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Construction of the Eastern
Cordillera of Colombia:
Insights from the Sedimentary Record

Brian K. HORTON™ ), Mauricio PARRA? '/, and Andrés MORA?3

Abstract A continuous, long-lived sedimentary record contains important evidence
bearing on the geologic evolution of the Eastern Cordillera in the northern Andes of
Colombia. Today, this largely isolated NNE-trending mountain range forms a ca. 1-3
km high topographic barrier separating the Magdalena Valley hinterland basin from
the Llanos foreland basin. A Mesozoic — Cenozoic history of marine and nonmarine
sedimentation affected the Eastern Cordillera and flanking Magdalena and Llanos
provinces during contrasting tectonic regimes. (i) Jurassic to earliest Cretaceous ex-
tension led to the development and linkage of extensional sub-basins (commonly
half graben features governed by normal faults) in selected regions. (ii) A subsequent
phase of postextensional thermal subsidence generated a thermal sag basin across a
broader region. (iii) In latest Cretaceous to Paleocene time, initial crustal shortening
in the Central Cordillera created a regional flexural basin that was successively broken
by the Paleocene - Oligocene emergence of thrust/reverse—fault related uplifts within
the Eastern Cordillera partitioning the original regional basin into the Magdalena hin-
terland basin and Llanos foreland basin. (iv) Major Neogene uplift and establishment
of an effective topographic barrier occurred as continued shortening became focused
along the bivergent eastern and western flanks of the fold—thrust belt comprising the
Eastern Cordillera. Shortening commonly involved contractional reactivation of preex-
isting normal faults and inversion of pre-foreland basin elements. This geologic history
is largely expressed in the clastic sedimentary archives of the Eastern Cordillera, Mag-
dalena Valley Basin, and Llanos Basin. Growth strata and cross-cutting relationships
among fold-thrust structures and basin fill provide essential timing constraints for
individual structures, particularly when integrated with thermochronological data.
Regional stratigraphic correlations and sediment accumulation histories help identify
shared and divergent stratigraphic histories during progressive basin compartmen-
talization. Substantial shifts in sediment provenance, identified through U-Pb geo-
chronology, demonstrate the changes in sediment source regions and paleodrainage
patterns during several changes in tectonic conditions.

Keywords: Eastern Cordillera, fold-thrust belt, foreland basin, provenance, U-Pb geochronology.

Resumen Un registro sedimentario continuo y prolongado en los Andes del norte al-
berga evidencia importante sobre la evolucion geoldgica de la cordillera Oriental de
Colombia. Actualmente, esta cadena montanosa, en gran medida aislada y de orien-
tacion N-NE, forma una barrera topografica de 1-3 km de altura que separa la cuen-

Citation: Horton, B.K., Parra, M. & Mora, A. 2020. Construction of the Eastern Cordillera of Co-
lombia: Insights from the sedimentary record. In: Gémez, J. & Mateus-Zabala, D. (editors), The
Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geolégico Colombiano, Publica-
ciones Geoldgicas Especiales 37, p. 67-88. Bogota. https://doi.org/10.32685/pub.esp.37.2019.03

=z

https://doi.org/10.32685/pub.esp.37.2019.03
Published online 7 May 2020

1 horton@jsg.utexas.edu
University of Texas at Austin
Department of Geological Sciences and
Institute for Geophysics, Jackson School
of Geosciences
Austin, Texas 78712, USA

2 mparra@iee.usp.br
Universidade de Sao Paulo
Instituto de Energia e Ambiente
Av. Professor Luciano Gualberto 1289,
Cidade Universitaria, 05508-010
Sao Paulo, Brasil

3 andres.mora@ecopetrol.com.co
Ecopetrol S.A
Vicepresidencia de Exploracion
Bogota, Colombia

Corresponding author

7/\,\’,\/\/\,\/\'\THEGEOLOGY:JF . GE%EL%\I(:IIIng
- COLORGI /. COLOMBIANO

67

Cretaceous Paleogene Neogene Quaternary

Jurassic


https://orcid.org/0000-0002-1402-3524
https://orcid.org/0000-0002-5955-6105

HORTON et al.

ca intramontana del valle del Magdalena de la cuenca de antepais de los Llanos. La
sedimentacion marina y continental mesozoica-cenozoica tuvo lugar en la cordillera
Oriental y las provincias adyacentes Magdalena y Llanos durante regimenes tectonicos
contrastantes. (i) Extension durante el Jurasico al Cretacico mas temprano tuvo como
resultado el desarrollo e interconexion de subcuencas extensionales (cominmente
en forma de semigrabenes controlados por fallas normales) en areas localizadas. (ii)
Una fase subsecuente de subsidencia termal posextensional generd una cuenca de
subsidencia térmica en una region mas amplia. (iii) Durante el Cretacico mas tardio al
Paleoceno, el inicio del acortamiento cortical en la cordillera Central gener6 una cuenca
flexural regional que fue posteriormente fragmentada en el Paleoceno-0Oligoceno tras
la emergencia de altos de basamento relacionada con fallas inversas en la cordillera
Oriental, subdividiendo la cuenca regional inicial en la cuenca intramontana del Mag-
dalenay la cuenca de antepais de los Llanos. (iv) Levantamiento nedgeno considerable
y el establecimiento de una barrera topografica efectiva ocurrieron en la medida en
que el acortamiento persistente fue acomodado de forma bivergente en el cinturon
de pliegues y cabalgamientos marginales de los flancos oriental y occidental de la cor-
dillera Oriental. Este acortamiento involucro la reactivacion contraccional de antiguas
fallas normalesyy la inversion de segmentos de cuencas de antepais preexistentes. Esta
historia geologica esta registrada en gran medida en los archivos sedimentarios de la
cordillera Oriental y las cuencas del valle del Magdalena y de los Llanos. Estratos de
crecimiento y relaciones de corte entre estructuras de pliegues y cabalgamientos y el
relleno sedimentario proporcionan la informacion esencial para restringir la temporali-
dad de deformacion en estructuras particulares, especialmente cuando se integran con
la evidencia termocronologica. Correlaciones estratigraficas e historias regionales de
acumulacion de sedimentos permiten discriminar entre fases de desarrollo coinciden-
tesy divergentes durante la historia progresiva de fragmentacion de la cuenca. Cambios
marcados en la procedencia sedimentaria, identificados mediante geocronologia U-Pb,
demuestran variaciones en las areas fuente de sedimentos y en los patrones de drena-
jes ancestrales asociados a cambios en las condiciones tectonicas.

Palabras clave: cordillera Oriental, cinturon de pliegues y cabalgamientos, cuenca de antepais,
proveniencia, geocronologia U-Pb.

1. Introduction

The Eastern Cordillera of Colombia (Figure 1) forms a major
topographic barrier in the northern Andes that profoundly in-
fluences climate, erosion, and the delivery of clastic sediment
to major rivers and continental-margin deltas, including the
Magdalena, Orinoco, and Amazon drainage systems (Hoorn
etal.,2010,2017; Mora et al., 2010a; Anderson et al., 2016).
Construction of the Eastern Cordillera also guided the evolu-
tion of major sedimentary basins across the northern Andes,
including the Magdalena Valley and Llanos Basins, sources
of considerable hydrocarbon resources (Morales, 1958; Van
Houten & Travis, 1968; Van Houten, 1976; Dengo & Covey,
1993; Cazier et al., 1995; Cooper et al., 1995; Gémez et al.,
2003, 2005a, 2005b; Parra et al., 2009a, 2009b; Mora et al.,
2010b; Londono et al., 2012).

For several reasons, the Eastern Cordillera is particularly
well suited to addressing tectonic issues using the sedimentary
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record. First, there is a long—duration sediment accumulation
history spanning from the Late Jurassic — earliest Cretaceous
through Neogene. Second, the associated stratigraphic archives
are widely distributed and well preserved over a large segment
of the Eastern Cordillera and flanking Magdalena Valley and
Llanos provinces (Figure 2). Third, the depositional history in
these three sectors involved sedimentation prior to, during, and
after upper—crustal deformation.

The extensive temporal and spatial coverage offered by the
stratigraphic record affords multiple opportunities to identify
whether accumulation of specific stratigraphic intervals in dif-
ferent localities involved pre—, syn—, or post—deformational sed-
imentation (e.g., Bayona et al., 2008, 2013; Moreno et al., 2011;
Parra et al., 2010; 2012; Horton, 2012; Mora et al., 2015). An-
other key part of the tectonic history involves the issue of when
and how the multiple segments of a formerly integrated basin
were compartmentalized by upper—crustal structures — specifi-
cally, the Magdalena Valley (including the Upper, Middle, and
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Figure 1. (a) Tectonic map of northwestern South America (from Veloza et al., 2012) showing major structures, plate boundaries, and
plate velocities relative to a stable South American Plate (MORVEL-2010 plate model of DeMets et al., 2010). (b) Shaded relief map (after
Mora et al., 2006) and (c) cross section (after Restrepo-Pace et al., 2004) of the northern Andes of Colombia, showing the subduction
zone, and various tectonomorphic provinces: (WC) Western Cordillera; (CC) Central Cordillera; (MV) Magdalena Valley; (EC) Eastern Cor-
dillera; (LL) Llanos foreland basin.
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Figure 2. (a) Regional geologic map (Mora et al., 2015) and (b) cross section (Caballero et al., 2013b; Teson et al., 2013) of the Central
Cordillera, Magdalena Valley, Eastern Cordillera, and Llanos Basin. (BSMF) Bucaramanga-Santa Marta Fault; (SM) Santander Massif; (NMS)
Nuevo Mundo Syncline; (LCA) Los Cobardes Anticline; (0S) Opon Syncline; (LSF) La Salina Fault; (IB) Ibagué Batholith; (RES) Ermitafo
Syncline; (EPA) EL Pefion Anticline; (ARA) Arcabuco Anticline; (BYF) Boyaca Fault; (SOF) Soapaga Fault; (FM) Floresta Massif; (HOF) Honda
Fault; (PIS) Pisba Syncline; (CAF) Cambao Fault; (VIA) Villeta Anticlinorium; (PEF) Pesca Fault; (CHF) Chameza Fault; (PAF) Pajarito Fault;
(GUS) Guaduas Syncline; (BIF) Bituima Fault; (BP) Bogota Plateau; (GUF) Guaicaramo Fault; (CUF) Cusiana Fault; (FAA) Farallones Anticline;

(QM) Quetame Massif; (MES) Medina Syncline.

Lower Magdalena Valley basins), axial Eastern Cordillera (in-
cluding the Floresta Basin), and the Eastern Cordillera foothills
and Llanos Basin.

The utility of sediment provenance studies in tectonic and
paleogeographic reconstructions has been demonstrated clearly
in the consideration of the Mesozoic — Cenozoic evolution of
the Eastern Cordillera (e.g., Bayona et al., 2008; Horton et al.,
2010a,2010b, 2015; Nie et al., 2010, 2012; Saylor et al., 2011,
2013; Bande et al., 2012; Ramirez—Arias et al., 2012; Caballero
et al., 2013a, 2013b; Silva et al., 2013; Reyes—Harker et al.,
2015). The application of techniques such as detrital zircon U—
Pb geochronology is enabled by distinctive detrital signatures,
owing to considerable contrasts in the geologic column for the
Eastern Cordillera relative to the Central Cordillera and distal
eastern craton (Guiana Shield). From the Cretaceous — Cenozo-
ic stratigraphic successions of the Eastern Cordillera and flank-
ing Magdalena Valley and Llanos provinces, one can extract not
only the erosional history but also the broader consequences of
uplift and exhumation.

The motivation here is to highlight the stratigraphic frame-
work and sediment provenance records from the Eastern Cor-
dillera, flanking Magdalena Valley, and Llanos Basins in an
attempt to discern the generalized pattern of deformation, ex-
humation, and sediment delivery associated with construction
of the Eastern Cordillera. We further emphasize that the strati-
graphic record is but one component of a complete regional
tectonic analysis. A critical complementary method involves
low—temperature thermochronology, which offers the ability
to understand the time—temperature history of rock materi-
als, which reflects exhumational processes in relationship to
tectonic and climatic mechanisms. In the case of the Eastern
Cordillera, the combination of extensive sedimentary cover
and selected crystalline basement massifs offers excellent op-
portunities to illuminate the evolution of crustal structures and
sedimentary basins, including tectonic inversion of precursor
structural and stratigraphic heterogeneities during Andean
mountain building.

2. Materials and Methods

This chapter draws upon published work that informs the un-
derstanding of the geologic history of the Eastern Cordillera
and its margins, with emphasis on the sedimentary record.
Structural geologic relationships, stratigraphic nomenclature,

and basic geochronologic constraints largely derive from long
efforts of the Servicio Geolégico Colombiano (Gémez et al.,
2015a, 2015b, 2015c¢c, 2017, and references therein). Further
advances have been motivated by the research efforts of Eco-
petrol and the Instituto Colombiano del Petréleo (Mora, 2015
and references therein), which emphasized integrated structur-
al, stratigraphic, and thermochronometric approaches to under-
standing the evolution of petroleum systems.

Many studies have explored detrital zircon U-Pb geochro-
nology, and low—temperature (fission—track and (U-Th)/He)
geochronology in Colombia, with several comprehensive ap-
proaches for selected regions (e.g., Horton et al., 2010a, 2015;
Mora et al., 2010b, 2015; Parra et al., 2010, 2012; Bayona et
al., 2012, 2013; Ramirez—Arias et al., 2012; Caballero et al.,
2013a, 2013b; Silva et al., 2013; Reyes—Harker et al., 2015).
Rather than an exhaustive synthesis of all published results
bearing on the sedimentary and tectonic evolution of the East-
ern Cordillera, we highlight key observations from selected
representative zones that contain the type sections of several
important stratigraphic units.

3. Results
3.1. Geologic Background

The Eastern Cordillera is the manifestation of Cenozoic retroarc
shortening and transpressional deformation in the northernmost
Andes of northwestern South America (Figure 1). This distinc-
tive, nearly isolated mountain range is composed of series of
fold—thrust structures and transpressional strike—slip faults. The
NNE-trending Eastern Cordillera and its immediate margins
have accommodated 50—150 km of horizontal shortening and
up to 50 km of right-—lateral strike—slip displacement (Colletta
et al., 1990; Dengo & Covey, 1993; Cooper et al., 1995; Roed-
er & Chamberlain, 1995; Toro et al., 2004; Mora et al., 2006,
2008, 2013; Acosta et al., 2007; Tesé6n et al., 2013). This de-
formation of principally Cenozoic age has been accomplished
during east—dipping subduction beneath northwestern South
America of an oceanic slab defined by the modern Nazca Plate
and precursor Farallon Plate (Pennington, 1981; van der Hilst
& Mann, 1994; Lonsdale, 2005; Wagner et al., 2017). Consider-
ation of the structural relief between the Eastern Cordillera and
the flanking Magdalena Valley to the west and the Llanos Basin
to the east indicates that Cretaceous units have been elevated
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up to ca. 8 km above regional levels. Associated surface uplift
in the Eastern Cordillera has generated a ca. 100-250 km wide
by ca. 500 km long range of ca. 1.5-3 km average elevation.

The structural architecture of the Eastern Cordillera is one of
a bivergent fold—thrust belt defined by sharp eastern and west-
ern mountain fronts against flanking sedimentary basins (Figure
2). This contractional range contains a relatively uniform distri-
bution of NNE-striking thrust/reverse faults, with a prominent
west—directed fault system along the western front (Magdalena
Valley) and east—directed fault system along the eastern front
(Llanos Basin) (Casero et al., 1997; Corredor, 2003; Restrepo—
Pace et al., 2004; Mora et al., 2006, 2010b; Sanchez et al., 2012;
Wolaver et al., 2015). Individual structures accommodate sev-
eral kilometers of dip—slip reverse displacement, with locally
important dextral strike—slip offset. Although most structures
have a thin—skinned ramp—flat geometry above regional decol-
lements within the Cretaceous stratigraphic succession, there
are several thrust/reverse faults involving crystalline basement
rocks. The spatial association of such basement—involved struc-
tures with Jurassic — lowermost Cretaceous synextensional sub—
basins suggests a common pattern of normal fault reactivation
and basin inversion during later contraction (e.g., Cooper et
al., 1995; Branquet et al., 2002; Cortés et al., 2006; Kammer &
Sanchez, 2006; Mora et al., 2006, 2009).

The Eastern Cordillera is dominated by exposures of Me-
sozoic — Cenozoic sedimentary rocks with localized basement
massifs (Biirgl, 1967; Julivert, 1970; Gémez et al., 2015a,
2015b). The relative proportions of the various geologic units
exposed across the ca. 100 000 km? surface area are as follows
(in order of decreasing abundance): Upper Cretaceous (50%),
Lower Cretaceous (30%), Cenozoic (10%), Jurassic (10%),
basement (10%). Jurassic to Neogene sedimentary rocks of
mixed marine and nonmarine origin are comprised of mostly
clastic facies with limited carbonate (estimated 60% mudrock,
30% sandstone, 10% conglomerate).

The Mesozoic — Cenozoic record reflects a combination of
regionally extensive and locally restricted stratigraphic units.
The three major basin elements include (from west to east):
(i) the Magdalena Valley, a NNE—trending longitudinal basin
situated between the Central and Eastern Cordilleras and com-
monly divided into the Upper, Middle, and Lower Magdalena
Valleys; (ii) basin fill now exposed in the axial Eastern Cordil-
lera notably the Floresta Basin (and Bogota/Altiplano Basin);
and (iii) the Llanos Basin, on the eastern cratonic flank of the
Eastern Cordillera.

A complex but discernible evolution is preserved within
the stratigraphic record, in which these three sectors were ei-
ther joined together as a single integrated basin or structurally
partitioned by upper—crustal structures. The broad sedimenta-
ry history involves three principal phases: (i) Middle or Late
Jurassic to early Early Cretaceous extension with the growth
and coalescence of extensional sub—basins across the Eastern
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Cordillera; (ii) Late Early Cretaceous to Late Cretaceous de-
velopment of a single regionally integrated postextensional sag
basin spanning the Eastern Cordillera, Magdalena Valley, and
Llanos regions; and (iii) Latest Cretaceous — Cenozoic evolu-
tion of shortening—related basins in foreland, hinterland, and
intermontane settings associated with the progressive growth
of the Andean fold-thrust belt.

Multiple tectonic provinces may have acted as sources of
clastic sediment to the Eastern Cordillera and its neighboring
regions. Potential source areas include: (i) eastern cratonic zones
of crystalline basement in the distal Llanos Basin and Guiana
Shield; (ii) western zones of the Andean magmatic arc and its
substrate; and (iii) the retroarc fold—thrust belt forming the East-
ern Cordillera, including its pre-Devonian basement substrate.
These morphostructural zones exhibit distinctive geologic units
that lend themselves to discrimination through various geochro-
nological and geochemical techniques (Cardona et al., 2010;
Horton et al., 2010b, 2015; Nie et al., 2012; Saylor et al., 2013).

3.2. Stratigraphic Framework

The stratigraphic framework for the Eastern Cordillera must be
considered along with that of the flanking hinterland and foreland
provinces. It is instructive to emphasize the geologic records of
three basin sectors—the Magdalena Valley, axial Eastern Cordil-
lera, and Llanos Basin—and the shared versus divergent compo-
nents of their stratigraphic histories (Figure 3). Here we review
the principal stratigraphic units and briefly outline regional strati-
graphic correlations and growth strata relationships.

The Magdalena, Eastern Cordillera, and Llanos regions
share a similar crystalline basement that is regarded as the
westernmost segments of South American continent crust, of
Mesoproterozoic to early Paleozoic age, with accreted oceanic
materials of late Mesozoic to Cenozoic age defining regions
farther west (Aspden & McCourt, 1986; Forero, 1990; Taboada
et al., 2000; Cediel et al., 2003; Restrepo—Pace et al., 2004;
Cordani et al., 2005; Ordoéiiez—Carmona et al., 2006; Ibafiez—
Mejia et al., 2011; Montes et al., 2012; Saylor et al., 2012a).

Paleozoic sedimentary rocks of marine origin are locally
preserved, but generally absent from most sectors of the East-
ern Cordillera and its peripheral regions, which are dominated
by Mesozoic — Cenozoic clastic basin fill. In several localized
regions, crystalline basement is capped by coarse—grained
nonmarine deposits, commonly sandstone and conglomerate
and associated volcaniclastic components, of Middle/Late
Jurassic to Early Cretaceous age (Girén Group). These exten-
sional sub—basins are overlain by a more regionally extensive
Lower Cretaceous marine succession of clastic and subordi-
nate carbonate facies that directly rests upon isolated Jurassic
deposits or crystalline basement. Upsection, an Upper Creta-
ceous to Cenozoic clastic succession chronicles the transition
from marine to nonmarine deposition and rapid accumula-
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Figure 3. Cross-strike (west-east) geologic column for the Eastern Cordillera and flanking Magdalena Valley and Llanos Basins (after

Mora et al., 2006; Parra et al., 2009a, 2009b).

tion during Andean shortening and flexural subsidence. Age
control is provided by Cretaceous marine invertebrate fossils
(Etayo—Serna et al., 1983; Etayo—Serna & Laverde—Montaiio,
1985) and ubiquitous preservation of fossil pollen (palyno-
morph) assemblages that provide age resolution within several
million years for Cenozoic basin fill across Colombia (e.g.,
Jaramillo et al., 2009, 2011). Further age control is provided
by isotopic ages for selected volcanic horizons and syndepo-
sitional volcanogenic zircons (e.g., Gomez et al., 2003, 2005a,

2005b; Bayona et al., 2012; Saylor et al., 2012b; Gémez et al.,
2015c; Anderson et al., 2016).

The Upper Cretaceous — Cenozoic stratigraphic intervals
within the Magdalena Valley Basin, axial Eastern Cordillera,
and Llanos Basin define broad upward coarsening packages
(Figure 4) with some internal variability that makes lithostrati-
graphic correlations difficult. The sediment provenance char-
acteristics (discussed in a following section) provide additional
constraints on potential correlations, and prove instrumental in
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assessing sediment source regions and overall “petrofacies” of

different levels of the Cretaceous — Cenozoic successions.
Widespread sandstone facies of Campanian, Maastrichtian,

and early Paleocene age (including the Guadalupe Group, Gua-

74

duas Formation, Barco Formation, and Lisama Formation) are
distributed across the Eastern Cordillera and its margins. These
deposits are routinely correlated across broad regions, show a
general axial northward transport, and appear to be principal-
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ly derived from cratonic sources, with limited input from the
emerging Eastern Cordillera (Bayona et al., 2008, 2012; Saylor
etal.,2011; Silva et al., 2013; Vallejo et al., 2017). In contrast,
the overlying mid—Paleocene through Quaternary panels show
significant variability among the three basin systems, which are
considered individually.

In the Magdalena Valley, the ca. 7000 m thick Cenozoic suc-
cession consists of alternating distal fluvial, proximal fluvial,
alluvial fan, and limited lacustrine facies organized into an alter-
nating upward coarsening and fining packages (Morales, 1958;
Van Houten, 1976; Gémez et al., 2003, 2005b; Caballero et al.,
2010, 2013a; Horton et al., 2010b, 2015; Nie et al., 2010, 2012;
Moreno et al., 2011). At the base, the Maastrichtian — lower Pa-
leocene Umir and Lisama Formations contain the transition from
marine to nonmarine sedimentation. These organic—rich shale and
sandstone are overlain by the upper Paleocene to middle Eocene
La Paz Formation, which represents a major clastic wedge of
sandstone and conglomerate derived from early Andean sources
to the west. This panel is abruptly capped by a fine—grained late
Eocene — lowermost Oligocene interval (Esmeralda Formation)
representative of mud—dominated overbank fluvial and lacustrine
deposition. This is capped, in turn, by a thick upward coarsening
panel of sandstone and conglomerate in alternating channel-belt
fluvial and alluvial fan deposits of Oligocene to Quaternary age
(Mugrosa, Colorado, and Real Formations).

In the axial Eastern Cordillera, the Floresta Basin and small-
er satellite sub—basins contain a partial stratigraphic record (ca.
2000 m total thickness) that spans from the Upper Cretaceous
through Oligocene (Bayona et al., 2010; Saylor et al., 2011;
Ochoa et al., 2012; Silva et al., 2013). The Maastrichtian — low-
er Paleocene Guadalupe Group and Guaduas Formation (ca.
500 m thick) are part of a regionally extensive sandy interval
that contains the final marine to nonmarine transition in the
region, similar to the Magdalena Valley Basin. This diagnos-
tic part of the section is commonly defined by resistant, well—
exposed sandstones that can be correlated across the Eastern
Cordillera, albeit with variable stratigraphic names (Cacho and
Barco Formations). In the axial Eastern Cordillera, including
the Floresta Basin (and Bogoté/Altiplano Basin), these sand-
stones are capped by a mixed collection of fluvial and lacustrine
sandstone, mudstone, and subordinate conglomerate, compris-
ing the Paleocene Socha (Bogotd) Formation, lower — middle
Eocene Picacho (Regadera) Formation, and upper Eocene —
Oligocene Concentracién (Usme) Formation. These units are
broadly organized into a generally upward fining panel ca. 1500
m in thickness. The lack of Miocene and younger deposits is
considered to reflect a history of nondeposition during Andean
uplift, rather than deposition and subsequent erosional removal.

On the eastern flank of the Eastern Cordillera, exposed
stratigraphic panels in the proximal (western) segments of the
Llanos Basin attain ca. 6000 m in total thickness and provide
access to Cretaceous — Cenozoic depositional histories (Parra

et al., 2009a, 2009b, 2010; Bande et al., 2012). The region-
ally extensive Upper Cretaceous — lower Paleocene section
(Guadalupe Group, and Barco and Los Cuervos Formations)
represents protracted pre—Andean marine accumulation (up to
1500 m) during post—extensional thermal subsidence. Progres-
sively diminished accommodation resulted in a relatively thin
(100-200 m) but diagnostic middle — upper Eocene unit, the
fluvial to coastal marine Mirador Formation (Jaramillo et al.,
2009, 2011). Capping the Mirador Formation is a ca. 4500 m
thick Oligocene — Quaternary upward coarsening succession
representative of a classic distal to proximal evolution of a
foreland basin. This interval is best exposed along the defor-
mation front, including the Nazareth Syncline (Medina Basin)
and Nunchia Syncline adjacent to the Guaicaramo and Yopal
thrust faults, respectively (Parra et al., 2009a, 2010; Bande et
al., 2012). In many ways, the Oligocene — Quaternary deposits
of the proximal Llanos foreland can be considered as a mirror
image of the western flank of the Eastern Cordillera and the
comparable and contemporaneous upward coarsening succes-
sion of the Magdalena Valley Basin.

Evaluation of potential regional lithostratigraphic correla-
tions for Mesozoic — Cenozoic units reveals contrasting sit-
uations, in which Cretaceous — Paleocene units show clear
laterally continuous facies, yet Eocene and younger units show
greater variability. Multiple stratigraphic levels of the largely
marine Cretaceous succession have been correlated across the
Eastern Cordillera and flanking Magdalena and Llanos basins,
on the basis of comparable lithology, lithofacies assemblages,
depositional conditions, and marine fossil assemblages (Mo-
rales, 1958; Biirgl, 1961; Etayo—Serna & Laverde—Montafio,
1985; Cooper et al., 1995; Mora et al., 2010c; Gémez et al.,
2015a,2015b). The upper levels of this interval uniformly show
regional—scale upward coarsening and a shift to nonmarine con-
ditions. These Maastrichtian — Paleocene stratigraphic units are
correlated regionally across the Eastern Cordillera and adjacent
basin sectors, and represent large fluvial systems characterized
by generally northward longitudinal transport within a broad
early Andean foreland basin system (Villamil, 1999; Gémez et
al., 2005a, 2005b; Caballero et al., 2013b; Silva et al., 2013).
This stratigraphic continuity contrasts sharply with the Eocene
depositional record, for which regional correlation proves chal-
lenging. A significant hiatus, the Middle Magdalena Valley un-
conformity, can be linked to structural activity along a series of
local fault-related uplifts (Gémez et al., 2003, 2005b; Moreno
et al., 2011; Parra et al., 2012). Although many earlier studies
inferred a long (ca. 20 my) early — middle Eocene hiatus across
the Eastern Cordillera, (e.g., Dengo & Covey, 1993; Cooper et
al., 1995; Villamil, 1999), recent, higher—resolution palynolog-
ical studies demonstrate continuous sedimentation, albeit at a
reduced rate (e.g., Jaramillo et al., 2009, 2011). Stratigraphic
contrasts in lithofacies, deposystems, and thicknesses suggest
that structural partitioning of the early Andean foreland basin

75

Cretaceous Paleogene Neogene Quaternary

Jurassic



HORTON et al.

was underway during the Eocene. Nevertheless, the common
occurrence of relatively fine—grained uppermost Eocene — low-
er Oligocene successions (Figure 4) (Parra et al., 2010; Saylor
et al., 2011; Ochoa et al., 2012) may suggest a regional-scale
reduction in exhumation and flexural accommodation, conceiv-
ably related to a transient reduction in the pace of orogenesis in
the northern Andes (Gémez et al., 2003; Londono et al., 2012;
Mora et al., 2013; Horton, 2018a), similar to large segments
of the southern Andes (e.g., Horton & Fuentes, 2016; Horton,
2018b). Importantly, the lack of regionally correlative strati-
graphic units points to a late Eocene to Quaternary evolution
of compartmentalized basins across the Magdalena, Eastern
Cordillera, and Llanos Basin sectors, with strongly contrasting
depositional conditions, sediment dispersal, and accumulation.

Stratigraphic correlations are further supported by a series
of localities reported to contain growth strata. In contractional
systems, growth strata are characterized by an upsection reduc-
tion in stratal dip, thinning of individual beds or bed packages
toward the structure, and common internal angular unconfor-
mities (e.g., Riba, 1976; Perez & Horton, 2014). In Colombia,
the recognition of growth strata in surface and subsurface data-
sets is critical to assessing basin evolution in relationship with
upper—crustal structures (e.g., Julivert, 1963, Corredor, 2003;
Gomez et al., 2003, 2005a; Restrepo—Pace et al., 2004; Cortés
et al., 2006; Parra et al., 2010, 2012; Mora et al., 2013). These
features are unambiguous indicators of fault activity, and with
sufficient stratigraphic age control, provide a direct means of
dating deformation. Although growth strata are commonly elu-
sive within the fold—thrust belt interiors, as reported for most of
Eastern Cordillera (Mora et al., 2015), key examples in Colom-
bia include: (i) upper Paleocene — Eocene growth strata in the
Magdalena Valley and along the Magdalena—Eastern Cordillera
transition zone (Gémez et al., 2003; Restrepo—Pace et al., 2004;
Parra et al., 2012; Sanchez et al., 2012); (ii) isolated Paleo-
gene examples within the Eastern Cordillera (Julivert, 1963;
Gomez et al., 2005a; Bayona et al., 2010); and (iii) Oligocene
— Pliocene growth strata along the eastern Andean deformation
front and proximal zone of the Llanos foreland basin (Corredor,
2003; Cortés et al., 2006; Bayona et al., 2008; Parra et al., 2010;
Mora et al., 2013).

3.3. Sediment Accumulation

The history of basin development along the flanks and interior
of the Eastern Cordillera is contained in the lithofacies patterns,
accumulation histories, and shifts in sediment provenance.
Sediment accumulation histories for the Magdalena Valley and
Llanos foreland register periods of rapid, thrust—induced sub-
sidence and possible spatial variations in a cross—strike (east—
west) direction (Gémez et al., 2005b; Bayona et al., 2008; Parra
et al., 2009a; Saeid et al., 2017; Horton, 2018a). Sufficient age
control from basin fill in the Middle Magdalena Valley (Gua-
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Figure 5. Sediment accumulation plots for (a) the Middle Mag-
dalena Valley Basin and (b) Llanos Basin (Parra et al., 2010).

duas Syncline; Gémez et al., 2005a) and western Llanos Basin
(Medina Basin; Parra et al., 2010) enables a geohistory anal-
ysis that accounts for incremental sediment compaction. This
analysis yields the Cenozoic history of subsidence, depicted in
time—depth plots (Figure 5), and allows for discrimination of
tectonic subsidence and subsidence due to sediment loading.
Although both the Magdalena Valley Basin and Llanos fore-
land basin show sustained rapid subsidence, they experienced
relatively abrupt increases in accommodation at different mo-
ments in their Cenozoic histories. In the Magdalena Valley, a
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Figure 6. Comparative plots of detrital zircon U-Pb age distribu-
tions for latest Cretaceous - Cenozoic basin fill of the (a) Middle
Magdalena Valley Basin (Nuevo Mundo Syncline; Horton et al,,
2015), (b) axial Eastern Cordillera (Floresta Basin; Saylor et al.,
2011), and (c) Llanos Basin (Yopal/Nunchia Syncline; Bande et al.,
2012). Bold white text labels identify the initial craton provenance
followed by the first appearance of detritus from the Central Cor-
dillera (CC), Eastern Cordillera (EC), and recycled cratonic detritus
from the Eastern Cordillera.

multi—phase history involves rapid Paleocene accumulation fol-
lowed by sharply diminished accommodation, then a renewed
rapid period of accumulation commencing at about 45-40 Ma.
The early record probably reflects initial flexural subsidence
due to Paleocene shortening and crustal thickening in the Cen-
tral Cordillera followed by limited early Eocene accumulation
above growing basement—involved structures in the Magdalena
Valley. It is important to note that other local zones on the flanks
of these basement highs in the Magdalena Valley likely un-
derwent rapid subsidence during the early Eocene, suggesting
significant spatial variability in accommodation. Subsequent
to this record, an inflection point at 45—40 Ma in the sediment
accumulation curve suggests that considerable flexural accom-
modation was underway by middle to late Eocene time. This
subsidence, however, was likely generated by shortening within
the Eastern Cordillera, suggesting that the Magdalena Valley
had transformed from a proximal foreland basin into an inter-
montane hinterland basin.

In the Llanos Basin, a more straightforward sediment ac-
cumulation history is revealed in which continuous Paleocene
— Eocene accommodation is replaced by rapid accommodation
in Oligocene time, as shown by a ca. 30 Ma inflection point.
The ca. 10-15 my difference in the onset of rapid subsidence
between the Magdalena Valley and Llanos Basin is attributed to
patterns of fold—thrust deformation across the Eastern Cordil-
lera. The timing constraints are consistent with an overall east-
ward advance of upper—crustal shortening, which is compatible
with low—temperature thermochronological records (mentioned
below) in suggesting early Andean exhumational cooling in
western sectors followed by late Andean exhumation near the
eastern deformation front (Mora et al., 2008, 2010a, 2015; Parra
et al., 2009b, 2010; Saylor et al., 2012b).

3.4. Sediment Provenance

U-Pb geochronological data are fundamental to assessing the
sediment sources and paleodrainage patterns in Colombia. Sev-
eral major shifts in sediment provenance can be linked to the
tectonic evolution of the Eastern Cordillera and its peripheral
regions. During the Mesozoic, sediment was overwhelmingly
derived from eastern sources of the Guiana Shield, including
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possible minor sources that are now buried beneath Cenozoic
fill of the Llanos Basin. The ages of these cratonic crystalline
basement rocks span the late Paleoproterozoic to early Neopro-
terozoic (Teixeira et al., 1989; Horton et al., 2010b; Cardona et
al., 2010, and references therein). Detrital zircon U-Pb geochro-
nological results for Upper Cretaceous deposits show compara-
ble age populations, concentrated at 900-2000 Ma (Figure 6).
The lack of significant Phanerozoic grains indicates very lim-
ited erosional input from the present—day Central or Eastern
Cordilleras. These results confirm a pre—Andean extensional to
post—extensional landscape involving west—directed sediment
dispersal from cratonic sources uniformly across all three basin
sectors —the Llanos Basin, Eastern Cordillera, and Magdalena
Valley —as interpreted by many previous studies on the basis
of lateral facies changes, thickness trends, and paleocurrents
(Toussaint & Restrepo, 1994; Cazier et al., 1995; Cooper et al.,
1995; Villamil, 1999; Sarmiento—Rojas et al., 2006).

A major reversal in sedimentary polarity archived by sedi-
ment provenance signatures within Upper Cretaceous — Ceno-
zoic basin fill points to the initial effects of Andean orogenesis.
The initial delivery of detritus from the Central Cordillera is
evidenced by the first appearance of Mesozoic — Cenozoic age
populations that must originate in the Andean magmatic arc.
Paleogene deposits across the region record the arrival of a sig-
nificant population of 50-200 Ma grains emblematic of Andean
igneous materials from the Central Cordillera (McCourt et al.,
1984; Aspden et al., 1987; Villagémez et al., 2011; Villagémez
& Spikings, 2013). Although this first appearance of Andean
detritus can be identified in all three basin sectors, it occurred
at different moments in their respective sedimentary histories.
Whereas the reversal in sediment dispersal occurred in the Pa-
leocene in the Magdalena Valley and axial Eastern Cordille-
ra (Lisama, La Paz, Socha Formations; Figure 6a, 6b), it was
delayed until the Oligocene for the Llanos Basin (Carbonera
Formation; Figure 6¢). This delay is consistent with the pattern
of flexural loading inferred from the sediment accumulation
histories (Figure 5), in which the Magdalena Valley experienced
rapid flexural accommodation prior to the Llanos Basin.

Following the initial delivery of Andean sediment, diverse
provenance patterns characterize the three basin sectors during
their independent evolution from Eocene to present (Figure 6).
(1) In the west, the Magdalena Valley underwent a complex al-
ternating history of Eastern Cordillera versus Western Cordille-
ra detrital input (Nie et al., 2010, 2012; Caballero et al., 2013b;
Silva et al., 2013), prior to establishment of a throughgoing
Magdalena River in late Miocene time (Horton et al., 2015).
This pattern (Figure 6a) is revealed by Eocene to Pliocene alter-
nations between Andean arc (<200 Ma) signals from the Central
Cordillera and two signals from the Eastern Cordillera: a late
Neoproterozoic — early Paleozoic (650-450 Ma) population
from local basement and a recycled cratonic (900—1800 Ma)
population derived from ubiquitous Cretaceous Eastern Cordil-
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lera strata originally derived from cratonic sources (Horton et
al.,2010a,2010b, 2015). (ii) In contrast, the axial Eastern Cor-
dillera was fed mostly by local sources within the fold—thrust
belt, with limited input of Andean arc detritus (Bayona et al.,
2010,2012; Saylor et al., 2011; Silva et al., 2013). This pattern
(Figure 6b) is reflected in Eocene — Oligocene strata by the
dominance of Eastern Cordillera signatures. Although a minor
signal from the Central Cordillera arc (<200 Ma) persists, the
dominant populations are diagnostic of the Eastern Cordillera
(the aforementioned 650-450 Ma and recycled 900—1800 Ma
populations). (iii) In the east, the Llanos Basin was dominat-
ed by erosional input from the Eastern Cordillera, with very
limited delivery of arc detritus (Horton et al., 2010a, 2010b;
Bande et al., 2012). This pattern (Figure 6¢) is attributed to ex-
humation within the Eastern Cordillera of not only Cretaceous
strata, which provided recycled cratonic populations (900-1800
Ma), but also Cenozoic basin fill, which provided the restricted
amounts of Andean arc (<200 Ma) material.

The power of provenance applications in Colombia is en-
abled by the distinctive morphostructural zones of the north-
ern Andes, which have diagnostic geochronological signatures
that can be identified in the stratigraphic record (Cardona et
al., 2010; Horton et al., 2010b, 2015; Nie et al., 2010, 2012;
Saylor et al.,2011,2013). When integrated with considerations
of regional stratigraphic continuity and the timing of basin com-
partmentalization, the provenance record provides a robust un-
derstanding of the spatial and temporal evolution of the Eastern
Cordillera. These first—order constraints from the stratigraphic
record can be augmented by higher resolution studies that seek
to assess changes in climate and absolute elevation (Guerrero,
1997; Mora et al., 2008; Anderson et al., 2015) and the exhuma-
tional history of individual structures from thermochronological
data (Mora et al., 2008, 2013, 2015; Parra et al., 2009b, 2010,
2012; Saylor et al., 2012b; Almendral et al., 2015).

3.5. Low-Temperature Thermochronometry

Thrust—induced rock uplift histories in the Eastern Colombia
have been diagnosed through multi-method fission track and
(U-Th)/He thermochronometry assisted by vitrinite reflectance
data (see Mora et al., 2015 and references therein). Analytical
results from multiple samples provide the basis for 1-D time—
temperature histories extracted through thermal modeling (e.g.,
HeFTy software; Ketcham, 2005). Mineral cooling ages and ther-
mal modeling of thermally reset Mesozoic to Paleogene strata
and their underlying basement rocks along a cross—strike transect
from the Magdalena Valley to the Llanos Basin reveal a diachro-
nous inception of fold—thrust belt development (Figure 7).
First, Paleocene — early Eocene onset of thrusting along
the western margin of the Eastern Cordillera and in basement
highs beneath the Magdalena Valley reveal the extent of a relict
Paleocene thrust—belt associated with arc collision and early
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shortening in the Western and Central Cordilleras (Parra et al.,
2012, Caballero et al., 2013b). An eastward advance of thrust-
ing induced cooling and rock exhumation at 40-35 Ma in the
axial Eastern Cordillera (Parra et al., 2009b; Mora et al., 2010b;
Ramirez—Arias et al., 2012; Saylor et al., 2012b) and ca. 10
my later, at 30-25 Ma along the eastern margin of the Eastern
Cordillera (Parra et al., 2009b; Horton et al., 2010a; Mora et al.,
2010b; Bande et al., 2012; Ramirez—Arias et al., 2012; Mora
et al., 2015). Remarkably, in all three of these regions, cool-
ing associated with rock exhumation was associated with con-
tractional reactivation of major ancestral normal faults (active
during Mesozoic extension) and coincide with major shifts in
sediment delivery and accommodation revealed by provenance
and facies distributions.

3.6. Discussion

The preceding synthesis of sedimentary datasets and repre-
sentative thermochronometric data provides a foundation for a
generalized reconstruction of the Mesozoic — Cenozoic history
of the Eastern Cordillera and adjacent regions in the Magdale-
na Valley and Llanos Basin of Colombia. A multi—step two—di-
mensional cross—sectional reconstruction shows an east—west
profile of evolving basin configurations from Late Jurassic
to present. We consider and incorporate elements from many
similar regional reconstructions depicted by previous authors
(e.g., Restrepo—Pace et al., 2004; Bayona et al., 2008, 2013;
Horton et al., 2010b, 2015; Mora et al., 2010b, 2013, 2015;
Bande et al., 2012; Caballero et al., 2013a, 2013b; Wolaver et
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al., 2015). In drafting these reconstructions, we relied heav-
ily on the three datasets summarized above: (i) the regional
stratigraphic framework; stratigraphic correlations, and depo-
sitional conditions; (ii) sediment accumulation histories; and
(iii) sediment provenance constraints principally from detrital
zircon U-Pb geochronology.

During the Late Jurassic — earliest Cretaceous, a series of
newly formed normal faults guided the generation of individual
extensional sub—basins with half-graben geometries. Progres-
sive east—west extension in backarc regions was accommodated
by the linkage of normal faults and the coalescence of sub—ba-
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sins into larger extensional basins. Basin evolution was largely
governed by two major extensional basins, the Tablazo-Mag-
dalena and Cocuy basins, occupying the Magdalena Valley and
Eastern Cordillera provinces, respectively (Cooper et al., 1995;
Sarmiento—Rojas et al., 2006). Sedimentation during upper—
crustal extension consisted of initial, locally source nonmarine
facies (Gir6n Group) followed by regional accommodation with
widespread marine conditions.

The Late Cretaceous history (Figure 8a) involved a shift
to a neutral tectonic regime in which basin subsidence was no
longer controlled by individual faults, but was governed by re-
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gional postextensional cooling of lithosphere and associated
thermal subsidence. The dominant sediment source regions
throughout Jurassic — Cretaceous basin evolution were situated
to the east, in the Guiana Shield. Clastic detritus derived from
cratonic crystalline basement (900—1800 Ma) was transported
westward to principally marine deposystems.

The Maastrichtian — Paleocene (Figure 8b) marked the
initial topographic emergence of the Colombian Andes and a
fundamental reorganization of paleodrainage systems in north-
western South America (Horton, 2018a). The abrupt reversal in
sedimentary polarity from west—directed to east—directed drain-
age coincided with the appearance of detritus from the Andean
magmatic arc (<200 Ma zircons from the Central Cordillera;
Figure 6), accelerated accumulation rates in the Magdalena
Valley (Figure 5), and a regional shift from marine to nonma-
rine conditions (Figure 4). This episode marks the first major
Andean shortening, crustal loading, and flexural subsidence in
Colombia, with reverse/thrust faulting limited to the Central
Cordillera, and locally, to the Magdalena Valley, as suggested
by Paleocene — early Eocene cooling. The reversal in sedimen-
tary polarity appears to have been time transgressive, with a
Maastrichtian — early Paleocene age in the Magdalena Valley
and Eastern Cordillera, ca. 30 my prior to the reversal in the
Llanos region. This dynamic pattern, as reflected in three sed-
imentary “petrofacies” indicative of direct input from either
the Central Cordillera, Eastern Cordillera, or craton (Figure 4)
requires the eastward advance of an effective drainage axis sep-
arating western (Andean) from eastern (cratonic) contributors
of sediment (Silva et al., 2013; Reyes—Harker et al., 2015).

During Eocene — Oligocene time (Figure 8c), the regionally
contiguous foreland basin system that spanned from the Mag-
dalena to Llanos provinces was partitioned by a series of fault—
related uplifts within the Eastern Cordillera. These structures
commonly include former normal faults reactivated during
Andean shortening, inducing basin inversion and severing the
topographic and depositional continuity among the Magdalena,
Eastern Cordillera, and Llanos basins. Evidence for this phase
of basin compartmentalization comes from the progressively
greater contributions of detritus from the Eastern Cordillera,
in the form of Eastern Cordillera basement (450—-650 Ma)
and recycled cratonic (900-1800 Ma) grains from the thick
widespread cover succession spanning the Eastern Cordillera
(Figure 6). Although this period marks the initiation of the Mag-
dalena Valley as a hinterland basin, the axial Eastern Cordillera
persisted as a low subsiding region, with an intermontane basin
system (Floresta Basin) with potential minor depositional links
with the Llanos foreland basin farther east.

The final Miocene to Quaternary phase (Figure 8d) reflects
the final establishment of the Eastern Cordillera in the form ob-
served today. By the end of the Paleogene, substantial shorten-
ing had ceased in the Central Cordillera, yet the range persisted
as an intermittent sedimentary source to the Magdalena Valley.

Full emergence of the Eastern Cordillera led to the termination
of subsidence in its axial zone (Floresta Basin) and the estab-
lishment of elevated topography that served as an orographic
barrier and dominated sediment delivery to the Llanos Basin.
This stage in the evolution of the northern Andes also coincides
with accelerated accumulation rates in the Llanos Basin (Fig-
ure 5), attributable to shortening and crustal loading within the
Eastern Cordillera.

The proposed reconstruction (Figure 8) focuses on the
construction of the Eastern Cordillera of Colombia, from the
perspective of the sedimentary record and supportive thermo-
chronometric data, and their utility as an archive of tectonic
processes associated with contractional mountain building.
However, important along—strike variations are expressed in
the northern Andes, such that the Ecuadorian Andes to the
south experienced substantially lower degrees of shortening,
thrust—front advance, and basin compartmentalization (Aleman
& Ramos, 2000; Ruiz, 2002; Baby et al., 2004; Vallejo, 2007;
Horton, 2018a). Within a broader, continental-scale frame-
work, the issues discussed here have further implications for
the evolution of major paleodrainage systems in South America,
including the Magdalena, Orinoco, and Amazon river systems
(Hoorn et al., 2010, 2017; Mora et al., 2010a; Horton et al.,
2015; Anderson et al., 2016).

4, Conclusions

The tectonic history of the Eastern Cordillera in the northern
Andes of Colombia is largely contained in the clastic sedimen-
tary record preserved in three principal regions (from west
to east): the Magdalena Valley Basin, the Eastern Cordillera
(notably axial basins such as the Floresta Basin), and the Lla-
nos Basin. We find several critical elements in the long—lived
stratigraphic record of Colombia. These include: (i) stratigraph-
ic correlations and deposystems, (ii) sediment accumulation
histories, and (iii) sediment provenance. These three elements
are represented by observational and laboratory—generated data
that are similarly retrievable from many sedimentary basins in
tectonically active regions.

A Mesozoic — Cenozoic history of marine and nonmarine
sedimentation affected the Eastern Cordillera and flanking
Magdalena Valley Basin and Llanos Basin during contrasting
tectonic regimes. (i) Jurassic to earliest Cretaceous extension
led to the development and linkage of extensional sub—basins
(commonly half graben features governed by normal faults)
in selected regions. (ii) A subsequent phase of postextension-
al thermal subsidence generated a thermal sag basin across a
broader region. (iii) In latest Cretaceous to Paleocene time,
initial crustal shortening in the Central Cordillera created a re-
gional flexural basin that was successively broken by the Pa-
leocene — Oligocene emergence of thrust/reverse—fault related
uplifts within the Eastern Cordillera and the partitioning of the
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original regional basin into the Magdalena hinterland basin and
Llanos foreland basin. (iv) Major Neogene uplift and establish-
ment of an effective topographic barrier occurred as continued
shortening (commonly involved contractional reactivation of
preexisting normal faults) became focused along the bivergent
eastern and western flanks of the fold—thrust belt comprising
the Eastern Cordillera. Fundamentally, (i) regional stratigraphic
correlations, (ii) sediment accumulation histories, (iii) sediment
provenance data, and (iv) supporting thermochronometric data
help identify shared and divergent stratigraphic histories during
progressive basin compartmentalization, changes in sediment
source regions, and the evolution of paleodrainage patterns
during changing tectonic regimes.
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