299 0.145198714 98

SanDiego_23 3646412845 7366328.834 0.002020158 7.59605E-08 0.002016781 7.58335E-08 5.775282021 0.037601279 0.145198714 98

SanDiego_24 3613042799 7297587.514 0.00201979 1.07292E-07 0.002016413 1.07113E-07 5.592208601 0.053120614 0.145198714 98

Antioquian Batholith

Antioquia_1 3632822808 7363514.284 0.00202694 1.01491E-07 0.002023144 1.01301E-07 8.94877152 0.050070925 0.145198714 89.7

Antioquia_2 3285597305 6650625.361 0.002024175 9.42455E-08 0.002020385 9.4069E-08 7.572598937 0.046559929 0.145198714 89.7

Antioquia_3 1828915444 3700092.154 0.002023107 1.85592E-07 0.002019318 1.85244E-07 7.040904134 0.091735979 0.145198714 89.7

Antioquia_4 3224101918 6520936.4 0.002022559 1.24489E-07 0.002018771 1.24256E-07 6.767993465 0.061550385 0.145198714 89.7

Antioquia_5 3312559147 6700331.775 0.002022706 1.07826E-07 0.002018917 1.07624E-07 6.840934748 0.053307695 0.145198714 89.7

Antioquia_6 3390186708 6858919.049 0.002023169 1.05978E-07 0.00201938 1.0578E-07 7.07138988 0.052382315 0.145198714 89.7

Antioquia_7 3353470156 6784748.313 0.002023202 9.8269E-08 0.002019799 9.81037E-08 7.280617887 0.048571027 0.145198714 89.7

Antioquia_8 3354500943 6787460.026 0.002023389 1.0839E-07 0.002019985 1.08207E-07 7.373559824 0.053568451 0.145198714 89.7

Antioquia_9 3340687423 6758026.56 0.002022945 1.09166E-07 0.002019542 1.08982E-07 7.152496341 0.053963836 0.145198714 89.7

Antioquia_10 3359762175 6799979.233 0.002023947 9.35875E-08 0.002020542 9.34301E-08 7.651211355 0.046240102 0.145198714 89.7

Antioquia_11 3367941785 6813126.447 0.002022935 9.02515E-08 0.002019532 9.00997E-08 7.147442904 0.044614147 0.145198714 89.7

Antioquia_12 3326712333 6731638.28 0.002023511 8.66576E-08 0.002020107 8.65118E-08 7.434233581 0.042825362 0.145198714 89.7

Antioquia_13 3330684484 6738635.218 0.002023198 1.2408E-07 0.002019795 1.23871E-07 7.278663753 0.061328642 0.145198714 89.7

Cretaceous ages are interspersed and overlying the coeval si-
liciclastic rocks, confirming the appearance of volcanic activ-
ity in the history of the basin. Several discontinuous segments 
of predominantly volcanic rocks, which are locally associated 
with gabbros and/or serpentinized peridotite lenses, present 
different calc–alkaline, MORB, and E–MORB geochemical 
signatures (Nivia et al., 2006; Villagómez et al., 2011; Ro-
dríguez & Cetina, 2016; Rodríguez & Celada–Arango, 2018; 
Zapata et al., 2018). Although precise geochronological con-
straints for each of the geochemical units are still lacking, by 
assuming probable Cretaceous ages, heterogeneous geochem-
ical fingerprints, the existence of ophiolite–type associations, 
and the discussed transgressive nature of the Aptian – Albian 
sedimentation, it is possible to interpret a tectonic setting in 
which a magmatic arc was affected by a major extensional 
episode with associated back–arc basin formation (Figure 14a, 
14b; Nivia et al., 2006; Cochrane et al., 2014b; Zapata et al., 
2018). The presence of pre–Cretaceous detrital zircons in the 
Quebradagrande Complex suggests that this arc formed ad-
jacent to a continental basement as part of a fringing arc that 
records the Early Cretaceous back–arc formation (Nivia et 
al., 2006; Cochrane et al., 2014b; Spikings et al., 2015; Jara-
millo et al., 2017), eliminating its origin as an allochthonous 
oceanic arc.

Several authors have argued that the lack of volcanic ma-
terial of the Abejorral Formation precludes its relation to the 
magmatism associated with the Quebradagrande Complex 
(Toussaint, 1996; Moreno–Sánchez et al., 2008; Restrepo et 

al., 2009). However, we suggest that such an interpretation 
was biased by the observed stratigraphic sections and samples. 
The observations presented by Quiroz (2005) have shown that 
whereas the lower segment of the Abejorral Formation is in 
fact highly quartzose and lacks related magmatism, toward the 
top, intercalations of volcanic rocks are remarkably common, 
similar to what is reported for the La Soledad Formation (Hall 
et al., 1972).

Plutonic activity at ca. 98 Ma, such as that recorded by the 
three analyzed plutons (Altavista Stock, San Diego Gabbro, and 
Aguadas porphyritic andesite), is characterized by a significant 
juvenile mantle isotopic fingerprint, which is compatible with 
the existence of a thinned lithosphere associated with the ex-
tensional setting discussed above.

An extension–dominated tectonic setting that temporally 
extended until the Albian suggests that models of back–arc ba-
sin closure and compression by 114 Ma (Cediel et al., 2003; 
Villagómez & Spikings, 2013; Cochrane et al., 2014a; Spikings 
et al., 2015) are not sustainable.

Extension–controlled sedimentation and tectonics have also 
been reported in the stratigraphic record of the Eastern Cordille-
ra, the Middle and Upper Magdalena Valley, and the Putumayo 
region, as well as in Ecuador (Sarmiento–Rojas et al., 2006; 
Baby et al., 2013). In the Eastern Cordillera, magmatism is re-
stricted to minor gabbroic bodies (Vásquez et al., 2010) and 
distal volcanism represented by a series of lapilli tuffs altered 
to clay, which have been reported in the post–Hauterivian sed-
imentites (Sarmiento–Rojas et al., 2006). 
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Figure 13. Simplified chronostratigraphic chart of Cretaceous events (after Sarmiento–Rojas et al., 2006; Barrero et al., 2007; Jaramillo 
et al., 2017). (Fm.) Formation.

Published detrital zircon geochronological data from the 
Lower Cretaceous units of the Eastern Cordillera (Horton et 
al., 2010) show a well–defined dominance of Paleozoic and 
older sources (>400 Ma), with a prominent Grenvillian age 
peak (ca. 1000 Ma) and only one individual age from the Early 

Cretaceous yielded by the Buenavista Formation (Figure 6). 
Paleozoic and older zircon U–Pb ages found in the Lower Cre-
taceous units of the Eastern Cordillera were probably sourced 
from magmatic and metasedimentary units included as part of 
the continental basement of eastern Colombia, which is exposed 
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in the Floresta, Santander, and Quetame Massifs (Horton et al., 
2010; Cardona et al., 2016). The diachronic Early Cretaceous 
opening of basins in the central and eastern Colombian sedi-
mentary systems, together with the remarkable differences in 
the detrital zircon age populations of the two domains, sug-
gests that these basins were not connected and may represent 
independent depocenters formed by regional–scale upper–plate 
asymmetric extension.

Generally, the extensional record of the northern Andes 
is represented by characteristic marine sedimentation and the 
quartz–rich compositions of sandstones, which may reflect 
strong weathering in which not only the climate but also the 
lack of strong relief and the proximity to the sea level must 
play major roles.

The formation of extensional basins related to mafic vol-
canism and ophiolite associations in the Central Cordillera 
record both intra–arc extension (San Pablo Formation along 
the axis of the cordillera) and back–arc basin formation (Que-
bradagrande Complex – Abejorral Formation on the western 
flank). As the basin opened, a remnant arc was probably left to 
the east, as suggested by the ca. 129–143 Ma plutons exposed 
on the eastern flank of the Central Cordillera (Bustamante et 
al., 2017) and by the detrital geochronology of the Abejorral 
and San Luis Sedimentites discussed above. The existence 
of fragments of a western Jurassic remnant arc remains to be 
discovered.

Similar back–arc scenarios have been proposed from the 
Upper Jurassic to Lower Cretaceous volcano–sedimentary re-
cord of the Cordillera Real of Ecuador (Litherland et al., 1994; 
Cochrane et al., 2014b; Spikings et al., 2015), as well as from 
the thermal histories recorded in the Triassic basements of 
Colombia and Ecuador (Paul et al., 2018). Such correlations 
suggest that a regional–scale extensional back–arc system was 
common in the northern Andes during the Early Cretaceous.

Early Cretaceous extensional basins have also been rec-
ognized along the entire Andean chain, including the Celica–
Lancones and Casma Basins in Perú (Jaillard et al., 1999) as 
well as other basins in central and southern Chile (Fildani & 
Hessler, 2005; Ramos, 2010).

The existence of regional–scale back–arc basins, which 
characterized a Cenozoic Mariana–type style of subduction 
in the Pacific (Uyeda & Kanamori, 1979), can be related to 
upper plate motions that favor trench rollback (reviews in Ra-
mos, 2010), the subduction of old oceanic plates, or lateral 
variations in the buoyancy of the subducted slab (Sdrolias & 
Müller, 2006; Seton et al., 2016).

In the Andean case, it has been suggested that this tecton-
ic regime is likely related to upper plate kinematic changes 
associated with the opening of the Atlantic during the Early 
Cretaceous (Torsvik et al., 2009; Moulin et al., 2010; Ramos, 
2010). 

5.2. Late Cretaceous Magmatism and 
Deformation

Both along the axis and on the eastern flank of the Central Cor-
dillera, the Lower Cretaceous siliciclastic rocks from the San 
Luis Sedimentites, the San Pablo Formation, and the Berlin 
Sedimentites are folded and affected by low–grade metamor-
phism with associated neoformation of mica and are also in-
truded by the Antioquian Batholith with ages of ca. 90–93 Ma 
(Leal–Mejía, 2011; Villagómez et al., 2011; this contribution). 
Such intrusive activity has left a clear contact metamorphic 
imprint, as evidenced by the growth of metamorphic miner-
als (e.g., andalusite) lacking any preferentially oriented texture 
that is imposed over a previously existing foliated fabric. Such 
cross–cutting relationships clearly constrain a major deforma-
tional event that occurred between ca. 100 Ma (Aptian age of 
sedimentation) and 93 Ma, i.e., the age of the intrusive bodies 
that cut these units (Figure 14c). As already discussed, there 
are clear and distinct geochemical and isotopic signals from 
the older (ca. 98 Ma) plutonic units compared with the young-
est <93 Ma granitoid pulses, with the latter showing increased 
enrichment in the LREE and Th, together with more radiogenic 
Nd–Sr and δ18O values of zircons. This compositional trend 
reflects more extensive interaction with the older continental 
basement, which may be in part related to increased crustal 
thickness caused by the deformational event, as also suggest-
ed by relatively steeper La/YbN values in the younger rocks. 
Arc–related volcanism and plutonism continued in the axis and 
western flank of the Central Cordillera, intruding or overlying 
rocks from the Quebradagrande Complex between 93 Ma and 
78 Ma (Villagómez et al., 2011; Jaramillo et al., 2017; Zapata 
et al., 2018), and may also have been related to the protracted 
compressional event that affected former extensional domains. 

Although some authors have considered the Late Cretaceous 
magmatism in the Central Cordillera to represent the record of 
subduction initiation (Pindell & Kennan, 2009) or to be related 
to a plume (Whattam & Stern, 2015), the long–term arc–relat-
ed Cretaceous units discussed here, as well as the continental 
nature of the host rocks, refute both hypotheses and suggest 
that an east–vergent subduction zone was active in the northern 
Andean margin during this time.

5.2.1. On the Discussion of Plausible Tectonic 
Mechanisms

To date, two different models have been proposed to explain the 
tectonic mechanisms responsible for this post–Albian event in 
the Central Cordillera. One model involves the collision of an 
oceanic arc terrane (Quebradagrande Complex) during which 
the obduction of a major ophiolitic complex that is currently 
exposed on the western flank and along the axis of the Cen-
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tral Cordillera took place, consequently deforming the Lower 
Cretaceous siliciclastic sequences (reviews in Toussaint, 1996). 
The other model suggests that an Early Cretaceous back–arc 
basin was closed by 114 Ma (Villagómez et al., 2011; Spikings 
et al., 2015) and was followed by the occurrence of minor mag-
matism along the continental margin during the Late Cretaceous 
(Pindell & Kennan, 2009; Spikings et al., 2015).

The results presented in this contribution and the review of 
published geological, geochemical, and geochronological data 
favor a model of back–arc basin closure, in which the related 
ophiolitic bodies represent oceanic crust formed in a supra–sub-
duction zone environment during the back–arc and intra–arc ex-
tension. Nevertheless, our interpretation differs in timing from 
the previously proposed models because in the light of the new 
data presented here, the time may have been later than ca. 100 
Ma, as suggested by the presence of Albian detrital and mag-
matic zircon U–Pb ages (Cochrane et al., 2014b; Zapata et al., 
2018; this contribution). It is also suggested that basin closure 
caused folding and thickening of the crust, as recorded in the 
Aptian – Albian sedimentary units, and could also have been 
responsible for the ca. 100 Ma metamorphism identified on the 
western flank of the Central Cordillera near the city of Medellín 
(Restrepo et al., 2012; Rodríguez & Correa–Martínez, 2015).

Similar to the Early Cretaceous event, the Late Cretaceous 
compressional event in the northern Andes left evidence of its 
regional–scale nature in the Upper Magdalena Valley of Co-
lombia, where Albian to Cenomanian deformation has been 
documented by seismic lines (Jaimes & De Freitas, 2006). 
In addition, in the Ecuadorian Andes, including the eastern 
Amazon region (Ruiz et al., 2007; Jaillard et al., 2008; Baby 
et al., 2013), and in Perú and Chile, former extensional and 
back–arc basins were closed (Atherton & Aguirre, 1992; 
Fildani et al; 2003).

Geochronological data from the Cretaceous plutonic rocks 
of the Central Cordillera (Leal–Mejía, 2011; Villagómez et al., 
2011; this contribution) as well as the distal pyroclastic record 
found in the eastern basins of Colombia (Figure 13; Villamil, 
1999) suggest that Late Cretaceous (ca. 94–75 Ma) arc magma-
tism, which ended the ca. 100 Ma deformational episode, was 
significant in the evolution of the margin. This deformational 
event and the reinstallation of a productive magmatic arc have 
been recognized along most of the 85–100 Ma Andean record 
(Tunik et al., 2010) and may also have resulted from regional–
scale plate kinematic modifications, including changes in upper 
plate velocity, increases in the subduction rates, and changes to 
more orthogonal convergence between the South American and 
Caribbean Plates (Ramos, 2010; Matthews et al., 2012; Seton 
et al., 2012).

The 100–90 Ma subduction initiation along the margins of 
the Caribbean oceanic plateau, which was part of the Pacific 
Plate (Whattam & Stern, 2015), must have also changed the 
mantle flow associated with eastward subduction underneath 

South America, which likely prompted plate coupling and de-
formation in the northern Andes.

Finally, another younger compressional episode in the 
northern Andes has been related to the ca. 75–70 Ma collision 
of an allochthonous oceanic terrane against the continental mar-
gin (Figure 13; Villagómez & Spikings, 2013; Jaramillo et al., 
2017). This exotic oceanic domain includes a Lower to Upper 
Cretaceous plateau and an associated island arc, which were 
formed in southern latitudes (Figure 14c; reviews in Zapata et 
al., 2017; Hincapié–Gómez et al., 2018).

5.3. Paleogeographic Restrictions

Paleogeographic reconstructions of the multiple Cretaceous 
tectonostratigraphic domains of the northern Andes remain an 
exciting field of discussion, as the oblique nature of the con-
vergence through the Mesozoic and Cenozoic, including the 
collision with the Caribbean Plate, provides the possibility of 
dextral terrane translation along the continental margin (Tou- 
ssaint, 1996; Pindell et al., 2005; Bayona et al., 2006, 2010; 
Pindell & Kennan, 2009).

Although specific palinspastic restorations, including the 
amounts of displacement during the Cretaceous and Cenozoic, 
have not been precisely quantified, several considerations can 
constrain the margin–scale configuration.

The Cretaceous oceanic terranes that constitute most of the 
Western Cordillera were in southwestern positions until ca. 89 
Ma, as suggested by their intra–oceanic plateau and arc–relat-
ed origin as well as some of the available paleomagnetic con-
straints (reviews in Hincapié–Gómez et al., 2018).

Provenance constraints from the Cretaceous units of the 
Central Cordillera, including those associated with the Que-
bradagrande Complex, have shown that these units were as-
sociated with a continental domain having a pre–Cretaceous 
basement similar to that exposed in the cordillera (Nivia et al., 
2006; Villagómez et al., 2011; Cochrane et al., 2014b; Jarami- 
llo et al., 2017; Zapata et al., 2018). Moreover, the Cretaceous 
and older records of the Central Cordillera show remarkable 
similarities with those of the Cordillera Real in Ecuador (Lith-
erland et al., 1994; Toussaint, 1996; Cochrane et al., 2014b; 
Spikings et al., 2015).

Therefore, Cretaceous domains in the Central Cordille-
ra would have been located in southern positions (Toussaint, 
1996; Pindell & Kennan, 2009), and both the back–arc opening 
and closure and the subsequent Cenozoic tectonic movements 
would have contributed to their northward displacements.

6. Conclusions

The integration of new and published data from the Cretaceous 
record of the Central Cordillera of Colombia provides insights 
into the feasible regional tectonic scenarios responsible for the 
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geological evolution of this segment of the northern Colombian 
Andes during this time. Nevertheless, as one of the main goals 
of this contribution, specific areas are also identified where the 
acquisition of more geological data is required in order to test 
the tectonic evolution discussed here. 

Major conclusions that can be reached following the discus-
sion of the results presented in this work are as follows:

Lithostratigraphic trends and provenance characteristics of 
the Early Cretaceous siliciclastic units of the Central Cor-
dillera record transgressive basin filling and the erosion 
of the adjacent metamorphic basement. The high quartz 
contents of the sandstones are most likely related to in-
tense chemical weathering in the source areas and some 
sedimentary recycling.
Detrital zircons and stratigraphic relationships between 
magmatic and sedimentary rocks of the described units 
suggest that volcanic activity became significant at the top 
of the sequence.
The basin–deepening trend, the geochemical heterogeneity 
of associated magmatic rocks (arc–like, MORB, and E–
MORB signatures), and the relation with ophiolite remnants 
are interpreted as records of back–arc basin formation.
The Early Cretaceous arc and back–arc basin system was 
subsequently deformed and intruded by ca. 90 Ma unde-
formed arc–related granitoids.
Similar Early Cretaceous upper–plate basin formation and 
subsequent Late Cretaceous closure and deformation are 
documented in eastern Colombia and along most of the 
entire Andean margin, suggesting regional–scale plate 
kinematic control for the switch from Mariana– to Ande-
an–style tectonics.
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