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Abstract A transtensional basin setting originated the Combia Volcanic Province in 
the northern Andes of Colombia. Volcanism is heterogeneous encompasses tholeiitic, 
calc–alkaline, and shoshonitic magmatic series. A review of existing geochemical and 
geochronological data suggests that all magma series coexisted between 12 and 6 Ma 
but originated from different processes. Tholeiites formed via the melting of a mod-
ified primitive mantle source, with limited sedimentary or continental–contaminant 
input. Calc–alkaline magmas are mainly adakitic and formed from fractionation of 
garnet and amphibole at high pressures from a hydrous melt from an enriched source. 
Petrographic and mineral chemistry of garnet–bearing rocks indicate that magmas 
underwent at least three ascent phases that include: (1) crystallization of high–pres-
sure phenocryst phases at 900 °C and 1200 GPa in a mantle–derived melt, (2) stalling 
of differentiated magma at lower–pressure conditions, and (3) stalling at shallower 
conditions, where decompression occurred. Shoshonitic magmas formed from a 
mantle with sedimentary or continental–contaminant input source in the plagioclase 
stability field. Finally, the Combia Volcanic Province’s formation was enhanced by the Cal- 
das Tear, a slab window developed by the subduction of the Sandra Ridge beneath 
the South American Plate.
Keywords: Combia Formation, shallow–volcanic intrusions, tholeiitic magmatism, calc–alkaline 
magmas, adakites, shoshonitic magmatism, igneous garnet.

Resumen La Provincia Volcánica de Combia en el norte de los Andes de Colombia se 
formó en un ambiente de cuenca transtensional. El vulcanismo es heterogéneo y com-
prende series magmáticas toleíticas, calcoalcalinas y shoshoníticas. Una revisión de los 
datos geoquímicos y geocronológicos existentes sugiere que las tres composiciones 
de magma coexistieron entre 12 y 6 Ma, pero se originaron por diferentes procesos. 
Las toleítas se formaron a partir de una fuente de manto primitivo modificada, con 
limitado suministro de contaminante sedimentario o continental. Los magmas calcoal-
calinos son principalmente adakíticos y se formaron del fraccionamiento de granate y 
anfíbol a altas presiones a partir de un fundido hidratado proveniente de una fuente 
enriquecida. Los datos petrográficos y de química mineral de rocas con granate indican 
que estos magmas experimentaron por lo menos tres fases de ascenso que incluyen: 
(1) cristalización de las fases de fenocristales de alta presión a 900 °C y 1200 GPa en un 
fundido derivado del manto, (2) estancamiento del magma diferenciado a más bajas 
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condiciones de presión y (3) estancamiento en condiciones superficiales, donde ocu-
rrió la descompresión. Los magmas shoshoníticos se formaron a partir de una fuente 
mantélica con aporte sedimentario o continental, en el campo de estabilidad de la 
plagioclasa. La formación de la Provincia Volcánica de Combia fue acentuada por el 
Caldas Tear, una ventana en la placa desarrollada por la subducción del Sandra Ridge 
bajo la Placa de Suramérica.
Palabras clave: Formación Combia, intrusivos volcánicos someros, magmatismo toleítico, 
magmas calcoalcalinos, adakitas, magmatismo shoshonítico, granate ígneo.

1. Introduction

The Andes are among the most extensive active volcanic chains 
in the world (Figure 1). They represent an essential record of con-
tinental–crust construction and modification processes. Volcanic 
activity is caused by the eastward subduction of the Nazca Plate 
beneath the South American Plate (Harmon et al., 1984). It is 
divided into four distinct zones (from south to north): The Austral 
Volcanic Zone, the Southern Volcanic Zone, the Central Volcanic 
Zone, and the Northern Volcanic Zone (Figure 1; Stern & Kilian, 
1996; Thorpe et al., 1984). Each of these zones is characterized 
by differences in the magmatic activity related to variances in the 
subduction configuration (e.g., subduction angle, velocity) and 
intrinsic, differential properties in both subducting and overriding 
plates (e.g., age and thickness). Of these segments, the Northern 
Volcanic Zone remains the least studied and well known due to 
a long history of political unrest in the region.

In Colombia, the Andean belt comprises three cordilleras 
separated by deep, fluvial valleys (i.e., Western, Central, and 
Eastern Cordilleras) (Figure 1). The geographic limit between 
the Western and Central Cordilleras is marked by the Cauca 
River valley, which is the superficial expression of the Cau-
ca–Romeral Fault System. Today, this paleosubduction zone 
constitutes a suture zone between a Permian – Triassic, conti-
nental–basement domain to the east and a Cretaceous, ocean-
ic–basement domain to the west (e.g., Aspden & Litherland, 
1992) (Figure 2), which resulted from the complex history of 
subduction–accretion that occurred throughout the Late Creta-
ceous until today (Horton et al. 2010; Kennan & Pindell, 2009; 
Pindell et al., 2005).

The establishment of the current subduction configuration 
and Neogene magmatism along the Western Cordillera started 
in the mid–Miocene, with the accretion of the Panamá–Chocó 
Block onto the South American margin (Duque–Caro, 1990; 
Montes et al., 2012, 2015). Recent studies suggest that normal 
subduction of the Nazca Plate initiated around 14 to 9 Ma, and 
accretion of the Panamá–Chocó Block occurred before 12 Ma 
(Montes et al., 2012, 2015; Wagner et al., 2017). Magmatism 
ceased between 6 and 4 Ma due to the flat–slab subduction 
of the Nazca Plate underneath South America. Magmatism re-
sumed at 3 Ma along the length of the arc, south of the Caldas 
Tear (Wagner et al., 2017).

Among the Neogene magmatic events in the Cauca River 
valley, the Combia Formation (CF) comprises a middle to up-
per Miocene (ca. 12 to 6 Ma) volcanoclastic–sedimentary se-
quence located in the middle and northern parts of the valley, 
and represents a distinctive magmatic occurrence (Figure 2). 
The CF was deposited within the intramontane, semi–isolated 
Amagá Basin, which formed between the basement rocks from 
the Western and Central Cordilleras in the northernmost Co-
lombian Andes (Figure 2; Lara et al., 2018). The CF mainly 
comprises basic tholeiitic magmas, linked to crustal thinning 
and basin extension (Bernet et al., 2020; Dunia, 2005; Jaramillo, 
1976; Jaramillo et al., 2019). Furthermore, calc–alkaline, andes-
itic to dacitic, shallow, volcanic porphyries of the Cauca Shallow 
Volcanic Intrusions (CSVI) are spatially associated with the CF, 
even though some authors define them as a single, separate unit 
(e.g., Borrero & Toro–Toro, 2016; Calle & González, 1980; Tas-
sinari et al., 2008). Moreover, the cartographic resolution of the 
volcanic products recorded in the CF does not record individual 
event levels. Only a few studies have discussed their genesis 
and tectonic setting (e.g., Bernet et al., 2020; Jaramillo et al., 
2019; Marriner & Millward, 1984; Rodríguez & Zapata, 2014). 
Several authors (Bissig et al., 2017; Jaramillo, 1976; Ramírez et 
al., 2006) suggest that the CSVI and the CF were generated by 
a subduction zone related to the magmatic arc. In addition, they 
argue that the magmatic setting started as a protoarc (tholeiitic 
series) and then moved towards a more mature arc (calc–alkaline 
series). Additionally, these studies also suggest differentiation 
and contamination from the input of a mature crustal end–mem-
ber (Dunia, 2005; Marriner & Millward, 1984).

The CF has been traditionally considered late Miocene 
 in age (ca. 6 to ca. 10 Ma; Ramírez et al., 2006), mostly based 
on cross–cutting relationships with the CSVI. Recent studies 
on basaltic andesites (formerly considered part of the CF) have 
suggested the presence of an older, magmatic arc, located to the 
west of the Amagá Basin (Rodríguez & Zapata, 2014; Zapata & 
Rodríguez, 2011). Consequently, these authors propose to split-
ting the middle Miocene magmatism into two different magmatic 
arcs with different ages and geographical locations: The earlier 
shoshonitic arc and a later tholeiitic and calc–alkaline arc repre-
sented by the CF and CSVI magmas. The shoshonitic arc com-
prises El Botón basalts and El Morito basaltic andesites (Figure 
2; Rodríguez & Zapata, 2014; Zapata & Rodríguez, 2011).  
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Figure 1. (a) Tectonic setting of the Andes in Colombia. The CVP is located within the rectangle. (b) Geographic distribution of the vol-
canic zones in the Andes (after Harmon et al., 1984).

The present work represents an effort to synthesize an 
essential amount of petrography, field relationships, mineral 
chemistry, geochronological, and geochemical data previously 
reported associated with volcanic, volcaniclastic, hypabyssal, 
porphyritic magmatism and sedimentary rocks of the Combia 
Formation found along the Cauca River valley. The authors 
here combine unpublished petrography, mineral chemistry, 
geochronological, and geochemical data with previous data 
available from Jaramillo (1976), Álvarez (1983), Marriner & 
Millward (1984), Ordóñez–Carmona (2001), Dunia (2005), Te-
jada et al. (2007), Tassinari et al., (2008), Leal–Mejia (2011), 
Borrero & Toro–Toro (2016), Bissig et al. (2017), Jaramillo 
et al. (2019), and Bernet et al. (2020) to better understand this 
unique geological occurrence in Colombia.

2. The Combia Formation 

In this chapter, we present the previous studies published on the 
Combia Formation.

The CF was first defined by Grosse (1926) as the “Neo–Ter-
tiary volcanics” and “Neo–Tertiary sediments” in the Alto Com-
bia locality (Fredonia, Colombia; Figure 3). In this work, he also 
divided the CF into a Lower Member (Volcanic Neo–Tertiary) 
and an Upper Member (Sedimentary Neo–Tertiary). In general, 
Grosse (1926) described the CF as a mixture of sedimentary and 
volcaniclastic packages: “Conglomerates, sandstones, schistose 
clay, tuffitic conglomerates, tuffitic sandstones, tuffs, crystal 
tuffs, ash and agglomerate tuffs, and basaltic and andesitic lava 
flows”. Later, the unit was renamed the Combia Formation by 
Calle et al. (1980), who, based on lithology, divided it into two 
members (i.e., Sedimentary and Volcanic).

Jaramillo (1976) conducted a detailed petrographic and geo-
chemical study of the volcanic rocks and determined the tholeiitic 
character of the basaltic to andesitic flows of the CF, which are 
interbedded with pyroclastic material, as well as the calc–alka-
line nature of magmas from the Cauca porphyritic intrusions (cf. 
CSVI). Petrographically, based on phenocryst content, he divided 
the basalts into three types: plagioclase, hypersthene, and augite 
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basalts. Furthermore, Jaramillo (1976) determined that some ba-
sic dikes that intruded the Amagá Formation (AF) are part of the 
CF (i.e., in the areas of the Quebrada Popala and Río Poblanco). 

The AF is a terrestrial, siliciclastic succession dominated by me-
andering (Lower Member) to braided (Upper Member) rivers in 
a pull–apart, tectonic regime during the late Oligocene to middle 
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Miocene (Lara et al., 2018). Jaramillo (1976) also reported two 
dikes that cut the CF at the Alto Combia location and described 
them as an alkaline–rock unit similar to absarokites. Finally, he 
suggested that both the CF and CSVI are the outcome of the 
presence of a ‘permeable zone’, which allowed the migration of 
different magma batches, generated under different conditions 
and/or depths, through the continental crust.

Later, Marriner & Millward (1984), in an integrated geo-
chemical study of Colombian volcanism, and based on the 
tholeiitic, chemical character of the CF, suggested an island–arc 
tectonic setting for its formation. Based mainly on geographic 
location and age, they proposed a single province in northern 
Colombia, which includes both the CF and the recent axial, 
calc–alkaline volcanism of the Central Cordillera (Figure 1).

Extensive geological mapping has been performed over 
time by various projects of the Servicio Geológico Colombi-
ano (Figure 2; e.g., Álvarez, 1983; Calle & González, 1980, 
1982; Dunia, 2005; Mahecha et al., 2006; Tejada & Betancourt, 
2006; Tejada et al., 2007). Among these studies, Dunia’s (2005) 
report integrates petrographic, geochemical, and geophysical 
analyses of the Amagá Basin, including the CF and CSVI. 
Mafic rocks of the volcanic member are described as agglom-
erates, andesites, and feldspathic basalts. Moreover, the latter 
are divided (based on textural features) into porphyritic basalts, 
augite basalts, amygdalar basalts, and glomeroporphyritic ba-
salts. Furthermore, Dunia (2005) also included andesitic and 
basaltic dikes and sills that cut through both the AF and CF 
and suggested that they are genetically linked to basaltic rocks. 
Finally, the Farallones Batholith and Támesis Stock are coeta-
neous with Combia–magmatic activity (González, 2010; Zapata 
& Rodríguez, 2013). According to Dunia (2005), the two com-
positional–magma series formed during juvenile–arc activity, 
which later evolved into a mature calc–alkaline, volcanic arc 
via differentiation, and the accretion of the Chocó Block, as 
proposed by Duque–Caro (1990), which may be responsible 
for the magmatism.

Detailed mapping of the area near the municipalities of 
Pueblorrico and Jericó (Tejada & Betancourt, 2006) enabled 
Tejada et al. (2007) to locally divide the CF into eight units 
based on lithological differences and age, from oldest to young-
est: (i) tuffs 1 (N1ct1); (ii) basalts 1 (N1cb1); (iii) hornblende, 
basaltic andesites (N1cab); (iv) basalts 2 (N1cb2); (v) agglom-
erates (N1ca); (vi) interspersed basalts, tuffs and agglomerates 
(N1cbta); (vii) tuffs 2 (N1ct2); and (viii) hypabyssal rocks that 
comprise basalt dikes and sills, hornblende, andesitic porphy-
ries and one garnet–bearing, hornblende, andesitic porphy-
ry (N1cds, N1cp, and  N1cpg, respectively). Moreover, they 
suggested that the presence of garnet indicates wet conditions 
during calc–alkaline magma formation at 9 Kbar and 1000 °C. 
Subsequently, the CF originated from various explosive and 
extrusive stages, and the basaltic rocks may have formed in a 
back–arc or immature arc. In contrast, the porphyries represent 

typical magmas of a subduction zone with an added continental 
component (Tejada et al., 2007).

Additional geochemical research on the CSVI on the lower 
volcanic rocks from the Cauca and Amagá regions (Borrero & 
Toro–Toro, 2016) shows that adakitic signature magmas could 
be related to melts originated in a previously metasomatized 
mantle located in a subduction zone.

Additional interest in the CF has arisen because of copper, 
gold, and molybdenum deposits associated with the CSVI. Ta- 
ssinari et al. (2008) studied the origin of Marmato gold depos-
its. Leal–Mejía (2011), Leal–Mejía et al. (2019), and Shaw et 
al. (2019) focused their studies on Phanerozoic gold metallog-
eny in the northern Andes, including gold–bearing associated 
porphyries in the CF. Most recently, Bissig et al. (2017) studied 
the origin of garnet–bearing magmas in the Colombian Middle 
Cauca Metallogenic Belt.

Tassinari et al. (2008) suggested a juvenile, mantle–derived 
magma as the primary source of calc–alkaline to tholeiitic mag-
matism, based on isotopic data. However, they did not exclude a 
minor magmatic contribution resulting from the partial melting of 
the lower continental crust. In the Marmato Stock, hydrothermal 
activity occurred at 5.6 Ma, which is later than the reactivation 
of the Cauca–Romeral Fault System at approximately 6.3 Ma.

Bissig et al. (2017) described the garnet–bearing porphyry 
systems of Tesorito and El Poma located in the Colombian Mid-
dle Cauca Metallogenic Belt. They interpreted their formation 
as occurring from a rapidly ascending magma that melted in 
the lower crust, at pressures above 1 GPa. Furthermore, they 
suggested that a change in the geodynamic environment may 
have removed garnet from the melt. This enabled the generation 
of middle– to upper–crustal magma chambers, which accounts 
for the later, garnet–free, porphyritic rocks.

Finally, new interest has arisen in the CF that is associated 
with the magmatic evolution of the northern Andes after the 
fragmentation of the Farallón Plate ca. 23 Ma (Lonsdale, 2005; 
Marriner & Millward, 1984), and the development of diverse 
magmatic activity. Two recent contributions, which include 
geochemical, geochronological, and isotopic data, focus on the 
petrogenesis and tectonic setting of the CF (Bernet et al., 2020; 
Jaramillo et al., 2019).

Jaramillo et al. (2019) suggested that 9 to 5.2 Ma magma-
tism in the area comprising the Combia Volcanic Complex, 
formed mainly from the mantle, interacted with older crustal 
material and underwent magmatic differentiation. They sug-
gested that the basalts represent the oldest, erupting phase at 
ca. 9 Ma and are overlain by more differentiated, calc–alkaline 
rocks. They related the different magmatic compositions (i.e., 
tholeiitic, calc–alkaline, and adakitic) to differences in dry– and 
wet–melting conditions in the continental crust associated with 
crustal thickness. Their proposed formation model suggests that 
Combia magmatism is related to oblique subduction and sub-
stantial structural inheritance.
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Bernet et al. (2020) presented three stratigraphic sections 
in the eastern Amagá Basin and proposed that the origin of 
magmas of the CF resulted from a metasomatized mixture of a 

mantle source with the lower crust. Chemical signatures were 
created by differences in the depth of melting and other possible 
processes, such as AFC and MASH. These authors determined 
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that Miocene – Pliocene magmatism is associated with an ex-
tension–compression regime and that an extensional pull–apart 
event (12–9 Ma) was followed by convergence (9–6 Ma) that 
formed calc–alkaline magmas. 

3. Petrography and Outcrop Evidence

The CF unconformably overlies the AF. Both units were em-
placed and restricted to the Amagá Basin, which, as well as 
similar basins aligned along the Cauca–Patía River depression, 
formed as a pull–apart basin due to Oligocene – Miocene Cau-
ca–Romeral Fault System activity (Sierra, 1994).

The CF has generally been divided into a Lower Member, 
mainly recording volcanic activity, both explosive (pyroclas-
tic–density current and fall–out deposits) and extrusive (lava 
flows), and an Upper Member, dominated by reworked primary 
volcaniclastic rocks and secondary volcaniclastics (such as la-
hars and debris avalanches; Murcia et al., 2013), as described 
by Grosse (1926), Calle & González (1980; 1982), Ríos &  
Sierra (2004), and Marín–Cerón et al. (2019). In this review, to 
obtain a synthesized, petrological understanding of the variety 
of rocks found in the CF, we have classified them into volcanic, 
sedimentary, and intrusive lithofacies. 

3.1.  Volcanic Lithofacies

The magmatic rocks that constitute the CF can be separated into 
two major groups: (1) Volcanic effusive deposits, which here 
include La Popala and Río Poblanco Dikes, as well as El Sillón 
Stock, given their geochemical similarity with basaltic, lava 
flows (Álvarez, 1983; Dunia, 2005; Jaramillo, 1976; Tejada et 
al., 2007), and (2) pyroclastic density current deposits.

3.1.1. Volcanic Effusive Deposits

Within this group, there are both intrusive and extrusive rock 
bodies with basaltic and intermediate compositions.

3.1.2. Basaltic Lava Flows

These rocks can be divided according to textural variation into 
porphyritic, glomeroporphyritic, and vesicular basalts. The for-
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Figure 4. Panoramic microphotographs of porphyritic basalts, un-
der crossed polarized light. (a) Large plagioclase (Pl) and pyroxene 
(Px) phenocrysts in a matrix of plagioclase, pyroxene (orthopy-
roxene and clinopyroxene), and opaque microliths in glass. Sieve 
texture is conspicuous in the plagioclase crystals. Sample MJG–011 
from Tejada & Betancourt (2006). (b) The trachytic texture is shown 
by basalt with plagioclase phenocrysts in a groundmass of pla-
gioclase and pyroxene microliths. Sample HJ–11 from Mahecha 
 et al. (2006).

Figure 3. (a) Geological map of the area, simplified from Gómez et al. (2015). Geological units: (1) Quaternary deposits; (2) Quaternary 
volcanoclastic deposits; (3) Quaternary volcanites; (4) Pliocene sedimentites; (5) Pliocene volcanites; (6) Combia Formation; (7) Neogene 
marine sedimentites; (8) Miocene volcanoclastic deposit; (9) Miocene sub–volcanic bodies; (10) Miocene plutons; (11) El Botón Magmatic 
Arc; (12) Santa Cecilia La Equis Complex; (13) Paleogene plutons; (14) Oligocene  ̶ Miocene marine sedimentites; (15) Oligocene  continental 
sedimentites; (16) Paleocene mafic plutons; (17) Cretaceous sedimentites, volcanites, gabbros, and ultramafic rocks; (18) Upper Cretaceous 
sedimentites; (19) Upper Cretaceous basalts; (20) Upper Cretaceous gabbros and ultramafic rocks; (21) Upper Cretaceous plutons; (22) 
Lower Cretaceous sedimentites; (23) Lower Cretaceous mafic rocks; (24) Lower Cretaceous ultramafic rocks; (25) Lower Cretaceous met-
amorphic rocks; (26) Jurassic plutons; (27) Triassic plutons; (28) Triassic ultramafic rocks; (29) Triassic metamorphic rocks; (30) Permian 
– Triassic sedimentites; (31) Ordovician plutonic rocks; (32) Stenian  ̶ Tonian metamorphic rocks. (b) Location of the geological map area.

mer is also subdivided into three types based on the significant 
phenocryst phase (i.e., plagioclase, augite, and hypersthene).

Porphyritic basalts: These rocks are characterized by 
plagioclase and pyroxene phenocrysts in an aphanitic matrix, 
varying from holocrystalline to hypocrystalline. The matrix is 
mostly composed of tabular–shaped plagioclase and pyroxene 
microliths and glass, which are commonly locally altered to 
palagonite and other clay materials (Figure 4a). In general, a 
chaotic texture dominates, although a well–defined trachytic–
flow texture can be seen (Figure 4b).

Plagioclase is the most common phenocryst in these sam-
ples. Crystals are subhedral to euhedral and range in size from 
approximately 0.5 to 3 mm. Albite and albite–carlsbad twinning 
are present in the majority of crystals and are normal to oscillato-
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ry zonation. In some samples, plagioclase–overgrowth textures, 
skeletal crystals, and spongy rims are evident (Figure 4a). The 
microliths vary in size from 0.5 to >0.1 mm and show albite 
twinning. Augite phenocrysts and microlith crystals are anhe-
dral to subhedral and are commonly associated with abundant 
disseminated opaque minerals (magnetite), and glass. Normal 
zonation and twinning are conspicuous, and exsolution and em-
bayment textures are also common. In general, crystals are frac-
tured. Hypersthene crystals are less abundant and are euhedral to 
subhedral, in some cases with exsolution lamellae and carlsbad 
twinning. In some examples, coronas composed of augite or oth-
er clinopyroxenes surround orthopyroxene. Mineral embayments 
are evidence of the dissolution of pyroxene–phenocryst phases.

Glomeroporphyritic basalts: These rocks are character-
ized by plagioclase, augite, and olivine, phenocrystal clusters 
of 1 to 3 mm, and microphenocrysts that also show this cu-
mulative texture. The matrix comprises plagioclase, pyroxene, 
olivine microliths, opaques, and glass (Figure 5). The olivine 
phenocrysts and microliths are subhedral, commonly fractured 
and altered to iddingsite. In all major minerals, zonation is less 
common than in the other two classifications.

Vesicular basalts: These rocks are the least common of the 
basaltic lava flows. They contain abundant vesicles and amyg-
dules of up to 4 mm in diameter. These basalts comprise scarce, 
plagioclase phenocrysts in a vitreous matrix with microliths of 
plagioclase and pyroxene (Figure 6). Fractures and vesicles are 
filled with slightly oxidized zeolites, mainly heulandite, chaba-
zite, mordenite, and philipsite, but celadonite, quartz, and cal-
cite are also present (Gelves et al., 2016).

3.1.2.1. Andesitic Volcanics

Intermediate (andesitic) dikes and flows described by Dunia 
(2005), Tejada & Betancourt (2006), and Jaramillo et al. (2019) 
are intercalated within pyroclastic rocks in the CF. These are 
characterized by a fine–grained matrix with pyroxene and am-
phibole phenocrysts with intersertal, glomeroporphyritic, and 
subophitic textures. They show evidence of silicification and 
contain amygdules filled with zeolites.  

Due to their composition, age, stratigraphic position, and 
field relationships, these rocks could be genetically related to 
the CSVI. 

3.1.3. Pyroclastic Density Current Deposits 

Different pyroclastic deposits, which are products of explo-
sive eruptions, have been reported by various authors in sev-
eral sections within the CF (Calle & González, 1980; Hoyos 
& Duque–Trujillo, 2017; Ramírez et al., 2006). The most 
 commonly reported explosive products are fall tuffs, followed 
by pyroclastic density current deposits. The latter are scarce 
but, when found, constitute an unambiguous indication of for-

mation by pyroclastic density currents because of its high–
welding grade, the vitrophyric texture of the matrix, fiamme 
texture, vitreous, and pumiceous cognate clasts, columnar 
jointing, etc. 

On the other hand, unequivocally identifying tuffaceous 
deposits is challenging, particularly where the reworking pro-
cesses of primary volcanic sequences have been intense. Nev-
ertheless, Hoyos & Duque–Trujillo (2017) reported extended, 
pyroclastic density current deposits only in the western margin 
of the Cauca River valley, specifically along the Bolombolo–
Concordia section, and small sequences of the same pyroclas-
tic density current deposits in the eastern margin of the Cauca 
River valley, where the Amagá River discharges into the Cauca 
River.

These pyroclastic density current deposits are mainly 
composed of broken plagioclase, pyroxene, and amphibole 
crystals. Moreover, lithic fragments are also common (mainly 
basaltic andesites and glass shards). Pumice fragments exhibit 
eutaxitic and fiamme textures, indicating that these deposits 
were formed by pyroclastic–flow density currents and were 
emplaced hot enough to be welded. The matrix of these rocks 
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Figure 5. Panoramic microphotograph of a glomeroporphyritic ba-
salt, under crossed polarized light. Sample exhibits seriate por-
phyritic texture, with phenocrystal clusters of plagioclase (Pl) and 
augite in a matrix of plagioclase, pyroxene (Px; orthopyroxene and 
clinopyroxene), opaques, and glass. Sample HJ–180 from Mahecha 
et al. (2006).

Figure 6. Microphotograph of vesicular basalt, under crossed po-
larized light. The sample exhibits porphyritic texture, with pla-
gioclase (Pl) phenocrysts in a vitreous matrix with plagioclase 
and pyroxene (Px; orthopyroxene and clinopyroxene) microliths. 
Vesicles are two large dark areas, both with air bubbles in the 
resin. Sample from the Igneous Rocks Collection of Universidad 
EAFIT, Medellín.
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is coherent and presents eutaxitic and trachytic textures with 
microlites of the main–forming minerals and rock fragments. 
Minerals and rock fragments show the same textures as al-
ready described for the lavas and CSVI. Finally, the compo-
sition of the welded pyroclastic density current deposits in 
the CF, combined with the fluidal textures observed in most 
of the lithic clasts in the samples, is characterized by eruptive 
pulses, which include parts of the volcanic edifice, possibly 
domes, and lava flows. Juvenile materials (pumice and glass 
shards) were also involved during those eruptions and were 
then flattened (more or less bed oriented), forming a fiamme 
texture in these deposits (Figure 7). 

Several authors (e.g., Calle & González, 1980, 1982; 
Grosse, 1926; Jaramillo, 1976; Jaramillo et al., 2019; Tejada 
et al., 2007) have described “agglomerates” as a common con-
stituent of the CF. These have been described as thick layers of 
block or breccia tuffs with massive structures, including round-
ed and subspherical fragments, with sizes varying between 1 
and 50 cm, with occasional larger blocks (up to 1 m). The in-
cluded blocks are composed of massive porphyritic basalts, 

vesiculated basalts, andesites, garnet–bearing andesites, and 
other pyroclastic rocks. Most of these fragments show thermal 
alteration in their boundaries. The matrix is mainly composed 
of glass, which varies from relatively fresh to palagonite, with 
plagioclase microlites, pyroxene, hornblende, and olivine. Be-
cause the term agglomerate is used for fluidal–shaped, volca-
nic bombs deposited near a volcanic vent (Németh & Martin, 
2007), we suggest using the term lithic–breccia, as suggested 
by McPhie et al. (1993).

These volcanic, lithic–breccia deposits are interpreted as 
proximal facies formed from explosion–derived, highly concen-
trated, pyroclastic density currents (Németh & Martin, 2007), 
which were involved in the eruptive process of some of the 
volcanic rocks, volcaniclastic rocks, and porphyritic intrusions 
related to this volcanism. These lithic–breccia deposits are asso-
ciated with basaltic lava flows along the Jericó–Puente Iglesias 
(Tejada & Betancourt, 2006), Jericó–Tarso, and Jericó–Tamesis 
roads. Jaramillo et al. (2019) reported that these rocks are in-
tercalated with other pyroclastic rocks (primary and secondary) 
and cut by andesitic dikes in the Fredonia region.
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Figure 7. Microphotograph of a welded pyroclastic density current deposit (Sample Conc 03) from the Bolombolo–Concordia section. 
Note the boundary between lithic fragment and matrix in (b). (a) and (c) parallel polarized light and, (b) and (d) cross–polarized light. 
(Pg) Plagioclase, (Px) Pyroxene.
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3.2.  Sedimentary Lithofacies

These lithofacies contain the non–volcanic, clastic sedimen-
tites of the CF. These sedimentary sequences are composed 
(in clast–size order) of conglomerates and breccias, fine– to 
medium– coarse–grained sandstones (Figure 8), and siltstones. 
The sediment supply of these rocks is derived from the Amagá 
and Combia (volcanic lithofacies) Formations. Specifically, 
conglomerates and breccias contain clasts composed of basalt, 
andesite, and tuff (CF), as well as sandstones (AF; Calle & 
González, 1980; Grosse, 1926; Ríos & Sierra, 2004).

Ríos & Sierra (2004) synthesized sedimentary sequences 
into four facies assemblages: (i) fluvial channels, (ii) debris and 
hyperconcentrated flows, (iii) debris flows intercalated with 
fluvial channels and alluvial plains, and (iv) pyroclastic flows 
intercalated with alluvial plains and reworked pyroclastic mate-
rial. These facies assemblages were obtained from the study of 
Bolombolo–Peñalisa (140 m thickness) and Guineales–Peñalisa 
(167 m thickness) surface sections. The Bolombolo–Peñalisa 
section documents an alluvial–plain deposit interbedded with 
pyroclastic and debris flows. On the other hand, the Guineales–
Peñalisa section shows fluvial channels interbedded with debris 
and hyperconcentrated flows. Both alluvial plain and fluvial 
channels are adjacent environments in a fluvial–sedimentary 
complex. Therefore, based on Ríos & Sierra (2004) report, it is 
possible to establish that changes in sedimentary facies assem-
blages in the CF are limited to autocyclic processes. Moreover, 
the beds formed by pyroclastic and debris–hyperconcentrated 
flows show short–term interruptions in the fluvial system due 
to the CF’s volcanic activity, thereby promoting the formation 
of local lacustrine deposits.

3.3.  Intrusive Lithofacies (Cauca Shallow 
Volcanic Intrusions; CSVI)

In general, the middle to late Miocene (ca. 12 to 6 Ma) shallow 
volcanic intrusions located along the Cauca River valley (north 

of ca. 4º N) (Figure 3) are considered a continuous magmatic 
belt in the northern part of the Western Cordillera with an exten-
sion of ca. 100 km (e.g., Álvarez, 1983; Borrero & Toro–Toro, 
2016; Leal–Mejía, 2011). The CSVIs are commonly distin-
guishable in the field due to their positive relief from the sedi-
mentary country rocks (AF and CF) and the Romeral mélange 
(Cediel et al., 2003).

According to Leal–Mejía (2011), the CSVI can be grouped 
into four segments according to their geographic location: (1) 
Quinchía–Dos Quebradas, (2) Marmato–Supia–Orofino, (3) La 
Quebradona–La Aurora, and (4) Titiribí. Nevertheless, these 
shallow volcanic bodies can be split into two different groups of 
shallow volcanic intrusives based on their geomorphological and 
compositional features: (1) Those that are restricted to the Amagá 
Basin (Amagá Basin), and (2) those emplaced outside the Amagá 
Basin along the Cauca River (Cauca River) (Figure 3).

Although some authors have considered that the volcaniclas-
tic sequence of the CF and CSVI may correspond to the same 
magmatic event (Borrero & Toro–Toro, 2016; Calle & González, 
1980; Grosse, 1926; Jaramillo et al., 2019; Leal–Mejía, 2011), 
there is no agreement as to whether both the Amagá Basin–CSVI 
and Cauca River–CSVI were formed from the same magmatism 
(Borrero & Toro–Toro, 2016; Leal–Mejía, 2011).

The CSVIs are mostly round–shaped bodies in map view 
(e.g., La Pintada and Marmato, intruding the Quebradagrande 
Complex and the Amagá, Irra, and Combia Formations) (Fig-
ure 9). These intrusives are mostly andesitic–dacitic in compo-
sition, characterized by a seriate, porphyritic texture, in a gray, 
microlithic–groundmass. Centimetric plagioclase constitutes a 
typical phenocryst phase in all CSVIs. Furthermore, they have 
phenocrysts of quartz, amphibole, biotite, and/or occasional 
garnet as accessory phases. Plagioclase crystals are subhedral, 
with a tabular habit and oscillatory zonation. Sieve and skele-
tal textures are also common in the plagioclase (Figure 10a). 
Hornblende phenocrysts are sometimes zoned and embayed and 
occasionally show dehydration–reaction rims to secondary am-
phibole and opaques (Figure 10b). Although uncommon, when 
present, most garnet crystals are either euhedral phenocrysts or 
show breakdown rims often surrounded by a plagioclase coro-
na (Figure 10c). Garnet is also commonly present as inclusions 
in plagioclase and amphibole, indicating early crystallization. 
Phenocrysts float in an aphanitic to microlithic, pilotaxitic– or 
fine– granular matrix composed of microliths of plagioclase, am-
phibole, pyroxene, opaques, and devitrified glass. Textures are 
porphyritic, microporphidic, and trachytic. Some of these bodies 
contain xenoliths of the surrounding rocks (basalts and schists). 

Characteristic of the the Amagá Basin–CSVI are intrusions 
of laccoliths and dikes of different sizes into the sedimentary AF 
(e.g., Cerro Tusa and Cerro Corcovado; Figure 11). These intru-
sives are mostly basaltic to andesitic in composition, contrasting 
with the slightly more differentiated composition of the Cauca 
River–CSVI. In general, these intrusives are porphyritic to glom-
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Figure 8. Microphotography of a medium–coarse sandstone, un-
der cross–polarized light. The sample exhibits subangular clasts 
of plagioclase (Pl), quartz (Qz), pyroxene (Px; orthopyroxene and 
clinopyroxene), and biotite (Bt). Sample CPG–392 from Ríos & Si-
erra (2004).
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eroporphyritic in texture. Plagioclase is the most common phe-
nocryst, although amphibole is also common. Glomeroporphyritic 
textures are formed by plagioclase, amphibole, biotite, and oliv-
ine. The groundmass consists mainly of plagioclase microliths and 
amphibole, pyroxene, biotite, and/or olivine in a trachytic texture.

Petrographic evidence, such as sieve and skeletal textures, 
oscillatory zonation in plagioclase, clinopyroxene coronas over 
orthopyroxene, and olivine breakdown, indicates that magma 
mixing, and disequilibrium were common processes in these 
magmas before being emplaced.

CSVI

AF

AF

CF

AF

a

PPllPl

0.5 mm

b

AAmmpphhAmph

AAmmpphhAmph

2 mm

c

GGrrttGrt
PPllPl

0.5 mm

d

GGrrttGrt

PPllPl

0.5 mm

Figure 9. Panoramic view of La Pintada Intrusives, part of the Cauca Shallow Volcanic Intrusions (CSVI). The Combia Formation (CF) sedi-
ments and Amagá Formation (AF) can also be seen. Picture from Mauricio Montoya (https://www.flickr.com/photos/mauriciomontoya/). 
The picture was taken towards the east at 11 km from the CSVI (1200 masl). 

Figure 10. Common petrographic textures from volcanic rocks of the Combia Formation. (a) Sieve and skeletal textures in plagioclase 
(Pl) crystals. Note also the presence of oscillatory zoning on the edges of the crystal. Sample MJG–46–1 from Tejada & Betancourt (2006). 
(b) Dehydration rims around amphibole (Amph). Sample MJG–132 from Tejada & Betancourt (2006). (c), (d) Plagioclase (Pl) corona rims 
around garnet (Grt). Sample MJG–132 from Tejada & Betancourt (2006). Sample under cross polarized light is shown in (c) and under 
parallel polarized light in (d).

https://www.flickr.com/photos/mauriciomontoya/
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4. Major and Trace Element 
Geochemistry
A complete dataset (see Table 1 of the Supplementary Infor-
mation 1) of 202 analyses of the igneous rocks of the CVP has 
been analyzed (Bernet et al., 2020; Bissig et al., 2017; Borrero 
& Toro–Toro, 2016; Dunia, 2005; Jaramillo, 1976; Jaramillo et 
al., 2019; Marriner & Millward, 1984; Tejada et al., 2007). Data 
from the project “Caracterización Estratigráfica, Petrogenética 
y Geocronológica de la Formación Combia, Acuerdo Especí-
fico No 009–2004 con la Universidad Nacional de Colombia” 
are also included. For representation, volcaniclastic rocks were 
excluded, as well as samples with high LOI values (≥3 wt%), 
as these are possibly related to alteration and secondary pro-
cesses associated with hydrothermal alteration and mineraliza-
tion (e.g., Leal–Mejía, 2011; Tassinari et al., 2008). Most of the 
excluded samples are basalts (alteration in these rocks is also 
evident by abundant zeolite and secondary calcite). Samples 
from the shoshonitic El Botón and El Morito (Rodríguez & 
Zapata, 2014; Zapata & Rodríguez, 2011) may represent the 
first magmatism of modern subduction and are also included 
in the dataset. In this case, only samples with LOIs higher than 
5 wt% were excluded, as determined by Müller et al. (1992) 
for these rocks. Finally, the geochemistry of the CF and CSVI, 
as initially determined by Jaramillo (1976), reflects a tholeiitic 
and calc–alkaline series (Figure 12). Both series are separated 
by a compositional gap at ca. 58 wt% SiO2. It is important to 

note that dikes and sills of both series intrude the AF and CF 
(Bernet et al., 2020; Dunia, 2005; Jaramillo, 1976; Jaramillo et 
al., 2019; Tejada et al., 2007). 

4.1.  Tholeiitic Series

This series comprises the lava flows of the CF and some mafic 
intrusives (e.g., La Popala, Río Poblanco, Alto Doraditas, and 
Cerro Sillón), as well as one sample from Quebrada La Popala. 
The tholeiitic series is mainly basalts to andesites 
that conform to a tight compositional cluster, accord-
ing to the total alkali vs. silica plot of LeMaitre et al. 
(2002) (Figure 13). SiO2 ranges from 50.30 to 61.53 wt%, and 
Al2O3 ranges from 12.89 to 19.49 wt%. MgO and FeOt vary 
from 1.43 to 6.98 wt% and 6.06 to 10.93 wt%, respectively. 
CaO varies between 4.48 and 12.24 wt%; Na2O is low, between 
1.74 and 4.11 wt%; and K2O is relatively high, between 0.66 
and 2.99 wt% (Figures 12, 14). Most samples cluster in the 
tholeiitic field of the AFM triangular plot of Miyashiro (1974) 
and the medium–K to high–K area of the K2O vs. SiO2 diagram 
(Gill, 1981) (Figure 12).

The N–MORB normalized (Sun & McDonough, 1989), 
multielement diagrams of the tholeiitic series have similar pat-
terns and relative abundances of incompatible elements (Fig-
ure 15). Three different groups within the tholeiitic series can 
be identified under slightly different La/Yb and La/Sm ratios 
(Figure 14) and the different sizes of element anomalies: Group 

Amagá Fm.

Corcovado subvolcanic
intrusion

N

Bedding dipping direction

Amagá Fm. bedding

Figure 11. View of the Cerro Corcovado from the south. Notice that the intrusion has the same dipping as the Amagá Formation strata, 
indicating that it must have intruded as a sill and then was tilted together with the Amagá Formation.
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Figure 13. Rock classification diagram after Le Maitre et al. (2002). 
The Alto Combia sample (Jaramillo, 1976) is highlighted with a red 
star. Green squares denote High Silica Adakites (HSA), Low Silica 
Adakites (LSA) after Martin et al. (2005).

T1, Group T2, and Group T3. Overall, the patterns show a neg-
ative anomaly for Nb and a slightly less marked anomaly for 
Ti (Figure 14), all of which have been considered indicative of 
subduction–related origin for these rocks (Bernet et al., 2020; 
Dunia, 2005, Jaramillo et al., 2019; Marriner & Millward, 1984; 

Tejada et al., 2007). Furthermore, positive Ba and Sr anoma-
lies are also evident (Figure 14). La Popala sample is the most 
differentiated of the Group T1 rocks, with a parallel REE pat-
tern, indicating crystal fractionation. Nevertheless, variation 
diagrams define two separate trends for Group T2 and T3 (Fig-
ures 14, 16), which suggests that differentiation through crystal 
fractionation is not the only process involved forming of these 
rocks. Group T2 overbridges the compositional gap toward the 
calc–alkaline series. Group T3 includes trachy–andesitic mag-
mas and can be differentiated from other groups based on low 
Sr/Y and the highest absolute concentrations of Y, Zr, and high 
FeOt (Figures 14, 15).

REE patterns for the tholeiitic series are relatively flat and 
somewhat LREE enriched compared to HREEs (Figure 17). 
Group T1 has a lower La/Yb ratio than the other groups. Some 
samples show a slight positive Eu anomaly, possibly due to 
plagioclase as a phenocryst phase.

4.2.  Calc–Alkaline Series

The calc–alkaline series comprises mainly andesites and dac-
ites of the CSVI. Nevertheless, samples from El Poma and 
Tesorito localities are also integrated into the dataset (Bis-
sig et al., 2017; Dunia, 2005). The two associated coetane-
ous plutonic units, the Farallones Batholith and the Támesis 
Stock, are also shown (Dunia, 2005). The calc–alkaline series 
shows a better–defined trend in the variation diagrams than 
the tholeiitic series. SiO2 content varies from 54.97 wt% (ba-
saltic andesites) to 66.13 wt% (dacites) (Figure 14). The MgO 
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content ranges from 0.31 to 4.09 wt%; Al2O3 content ranges 
from 15.56 to 18.50 wt%; and K2O contents ranges from 0.62 
to 4.04 wt% (Figure 12). Samples follow the calc–alkaline 
field trend (Figure 12) and the medium–K to high–K area of 

the K2O vs. SiO2 diagram, and therefore, some are high–K 
calc–alkaline rocks. Garnet–bearing samples of Tejada et al. 
(2007) and Bissig et al. (2017) are included here, as these 
samples plot in the calc–alkaline field.

10

8

7

5

3

2

0

M
g

O

45 50 55 60 65 70

SiO2

45 50 55 60 65 70

SiO2

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

T
iO

2

45 50 55 60 65 70

SiO2

0

10

20

F
e

O
t

45 50 55 60 65 70

SiO2

2200

1800

1400

1000

600

200

0

S
r

10

12

14

16

18

20

22

24

A
l2
O

3

45 50 55 60 65 70

SiO2

36

30

24

18

12

6

0

L
a

45 50 55 60 65 70

SiO2

14

12

10

8

6

4

2

0

C
a
O

45 50 55 60 65 70

SiO2

40

30

20

10

0

L
a

/Y
b

45 50 55 60 65 70

SiO2

T1

T2

T3

CA1

CA2

CA3

CA4

Plutons

El Botón 

*

El Morito 

HSA and LSA

Figure 14. Harker variation diagrams of selected major and trace elements for the Combia Volcanic Province lavas. The Alto Combia 
sample (Jaramillo, 1976) is highlighted with a red star. High Silica Adakites (HSA), Low Silica Adakites (LSA) after Martin et al. (2005).



369

The Combia Volcanic Province: Miocene Post–Collisional Magmatism in the Northern Andes

N
eo

ge
ne

2000

1000

100

10

1

0.1

S
am

pl
e/

N
–t

yp
e 

M
O

R
B

Cs Ba U K Ce Nd Zr Eu Gd Dy ErRb Th Nb La Sr Sm Hf Ti Tb Y Yb

T1

2000

1000

100

10

1

0.1

S
am

pl
e/

N
–t

yp
e 

M
O

R
B

Cs Ba U K Ce Nd Zr Eu Gd Dy ErRb Th Nb La Sr Sm Hf Ti Tb Y Yb

T2

2000

1000

100

10

1

0.1

S
am

pl
e/

N
–t

yp
e 

M
O

R
B

Cs Ba U K Ce Nd Zr Eu Gd Dy ErRb Th Nb La Sr Sm Hf Ti Tb Y Yb

T3

Figure 15. N–MORB–normalized trace–element patterns for the 
tholeiitic series of the Combia Volcanic Province. Normalization 
values from Taylor & McLennan (1985). Symbols as in Figure 12.

The N–MORB (Sun & McDonough, 1989) multielement 
diagrams are more differentiated (Figure 18), and the La/Yb 

ratios are higher than those of the tholeiitic samples. Sr and 
Y content ranges from 374 to 1200 ppm and 5.6 to 27.3 ppm, 
respectively (Figure 14). Additionally, the negative Nb and Ti 
and positive K and Sr anomalies are more evident, and there is 
a positive Hf anomaly in some samples. 

REE patterns are more variable than those of the tholeiitic 
series (Figure 19). Samples were divided into several calc–al-
kaline groups: Group CA1 (includes garnet–bearing samples) 
has the lowest La/Yb of the calc–alkaline suite, Group CA2, 
and CA3 have an intermediate La/Yb, and Group CA4 has the 
highest La/Yb values of the series. Overall, these samples show 
a spoon–shaped pattern (Figure 19), indicating that amphibole 
was significant in magma formation and evolution processes. 
This is particularly evident in Group CA2.

In general, the Farallones Batholith and Támesis Stock 
(Dunia, 2005) have similar compositions when compared to the 
calc–alkaline series, and variations within these rocks overlap 
the variations shown by the CSVI. Therefore, a similar petro-
genetic origin is likely. Unfortunately, due to the nature of these 
rocks, no cross–cutting or field relationship has been reported to 
support this observation.

Some characteristics of the calc–alkaline series are typical 
of adakites (Figures 12, 20). These characteristics include: 
SiO2 >56 wt%, Al2O3 >15 wt%, MgO generally <3 wt%, low 
Y (<15 ppm), and HREE relative to the island arc ADR, high 
Sr >400 ppm, Na2O >3.5 wt%, K2O/Na2O approximately 0.4, 
and low 87Sr/86Sr ratios (ca. 0.7040) (Castillo, 2012; Defant 
& Drummond, 1990; Martin et al., 2005). Therefore, these 
rocks can be classified as adakites (e.g., Borrero & Toro–Toro, 
2016). They also plot within the compositional field of High 
Silica Adakites, as proposed by Martin et al. (2005) (Figure 
20b). Nevertheless, La/Yb is relatively low for most of the 
Group CA1 (garnet–bearing) compared to the typical adakite 
signatures. Possible differences may be due to the presence 
of garnet, which would lower this ratio, as will be discussed 
further in the text.

4.3.  Shoshonite Series

Eleven samples, mainly trachybasalts and trachyandesite, de-
fine this series (Figure 12). They comprise El Morito basaltic 
andesites and the Alto Combia absarokite, mirroring El Botón 
basalts of Zapata & Rodríguez (2011). SiO2 for these rocks 
ranges between 55.78 and 50 wt%, MgO between 1.12 and 4.18 
wt%, and Al2O3 between 16.48 and 20.02 wt%. These rocks 
have high alkalis, with K2O ranging from 2.7 for the more mafic 
rocks to 6.08 wt% for the more felsic rocks (Figure 12). The N–
MORB (Sun & McDonough, 1989) multielement diagrams are 
more differentiated (Figure 21), and the La/Yb ratios are higher. 
The Sr and Y contents range from 374 to 1200 ppm, and 5.6 to 
27.3, respectively (Figure 14). Additionally, they show negative 
Nb and Ti and positive K and Sr anomalies. 
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4.4.  Isotope Data 

Present–day 87Sr/86Sr ratios versus 143Nd/144Nd isotope values of 
published (Bernet et al., 2020; Jaramillo et al., 2019; Leal–Me-
jía, 2011; Ordóñez–Carmona, 2001; Tassinari et al., 2008) and 
unpublished samples are presented in Figure 22 (see Table 2 of 
the Supplementary Information 1). The CF and CSVI define a 
tight sub–linear array, which generally extends from 0.70378 
to 0.70533 and 0.512906 to 0.512612, although some outliers 
are present. Most of the data fall within the mantle array. In 
general, the data spread towards the lower crust or sediment 
fields. Most Group T1 and T3 samples cluster at ca. 87Sr/86Sr 
0.79390 and 143Nd/144Nd at 0.52195, and calk–alkaline samples 
are slightly more enriched. Some samples, including the gar-
net–bearing rocks, tend toward lower Sm–Nd and higher Rb–Sr 

isotope ratios, indicating either variable sedimentary input or 
assimilation of older basement rocks.

Pb–isotope analysis from the CVP, Farallones Batholith, 
and Támesis Stock (data from Bernet et al., 2020; Leal–Mejía, 
2011; Tassinari et al., 2008) shows isotopic ratios of 206Pb/204Pb, 
208Pb/204Pb, and 207Pb/204Pb ranging from 18.91 to 19.22, 38.59 
to 38.93, and 15.56 to 15.68, respectively (Figure 23). In gen-
eral, samples show a linear trend that falls within the Northern 
Volcanic Zone (Compilation by Marín–Cerón et al., 2019). Al-
though the lead–isotope signatures of two CF samples and the 
Farallones Batholith and the Támesis Stock (Leal–Mejía, 2011) 
are in the same linear trend as the CF samples, they are more 
radiogenic. The data generally plot between the altered oceanic 
crust, Pacific sediments, and the Cretaceous basement, suggest-
ing crust mantle contamination and assimilation.
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5. Geochronology

Recently, Rodríguez & Zapata (2014) proposed to split the mid-
dle Miocene magmatism into two different magmatic arcs with 
different ages and geographical locations: An earlier shoshonitic  
El Botón arc and a later tholeiitic and calc–alkaline arc of the 
CF, including CSVI magmas.

El Botón magmatic arc constitutes a series of magmatic 
products, all of them emplaced on accreted rocks with oceanic 
affinity from the Western Cordillera and Cauca River basin, 
including rocks from the Amagá Basin, the Cañasgordas Block, 
and Romeral suture zone. These magmas have geochemical 
characteristics of shoshonitic affinity and ages ranging between 
12.5 and 9 Ma (Rodríguez & Zapata, 2014). Moreover, Zapata 
& Rodríguez (2013) define El Botón magmatic arc based on 
magmatic units such as: El Morito basaltic andesites and El 
Cangrejo latibasalt (9.1 ± 0.7 Ma in Restrepo et al., 1981a), 
Cerro Frontino gabbro (10.17 ± 0.41 Ma in Zapata & Rodrí-
guez, 2013), and El Botón basalts (10.55 ± 0.28 Ma, in Zapata 
& Rodríguez, 2011).

The CF, constituted by volcanic and subvolcanic products, 
has a tholeiitic to calc–alkaline affinity and is younger than the 
shoshonitic El Botón Magmatic Arc (Figure 2), as shown by 
their radiometric ages with an age span between 9 and 6 Ma 
(Jaramillo et al., 2019; Rodríguez & Zapata; 2014). Neverthe-
less, it is common to find inherited zircons between 12 and 11 
Ma in CF magmatic rocks (cf. Bernet et al., 2020; Hoyos et 
al., submitted; Jaramillo et al., 2019). These rocks probably 
originally crystallized in magmas coeval with El Botón and 
El Morito units.

Analyzing the distribution of different ages obtained over 
middle Miocene volcanic products in Colombia, a general pat-
tern of younging to the east is evident (Figure 24; see Table 1 
of the Supplementary Information 2). Middle Miocene magma-
tism in Colombia began in the northernmost part of the Western 
Cordillera with the intrusion of several mostly basic magmas 
between 17 and 10 Ma. After 10 Ma, this magmatism migrated 
to the Cauca valley, and no more magmatism is registered in 
the Western Cordillera after that (Figure 24; see Table 1 of the 
Supplementary Information 2). Gabbroic intrusions represent 
early magmatism as Cerro Frontino and basaltic flows as the 
Santa Cecilia, La Equis, and El Botón. After ca. 10 Ma, the 
magmatism migrated and was established on the northern seg-
ment of the Cauca valley, specifically in the Amagá Basin, rep-
resented by several shallow volcanic intrusions and some lava 
flows (e.g., El Cangrejo latibasalt). South of the Amagá Basin, 
in the middle Cauca valley, there is another critical intrusion 
cluster, La Colosa (Leal–Mejia, 2011), constituted by a series 
of dioritic porphyries and granodioritic intrusions.

Along with the basic magmatism in western Colombia, volu-
metrically important magmatism with ages ranging between ca. 
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Figure 17. Figure REE patterns normalized to chondrite for the 
tholeiitic series of the Combia Volcanic Province. Normalization 
values from Sun & MacDonough (1974). Group T1 tholeliitic lavas 
are shown for comparison. Symbols as in Figure 12.
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Figure 19. Figure REE patterns normalized to chondrite for the calc–alkaline series of the Combia Volcanic Province. Normalization 
values from Sun & MacDonough (1974). Symbols as in Figure 12. Group T1 tholeliitic lavas are shown for comparison. Plutonic rocks are 
plotted separately.
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12 and 6 Ma (Figure 24) had occurred. Younger ages between 
6 and 4 Ma (Figure 24; see Table 1 of the Supplementary Infor-
mation 2) would represent cooling ages of ca. 6 Ma intrusions 
and associated hydrothermal activity, not intrusion or forma-
tion ages. Middle Miocene intermediate magmatism in western 
Colombia began between ca. 14 and 12 Ma with a widespread 
magmatism affecting both the Western Cordillera and the Cauca 
valley (on both southern and northern segments). Nevertheless, 
this magmatism was especially intense in the northern part of 

the Cauca valley and mainly concentrated along the Cauca Fault, 
which possibly served as a magma emplacement conduit (Figure 
24). 40Ar/39Ar determined ages for these shallow volcanic intru-
sives lie within this range (Figure 24). Cerro Tusa, one of the 
most outstanding vestiges of this magmatism, and considered a 
volcanic plug (Calle & Gonzalez, 1980; Grosse, 1926), yields 
a reliable 40Ar/39Ar in hornblende age of 7.93 ± 0.14 Ma (Fig-
ure 25a). Garnet–bearing shallow volcanic intrusive porphyries, 
north of Jericó, yield two 40Ar/39Ar ages in hornblende of ca. 8.8 
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Figure 20. Diagrams showing adakite definitions. Only lavas with SiO2 > 56 are plotted. (a) Diagram showing Sr/Y vs. Y distribution 
between adakites and “normal” arc andesite, dacite, and rhyolite (ADR) lavas (modified after Drummond & Defand, 1990; Richards & 
Kerrich, 2007). The fractionation trend for various minerals is also shown (after Richards & Kerrich, 2007). (b) Sr/Y vs. La/Yb diagram with 
fields for High Silica Adakites (HSA), Low Silica Adakites (LSA), and “ordinary” arc magmas (ARC) after Martin et al. (2005). Also shown the 
calculated fractional crystallization trend of garnet and amphibole as the main fractionating phases (see text for details).

Figure 21. N–MORB–normalized trace–element patterns and REE patterns normalized to chondrite for the shoshonitic series of the 
Combia Volcanic Province (El Morito lavas). Normalization values from Taylor & McLennan (1985) and Sun & MacDonough (1974). Symbols 
as in Figure 12. Shown for comparison are El Botón lavas (Zapata & Rodríguez, 2011) and T1 tholeiitic lavas.
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(1986): Depleted Mantle (DM), and Bulk Silicate Earth (BE).

Figure 23. 208Pb/204Pb vs. 206Pb/204Pb diagram showing the Pb iso-
topic composition for samples of the Combia Volcanic Province. 
Data from Tassinari et al. (2008), Leal–Mejía (2011), and Bernet 
et al. (2020), in comparison with potential inputs (plot modified 
from data compilation plot from Marín–Cerón et al., 2010, 2019). 
NVZ: Northern Volcanic Zone. Colombian Pacific sediments data 
from Errázuriz–Henao et al. (2019), mean N–MORB and BAB from 
Gale et al. (2013).

Ma (Figure 25b, 25c). These ages overlap the explosive volcanic 
deposits associated with the CF.

Different pyroclastic density current units, exposed near 
the Amagá River (Figure 25d) and along the Morro Plancho, 
Concordia (Figure 25e, 25f), were dated and presented here, 
all yielding the same age, ca. 8.5 Ma. Samples were obtained 
from outcrops with altitudinal differences of ca. 1000 m. The 
Morro Plancho sequence is located at ca. 1500 masl, whereas 
the Amagá River sequence is located at ca. 500 masl. Because 
these two sequences yield the same age and have identical pe-
trographic characteristics, we interpret them as part of the same 
deposit or at least formed by subsequent eruptions. Transten-
sional displacements could explain the outcrop positions along 
NW–SE to N–S faults. The ages obtained for the explosive de-
posits are concordant with previously published ages for the 
CSVI surrounding the Amagá Basin area (Figure 24). Jaramillo 
et al. (2019) report an age of ca. 8.3 Ma for the overlying py-
roclastic sequence, including lithic breccia deposits, the same 
as that reported on the other side of the Amagá Basin between 
Jericó, Támesis, and Jardín. Based on the ages reported here for 
the pyroclastic density current units, we suggest that these ages 
could be genetically linked with lithic breccia deposits.

The Irra Formation correlates by lithology, time, and space 
with the CF. This formation, deposited to the south of the CF, 
within the Cauca River valley, is a succession of interbedded 
polymictic conglomerates and reworked pyroclastic material 

packages (Sierra, 1994). The age of the pyroclastic deposits, 
late Miocene (6.3 ± 0.2 Ma fission tracks in zircon; Toro et 
al., 1999), overlaps with those obtained for some subvolcanic 
intrusives emplaced along the Cauca River depression (e.g., 
Irra porphyry; Támesis Stock, Marmato porphyry, La Felisa 
Stock). Considering that (i) the mentioned pyroclastic deposits 
are coeval with corresponding magmatic intrusives in each 
area, and (ii) the Cauca River depression and the Amagá Ba-
sin intrusives correspond to the same continuous magmatism, 
which affected the Western Cordillera, we propose that the 
volcano–sedimentary member of the CF and at least the upper 
members (A and B) of the Irra Formation represent a coeval 
singular geological event that is recorded in adjacent exten-
sional basins.

6. Garnet–Bearing Samples

Garnet–bearing porphyritic rocks in the Neogene middle Cau-
ca valley were first reported from the Chinchiná and Palestina 
areas (García, 1983). Later, garnets were described from two 
localities in the Jericó area (Dunia, 2005; Tejada & Betan-
court, 2006; Tejada et al., 2007) and Tesorito and El Poma 
in the Colombian Middle Cauca Metallogenic Belt (Bissig et 
al., 2017). The composition is variable and will be detailed 
elsewhere (Hoyos et al., submitted). Zircon U–Pb and new 
40Ar/39Ar ages (Figure 25a–c) for garnet–bearing porphyrit-
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ic rocks indicate that these rocks formed at ca. 12 Ma in El 
Poma location and at ca. 9 Ma in El Tesorito and Jericó loca-
tions during the early stages of magmatic activity in the Cauca 
valley. The Jericó 40Ar/39Ar ages possibly represent cooling 
ages, and therefore magmatic crystallization ages are likely 
to be slightly older. Nevertheless, these magmas crystallize 
at shallow crustal levels, and thus cooling was fast, and the 
differences in both ages are small.

To constrain the significance of these rocks within the CF, 
we present the mineral chemistry of two garnet–bearing sam-
ples (MJG–132 and MJG–134) from the Jericó area and one 
andesite sample from Cerro Tusa (MW–1) (Figure 26). The 
analyzed minerals were garnet, plagioclase, amphibole phe-
nocrysts, and microlith matrix phases (see Tables 1, 2, 3 of the 
Supplementary Information 3).

6.1.  Garnet

Garnet is mainly almandine, characterized by XFe composi-
tions ranging from 0.54 to 0.61, XMg compositions ranging 
from 0.14 to 0.20, and XCa from 0.16 to 0.23 (Figure 26a–
c). Generally, garnet crystals show a darker pink core and a 
colorless rim. Furthermore, there is a compositional break 
in larger garnets, with garnet compositions being more Ca–
rich in the centers (e.g., garnet in sample MJG–134 varies in 
terms of XCa content, from approximately 0.66 to 0.58, and 

XMg from approximately 0.44 to 0.45), and more Mn and 
Mg enriched at the rims. Consequently, at least two garnet 
generations are preserved (core Grt 1 and rim Grt 2) (Fig-
ure 26). The presence of Mn–Mg–enriched and Ca–depleted 
overgrowth garnets indicates an abrupt change in crystalli-
zation conditions during their formation within the magma. 
Depleted Ca garnets would represent the second generation 
(Grt 2), which in turn shows a slight Ca increase towards the 
outermost rim (Figure 26c).

Three scenarios could explain these zonation profiles: (1) 
Post–formation diffusion at garnet rims under the growth of a 
new crystallization phase within the magma (e.g., plagioclase 
coronas around garnet are common, and zonation could there-
fore suggest Ca depletion due to Ca–plagioclase formation). 
Nevertheless, the slight increase in Ca from the inner Grt 2 
to the outermost rim precludes this possibility. Furthermore, 
plagioclase coronas are common in similar porphyritic garnet–
bearing rocks, where zonation profiles are flat (e.g., Bissig et 
al., 2017). (2) Changes in physicochemical conditions of the 
magma after the crystallization of Grt 1. This could happen 
because of the introduction of a different liquid component 
(magma mixing or fluid introduction), assimilation of wall 
rock material, or transition to shallower crustal levels, where a 
different composition of garnet would crystallize. Any of these 
processes would explain the coupled Ca, Mn, and Mg 
profiles shown. (3) The second garnet formation reflects the 
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Figure 26. Mineral chemistry of garnet, amphibole, and plagioclase in the Combia Formation porphyritc rocks. (a) Garnet phenocryst 
composition on the Grss–Alm–Py diagram. Experimental garnet compositions and isobaric cooling trend from Alonso–Perez et al. (2009) 
are also shown. (b) CaO and MnO binary diagram. Fields are from Harangi et al. (2001) and references therein. (c) Representative garnet 
zonation profile. (d) Representative amphibole zonation profile. (e) Plagioclase composition in the Ab–An–Or ternary diagram.

introduction of a new crystallization phase in the magma (e.g., 
plagioclase), which would changed the fractionated liquid’s 
overall Ca composition.

The CF garnet compositions are similar to those reported 
from El Tesorito and El Poma (Bissig et al., 2017). They also 
resemble the experimental garnets obtained by Alonso–Perez 
et al. (2009) from andesitic compositions with 6 to 8 wt% H2O 
at 0.8 GPa and 850 to 900 °C. Furthermore, according to these 
authors, under these experimental conditions, the modal amount 
of garnet at 0.8 GPa decreases with a decrease in H2O at the 
expense of plagioclase and amphibole formation (grt + liq1 = 
amph + plg + liq2), which would agree with the petrographic 
evidence (i.e., plagioclase rims and amphibole rims) shown by 
CSVI garnet phenocrysts (Figure 10c).

6.2.  Plagioclase

Plagioclase phenocrysts in all samples are oscillatory zoned 
(Figure 10a). Most of them are classified as bytownite. Over-
all cores are more calcium–enriched than rim compositions, 
although some variability is present, and zonation is less well 
developed in the Cerro Tusa sample (Figure 26e). Plagioclase 
inclusions in garnets are more calcic, similar in composition to 
cores in zoned phenocrysts. Cerro Tusa matrix microliths are 
labradorite.

6.3.  Amphibole

Amphibole in garnet–bearing samples is mainly pargasitic horn-
blende, and Mg# ranges from 0.439 to 0.693. Most phenocrysts 
show a compositional break, with more Mg–rich and Al– and 
Fe–poor cores than rim compositions (Figure 26d). Neverthe-
less, some amphiboles show composite zoning profiles. There 
is also evidence of some reverse zoning at the crystal rims, pos-
sibly due to magma–crystal interactions during matrix cooling. 
Amphibole inclusions in garnet are more pargasitic than matrix 
crystals. Some amphiboles enclose smaller garnet crystals, indi-
cating crystal growth after Grt 1 was already formed.

Amphiboles in the andesitic magma of Cerro Tusa have 
an overall darker rim than their centers, but zonation is never-
theless patchy. Even though cores are slightly more Mg–rich, 
chemical variation is present to a much lesser extent than gar-
net–bearing samples. The compositions are mainly ferro–parg-
asitic, and Mg# ranges from 0.223 to 0.337.

To obtain further constraints on magma crystallization 
depths, thermobarometric calculations were performed on am-
phibole crystals (Figure 27). Estimations of pressure and tem-
perature were calculated using an empirical calibration based 
on the composition of amphibole from calc–alkaline magmas, 
proposed by Ridolfi & Renzulli (2012) and Ridolfi et al. (2010). 
The results obtained are plotted in Figure 27 and listed in Table 
1 of the Supplementary Information 4.

Pressures obtained using the calibration range between 309 
and 502 MPa, which correspond to ca. 18 km depth calculated 
for cores and ca. 11 km depth for rims, considering an upper 
crustal density of 2.7g/cm3. The temperature calculations for 
these samples range between 950 °C in the cores and 880 °C 
in the rims (Figure 27a). These temperatures agree with the PT 
constraints for the garnet determined above.

Although all analyzed crystals are close to the boundary of 
compositionally consistent amphiboles (dashed lines in Figure 
27a), some of them exceed the H2O melt stability limit. How-
ever, the estimated water contents account for uncertainties of 
15% (Figure 27b). Pressure and temperature characterization of 
these crystals indicate that the analyzed amphiboles crystallized 
close to the instability boundary, making these crystals prone to 
destabilization with small P–T changes.

Further constraints on pressure and temperature conditions 
can be obtained via a comparison with compositions of exper-
imentally obtained amphiboles. Crystallization and melting 
experiments have shown that the contents of AlT, Mg#, and 
Na+K in amphibole are pressure– and temperature–dependent 
(Alonso–Perez et al., 2009; Ribeiro et al., 2016; Samaniego 
et al., 2010). Amphibole from the garnet–bearing samples 
overlaps the high–pressure (HP) compositional fields (>400 
MPa) in AlT, Mg#, and Na+K for amphibole plots (after Ri-
beiro et al., 2016) and is somewhat higher than the calculated 
pressures and temperatures from geothermobarometric calcu-
lations shown above.

Physical conditions during the last magma evolution stages 
are difficult to evaluate via mineral chemistry. However, the 
amphibole reaction rims found in the CSVI intrusives, especial-
ly in the Amagá Basin–CSVI (Figure 10b), suggest that these 
rocks respond to water loss throughout the melt adiabatic ascent 
from the reservoir to upper–level magmatic chambers (Ruth-
erford & Hill, 1993). Therefore, magmas resided in shallow 
chambers prior to intrusion into the AF sedimentary beds or 
eruption to the surface.
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7. Discussion

7.1.  Garnet–Bearing Rocks

Few worldwide localities report primary garnet in volcanic 
rocks. As a primary phenocryst, garnet is more common in per-
aluminous magmas (Harangi et al., 2001), such as the Pyrenean 
dacite–rhyolite suites (e.g., Gilbert & Rogers, 1989; Muñoz, 
1992), the Trinity Peninsula in Antarctica (e.g., Hamer & Moyes, 
1982), and NW England (e.g., Fitton, 1972; Thirlwall & Fitton, 
1983). Primary garnets in metaluminous rocks (e.g., andes- 
ites) occur in volcanism–related settings in NE Japan (Miyashi-
ro, 1955; Kano & Yashima, 1976; Kawabata & Takafuji, 2005; 
Shuto et al., 2013), Central Anatolia (e.g., Aydar & Gourgaud, 
2002), the Northland Arc in New Zealand (Bach et al.,2012;  
Day et al., 1992; Green, 1992; Smith et al., 1989), and evolved 
magmas in the Pannonian Basin (e.g., Embey–Iszstin et al.,  
1985; Harangi et al., 2001). Furthermore, Green (1992) used 
the terms S–type, M–type, or I–type originally proposed by 
Chappell & White (1974) for granitoids, for garnet–bearing 
volcanic rocks.

Green (1977, 1992) determined that the CaO content in 
garnet is dependent on the magma type and the pressure and 
temperature of crystallization. Garnets formed under high–pres-
sure conditions are characterized by high CaO (>5 wt%) and, 
as pressure decreases, MnO contents tend to increase (> 3wt%) 
without a coupled decrease in CaO.

Garnets occurring in CSVI rocks are similar to garnets crys-
tallized in M–type and I–type intermediate and mafic magmas 
at high pressures (Figure 26a). In addition, they have a CaO–
rich core, which is surrounded by CaO–poor secondary garnet. 
Consequently, this evidence suggests at least two growth stages, 

which is also reflected by amphibole phenocryst zonation. In-
terestingly, these rocks have shown to have abundant xenoliths, 
and interestingly, some garnet–bearing samples have more ra-
diogenic Sr–Nd isotope values within the whole suite, which 
could indicate the addition of a crustal component (Figure 22)

Ca–rich almandine garnet is not stable in high–pressure 
magmas, and it is likely to be completely reabsorbed in long–
residence magma chambers under shallow crustal conditions. 
Thus, garnet survival in volcanic rocks is expected to be a 
function of rapid magma ascent through the crust (e.g., Fitton, 
1972; Gilbert & Rogers, 1989; Harangi et al., 2001). Nev-
ertheless, the addition of a Mn component increases garnet 
stability (Green, 1972), which could account for preserving 
some of the garnet in the CSVI. Secondary overgrowth (Grt 
2) would increase the possibility of garnet preservation. An 
additional factor in garnet stability determined in recent stud-
ies is the presence of H2O–content in the magmatic liquid 
(Alonso–Perez et al., 2009). For some of the CSVI Group 
CA1 magmas it is possible that garnet was reabsorbed, and 
therefore is not present as a phenocrystal phase.

Amphibole in these samples also indicates at least two forma-
tion stages evidenced by the differences in calculated pressures 
and temperatures in cores and rims (17–19 km–950 °C and 11 
km–900 °C, respectively). Furthermore, the outermost amphibole 
rims and sieve textures in plagioclase indicate degasification and 
chemical/physical disequilibrium (respectively) during the last 
stages of magma ascent to the surface (Figure 28).

Therefore, we conclude that the garnet–bearing magmas in 
the CSVI suite show at least three formation stages through 
phenocrystal evolution: (i) Magma formation and crystalliza-
tion of Grt1 and Amph1, (ii) changes in physicochemical condi-
tions either due to pressure decrease or magma contamination, 
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Figure 28. Magma crystallization model proposed for CSVI calc–
alkaline rocks. Stages: (1) Early phenocrysts formation phases 
at ca. 17 to 19 km deep and ca. 950 °C; (2) reabsorption of early 
formed phenocrysts and crystallization of the second generation 
of phenocrysts at ca. 11 km and ca. 900 °C; (3) remotion of some 
phenocrysts to evolve into stages 4 and 5; (4) early formed phe-
nocrysts disequilibrium and degasification/dehydration textures 
in amphibole and plagioclase due to chemical (magma mixing) 
and physical (P–T changes) variation in shallow magma chambers; 
and (5) adakitic magmas formed via crystal fractionation.

whereby Grt2 and Amph2 are formed, and possibly the onset of 
extensive Plg crystallization, and (iii) degasification and rapid 
ascent to the surface (Figure 28).

7.2.  The Adakite Connection

The CSVI has been linked to adakite formation (Bissig et al., 
2017; Borrero & Toro–Toro, 2016; Jaramillo et al., 2019). As 
shown previously, most of the calc–alkaline series have all the 
characteristics of adakitic magmas. Adakites are rocks that have 
received considerable attention due to their significance in un-
derstanding crustal recycling at convergent margins, and their 
similarities with the Archean Tonalite–Trondhjemite–Granodi-
orite series are essential to understand Earth’s initial differen-
tiation and the onset of plate tectonic movement (see Castillo, 

2012 for a review). The general REE patterns of adakite are 
considered to indicate that garnet is involved in the formation 
process of these magmas, as garnet controls REE fractionation, 
most likely by being formed during melting, and therefore re-
taining HREEs in favor of LREEs.

Various adakite formation models have been hypothesized, 
generally involving the melting of young ocean crust in sub-
duction zone settings (cf. Castillo, 2012; e.g., Defant & Drum-
mond, 1990). Nevertheless, some adakites are thought to form 
via high–pressure (HP) fractionation of water–rich mantle melts 
(Hidalgo & Rooney, 2010, 2014; Macpherson et al., 2006; Ri-
beiro et al., 2016; Richard & Kerrich, 2007) or by AFC pro-
cesses (i.e., mantle melts are reinjected into a shallow crustal 
magma chamber; e.g., Castillo et al., 1999; Ribeiro et al., 2016). 
Under the HP conditions, model fractionating phases that deter-
mine the adakite character would be garnet and HP amphibole, 
as the magma would be within the stability field of these min-
erals (Castillo, 2006; Macpherson et al., 2006; Ribeiro et al., 
2016; Richards & Kerrich, 2007). The presence of water in the 
system would promote amphibole and garnet crystallization, 
and delay plagioclase fractionation (Müntener et al., 2001). The 
adakites formed via fractionation are very similar to High Silica 
Adakites compositions (Martin et al., 2005).

Under the HP fractionation scenario garnet–bearing sam-
ples from the CSVI could represent possible “primitive” mag-
mas, where garnet and amphibole have not been separated from 
the melt. This would account for the less differentiated REE 
profiles of Group CA1 samples (Figure 19). If, garnet and am-
phibole, and plagioclase to a lesser extent, are separated from 
the melt through time, the result should correspond to at least 
some of the calc–alkaline rocks. To test this hypothesis, we ap-
plied the Rayleigh equilibrium fractionation formula and con-
sidered the garnet–bearing samples as a starting composition 
for magma differentiation. We used the partition coefficients 
proposed by Hidalgo et al. (2007) for amphibole, clinopyrox-
ene, magnetite, and plagioclase, and the partition coefficients 
of Irving & Frey (1978) for garnet. Our results show that the 
magma composition of group CA3 can be obtained by frac-
tionation of 18:8:2:2 amphibole–garnet–magnetite–pyroxene 
(Figure 29), with 80% remaining melt. The listric patterns of 
Group CA4 magmas can also be obtained by approximately 
fractionating 20:6 amph:grt in Group CA2 magmas and 80 to 
85% remaining melt. Consequently, our assumptions adjust 
to the model of adakite formation via crystal fractionation of 
an arc magma (Alonso–Perez et al., 2009; Macpherson et al., 
2006; Richards & Kerrich, 2007).

We also used the Dy/Dy* versus Dy/Yb diagram of David-
son et al. (2013) to determine amphibole and clinopyroxene 
vs. garnet fractionation (Figure 30). The Dy/Dy* versus Dy/
Yb quantifies the curvature seen in many chondrite–normalized 
REE patterns due to mineral fractionation. Amphibole and clin-
opyroxene can significantly decrease Dy/Dy*, but amphibole 
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(Group T1) towards the Group T2 samples. The calc–alkaline 
series shows an overall parallel trend above the mantle array 
and commences above the E–MORB, with the garnet–bearing 
samples. This trend suggests either fractional crystallization 
of a magma formed from a more enriched mantle source than 
the tholeiitic series or crustal assimilation. Nevertheless, the 
more 87S/86Sr–enriched samples do not show the highest Th/Yb 
values, suggesting that fractional crystallization is an import-
ant process of the calc–alkaline series. The shoshonite series 
defines a well–developed curved trend together with the less 
differentiated El Botón arc data (Rodríguez & Zapata, 2014), 
suggesting assimilation and fractional crystallization.

TiO2/Yb vs. Nb/Yb relations of basaltic rocks indicate orig-
inal mantle source compositions of magmatic rocks, as they 
are independent of alteration and subduction enrichment pro-
cesses (Pearce, 2008) (Figure 31). Most samples plot on the 
MORB array. Group T1 of the tholeiitic series spreads from 
the N–MORB towards the E–MORB transition, whereas Group 
T2 clusters around the transition line. The calc–alkaline series 
is also shown and is less homogeneous but plots towards E–
MORB and spreads towards higher TiO2/Yb values.

The Th/La ratio has been used as an indicator of sediment 
input into arc systems, as the excess of Th is considered to de-
rive from subducted sediments (Plank, 2005). The Th/La and 
Sm/La ratios for the tholeiitic and calc–alkaline series show 

Figure 29. C1 Chondrite normalized REE patterns for Rayleigh frac-
tionation modelling of Group CA1 garnet–bearing sample MJG–134. 
Patterns for 40%, 60%, 70%, 75%, 80%, and 85% remaining melt 
are shown. Samples MJG–47 and MJG–59 of Group CA2 are shown 
for comparison.

Figure 30. Dy/Dy* vs. Dy/Yb diagram after Davidson et al. (2013). 
Dy/Dy* = DyN/(LaN 4/13 × YbN 9/13). Arrows indicate mineral con-
trol and melting. (PM) primitive mantle; (DM) depleted mantle; 
(GLOSS) average global subducting sediment; numbers in green 
stars: 1 = Upper Continental Crust, 2 = Middle Continental Crust, 
and 3 = Lower Continental Crust. Pentagons denote recalculated 
primitive magmas at 48% SiO2.

has greater effect on reducing Dy/Yb. The figure shows the 
CVP data. The calc–alkaline data show less well–defined trends 
than the tholeiitic series, except for Group CA1. This group 
offers a broad linear array parallel to the tholeiitic series and the 
calculated primitive composition plots towards a more LREE–
enriched MORB. The other rocks of the series tend towards 
the middle and upper crust composition, which, according to 
Davidson et al. (2013), would suggest that either the primitive 
arc magmas differentiated towards continental crust–like com-
positions or mixed with it during differentiation. Nevertheless, 
a considerably higher Dy/Yb trend is evident in samples from 
groups CA3 and CA4, further suggesting that garnet was in-
volved during differentiation.

7.3.  Crustal Input and Magma Origin

Evidence of interaction between a mantle source and a crustal 
contaminant is given by the trace element characteristics that 
magmas attain when these processes occur. Various ratios have 
been used as proxies to determine the nature of this interaction 
(e.g., Pearce, 2008; Plank, 2005).

On the Th/Yb vs. Nb/Yb plot of Pearce (2008) (Figure 31), 
magmatic rocks containing a large recycled crustal component 
(e.g., continental margins and subduction zones) have Th/Yb 
ratios that lie above the MORB–OIB array and are the product 
of selective Th addition (Pearce, 2008). In this diagram, the 
tholeiitic series plots in a tight compositional cluster above the 
N–MORB to E–MORB composition transition, which can be 
interpreted as either (i) a modified depleted mantle source or (ii) 
representing crust–magma interaction processes. There is only a 
slight vertical increase in Th/Yb from the more primitive basalts 
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two distinct trends and define the variable influence of sub-
ducted sediment (Figure 32). The regression line calculated 
for the tholeiitic series indicates a somewhat enriched MORB 
endmember mixed with possible sediment. Interestingly, the 
calculated endmember is similar to the Global Subducting Sed-
iment composition GLOSS from Plank & Langmuir (1998). 
The calc–alkaline and shohonite series denote a vertical trend 
that suggests a more enriched mantle endmember mixing with a 
sedimentary component. Additional constraints are given by the 

Ba/La ratio, which indicates slab dehydration fluids, as Ba is a 
mobile element, whereas La is immobile in fluids (Staudigel et 
al., 1996; Woodhead et al., 2001). The CF tholeiitic series plots 
towards a high Ba/La ratio (up to 150) and defines a linear trend 
that suggests the influence of slab–derived fluids. In both dia-
grams Group T2 plots above the T1 and T3 Groups, towards the 
garnet–bearing samples, suggesting contamination. The CF and 
CSVI calc–alkaline and shoshonitic series plot toward higher 
Th/Yb, indicating a sediment component for these rocks. 
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In the Dy/Dy* versus Dy/Yb diagram of Davidson et al. 
(2013) (Figure 30), the samples plot towards an LREE–en-
riched mantle array, and the more differentiated groups gradual-
ly spread towards lower Dy/Dy. Davidson et al. (2013) suggest 
that this may be due to the variable incorporation of sediment. 
The tholeiite series plots on the MORB field and individual 
trends for the defined groups tend to show positive slopes, sug-
gesting clinopyroxene differentiation. The tholeiitic Groups T1 
and T3 plot parallel to one another, “stepping down” towards 
higher Dy/Yb and lower Dy/Dy*. Group T2 does not follow the 
same parallel trend, plotting towards Group CA1, suggesting 
contamination. The calculated primitive melts (SiO2 at 48%) 
plot towards the center of the field defined by MORB data.

The Sr–Nd radiogenic isotope data for the CF and CSVI 
rocks are low and generally fall into the mantle array. There 
is a spread towards more enriched Sr, which indicates some 
variable contribution of a sediment/crustal component. Most of 
the tholeiitic rocks are less radiogenic than the shoshonitic and 
calc–alkaline rocks. The calc–alkaline series partially overlaps, 
which suggests that a similar source formed them. Neverthe-
less, some CSVI samples plot towards more enriched sediment 
or crustal Sr values and include some of the garnet–bearing 
samples. Therefore, garnet–bearing samples probably show 
evidence of crustal or sediment contamination. As shown pre-
viously, these rocks carry xenoliths, and there is evidence that 
the magmas that formed these rocks ascended in three distinct 
phases and thus were exposed to changes in magma composi-
tion, be it by the addition of another magma, continental crust, 
or sediment components. Jaramillo et al. (2019) determined that 
the more evolved magmas of the CSVI formed at deeper crust-
al levels (ca. 50 km for dacites, ca. 17 km for basalts), which 
would enable more assimilation and homogenization for these 
rocks. Lead isotope systematics also confirm the interaction of 
various components, including the mantle wedge, oceanic sed-
iment, and a crustal endmember, the cretaceous basement, that 
comprises accreted rocks. 

7.4.  The Shoshonitic Series

One crucial aspect is the evidence of shoshonitic magmatism 
(12.5 and 9 Ma; Zapata & Rodríguez, 2011) in the Amagá Basin 
(Jaramillo, 1976; Rodríguez & Zapata, 2014; this study), which is 
associated with a more widespread event that includes El Botón 
basalts to the west (Figure 2). The known age for this magmatism 
in the Amagá Basin (9.1 ± 0.7 Ma in Restrepo et al., 1981a), and 
the absarokite intrusion in the CF, described by Jaramillo (1976), 
suggest that volcanism was coeval with other volcanic activity. 

Reverse Petrogen calculations on the more primitive sam-
ples of El Botón basalts indicate that these rocks melted in the 
lower crust, at ca. 10 kbar and ca. 1250 °C (Krein et al. in re-
view). In the Dy/Dy* versus Dy/Yb diagram of Davidson et al. 
(2013) (Figure 30), the shoshonitic samples define a different, 

steeper trend than the other series, plotting from high Dy/Yb 
MORB compositions, towards upper continental crust compo-
sitions. The trend suggests mainly amphibole or clinopyroxene 
fractionation in the formation of the more evolved rocks.

Shoshonitic magmas form in various tectonic settings, in-
cluding within plates, continental rifts, ocean islands, oceanic 
arcs, back–arc extensional zones, and continental arcs (Müller 
et al., 1992). The Colombian shoshonitic rocks are related to the 
continental arc after the collision of the Chocó–Panamá Block 
(Lara et al., 2018). Basic to intermediate shoshonitic magmas 
are generally considered to have formed by low degrees of 
melting of previously modified mantle rocks, where LILEs and 
LREEs have been transferred from a subducting slab (e.g., Al-
danmaz et al., 2000; Morrison,1980). Th–Ba–Nb systematics 
indicate addition of subducted sediment melts and crystal frac-
tionation processes in the formation of these rocks in the CVP.

7.5.  Tectonic Scenario

In this review, we consider the following important aspects for 
the interpretation of the Combia Volcanic Province:
1. Field relationships in the Amagá Basin indicate a volcanic 

province that formed due to the presence of a short–lived 
magmatic event resulting from transtensional tectonics in 
a sedimentary basin. The underlying extensional event of 
the Amagá Basin would have begun during the early Mio-
cene (23–21 Ma), indicated by the sedimentation of the AF 
(Lara et al., 2018; Ramírez et al., 2015), and it seems to 
be associated with Panamá–Chocó Block docking against 
the South American Plate approximately 25–23 Ma (Farris 
et al., 2011) via a fast–oblique convergence phase along a 
sinistral strike–slip fault (Müller et al., 2008).

2. The magmatism along the Cauca River valley and the 
Amagá Basin can be divided into tholeiitic, calc–alkaline, 
and shoshonitic series. The calc–alkaline includes garnet–
bearing andesites and adakites. Nb–Ta and Zr negative 
anomalies in all series are evidence of a subduction zone 
setting. The tholeiitic magma series originated from frac-
tionation of a heterogeneous mantle source modified by 
variable degrees of slab–derived fluids. Adakites are the 
result of garnet and amphibole fractionation and crustal 
contamination. Shoshonites possibly formed by fraction-
ation of magmas created by low degrees of melting of 
mantle source modified through addition of a sediment/
crustal component.

3. Tholeiitic magmatism is a unique feature of the Amagá 
Basin, and therefore we propose the term Combia Vol-
canic Province (CVP). However, records of shoshonitic, 
calc–alkaline (garnet–bearing and adakitic) magmatism 
are present in other areas. Specifically, shoshonitic mag-
matism is present in the northwest (Figure 2; Rodríguez 
& Zapata, 2014). There are records, from 12.5 to 9 Ma, of 
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garnet–bearing and adakite magmatism in the south (Fig-
ure 2; Bissig et al., 2017). Adakites are also present to the 
south of the Amagá Basin and are part of the more recent 
volcanic activity (e.g., Toro–Toro et al., 2008). Further-
more, after magmatism was established at 9 Ma along the 
Cauca River valley and the Amagá Basin, the tholeiitic, 
calc–alkaline, and shoshonitic series coexisted at the same 
time in the CVP.

4. The mineral chemistry of garnets and amphiboles in gar-
net–bearing rocks indicates at least three formation–em-
placement stages for the calc–alkaline series: (i) Magma 
formation and crystallization of initial garnet and amphi-
bole, (ii) changes in physicochemical conditions triggering 
Plg crystallization, and (iii) degasification and rapid ascent 
to the surface (Figure 28).

5. The occurrence of shoshonitic, calc–alkaline (incl. garnet–
bearing and adakitic), and tholeiitic rocks in the Amagá 
Basin suggests that magma production occurred at differ-
ent depths, as was proposed by Jaramillo et al. (2019) for 
tholeiitic and calc–alkaline magmatism, and through vari-
ations in the different involved processes. The shoshonitic 
rocks formed through fractionation at levels where pla-
gioclase is still stable, whereas adakites developed within 
the garnet stability field, and therefore at deeper levels. 
Tholeiitic magmas would have formed from a mantle be-
neath shallow crustal levels.

As a result, the considerations above allow us to propose 
two different but coeval sources for the CF and CSVI mag-
matism in the Cauca extensional basin: A primitive source, 
modified by dehydration fluids of the previously subducted 
slab (i.e., tholeiitic magmas) and a more contaminated magma 
source (i.e., calc–alkaline magmas, most of which are adakitic 
and shoshonitic). 

Vargas & Mann (2013) proposed an east–west–striking 
slab tear, named Caldas Tear within the subducted Nazca Plate 
(Figures 1, 33). It separates two distinct subducted slab seg-
ments. The Caldas Tear is an extension of the Sandra Ridge, 
and both constitute a major weakness along the southern flank 
of the Panamá Arc indenter (Vargas & Mann, 2013). The Sandra 
Ridge is a volcanic high with a band of seismicity, interpret-
ed as residual or reactivated tectonism along an imperfect late 
Miocene plate suture (Lonsdale, 1991, 2005).

The ridge subduction setting is a possible scenario for the 
formation of CVP rocks. Vargas & Mann (2013) argued that the 
east–west aligned volcanic activity, the formation of adakites 
(Borrero et al., 2009), and the presence of outlier volcanic cen-
ters (e.g., Paipa–Iza and San Diego (Pardo et al., 2005)) are all 
indicators that the Caldas Tear may penetrate the upper crust as 
a fault zone and consequently provides a conduit for the upward 
rise of magmas formed at different levels and hydrothermal flu-
ids produced by slab melting on either side of the Caldas Tear. 
It would also enable the mixing of melts from these various 

sources. An additional aspect is that a slab window would allow 
the heat supply to melt multiple components of the mantle and 
overlying crust extensively. The orthogonal configuration of the 
Sandra Ridge subduction would explain differences in magmat-
ic products on either side of the subducting plates (Thorkelson 
& Breitsprecher, 2005).

A recently proposed model determines that a flat slab sys-
tem developed from a typical arc at ca. 14 Ma when magmatic 
activity was present along Colombia’s Pacific margin. Then, at 
9 to 6 Ma gradual flattening of the slab occurred, and magmatic 
activity ceased and was finally renewed after ca. 4 Ma south 
of the Caldas Tear (Wagner et al., 2017). Under this scenario, 
the boundary between the northern segment of the modern flat 
subducting Nazca Plate and the steeper southern segment is 
determined by the Caldas Tear (Chiarabba et al., 2016; Yarce 
et al., 2014) controlled the formation of the Amagá Basin. They 
represent a surface expression of this complex tectonic system 
during the Miocene, perhaps indicating that magmatic activity 
occurred during the gradual flattening of the slab. Therefore, the 
Caldas Tear was already established at ca. 12 Ma.

Jaramillo et al. (2019) suggests that the presence of tholeiit-
ic rocks in the Amagá Basin is linked to the oblique subduction 
of the Nazca Plate and to the existence of remobilized structural 
discontinuities. Thus, the presence of tholeiitic rocks is a result 
of a more significant structural component due to the change 
in the convergence angle. Although we do not preclude that 
oblique subduction plays an important role in the formation of 
the Amagá Basin and therefore is linked to the formation of the 
CVP, we also consider that other controls such as the Caldas 
Tear must have played an important role in the generation of 
this unique Neogene rock association in the northern Andes.

The melting of a homogeneous, previously modified mantle 
source formed the tholeiitic magma series. Element variability 
and Nb–Ta–Zr anomalies, typical of subduction, indicate initial 
modification by enriched fluids (Group T1), mineral fraction-
ation (Group T3), and possible contamination of crustal and/
or sedimentary input (Group T2). Therefore, they are likely to 
melt from the modified mantle wedge above the subducting 
plate (Figure 33f). The majority of these melts are primitive 
arc basalts, and some andesitic differentiates, with an overall 
homogeneous composition, which suggests that most magmas 
ascended directly to the surface, with few or no modifications. 
Nevertheless, some of these primitive magmas could have been 
emplaced into lower crustal magma chambers being subjected 
to open system processes (assimilation, magma mixing, melt 
extraction, and fractional crystallization) as proposed by Bry-
an et al. (2010). This phenomenon has also promoted magma 
diversification observed in the Cauca River valley (Figure 33).

The calc–alkaline adakite magma series is the product of 
HP fractionation of enriched mantle melts, which we believe 
are likely to have formed above the downgoing subduction of 
the Nazca Plate (Figure 33). Our findings support the model 
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of Bissig et al. (2017), where the initial hydrous melts in the 
middle Cauca valley form high–pressure magmatic storage 
reservoirs, where garnet and high–Mg amphiboles crystallize 
(Figure 33a). Separation of these minerals from the melt is 
an essential factor in the adakite–like nature of the result-
ing fractionated magmas. In the Amagá Basin, new miner-
al growth (secondary garnet and amphibole) records change 
magma composition, possibly injecting new mantle melts or 
crustal contamination. The presence of disequilibrium textures 
such as sieve textures and reabsorbed phenocrysts and more 

radiogenic isotopic signatures supports magma mixing and/
or crustal contamination. This scenario is likely to occur at 
shallower depths, where plagioclase begins to crystallize from 
the melt (Figure 33b). Fractionation of garnet, amphibole, and 
to a lesser extent, plagioclase would have occurred at some 
point in the middle to the upper crust. They formed a wide 
diversity of magmas (few of them garnet–bearing and most of 
them garnet–free magmas) beginning from a garnet–bearing 
magma (Figure 33c–e). We propose that the opening of the 
Caldas Tear in the downgoing subducting plate is an essential 
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Figure 33. Petro–tectonic model of generation of the Combia Volcanic Province calc–alkaline and tholeiitic magmas (modified from 
Ribeiro et al., 2016). (1) Dehydration and partial melting occur on the downgoing oceanic crust slab (Nazca Plate), including associated 
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magmas would fractionate at (a), after magmas separated from the modified mantle.
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control for some garnet–bearing magmas. Before the complete 
fractionation, they reached the surface at the beginning of vol-
canism in the middle Cauca valley from approximately 12 Ma 
to 9 Ma (e.g., Hoyos et al., submitted).

Disequilibrium coronas around the amphibole showed that 
most of these magmas underwent dehydration at low pressures 
via volcano degassing from a shallow magma chamber (Figure 
33d) for a considerable time. Some amphibole crystals present 
more than one disequilibrium corona, indicating that after a 
degassing period, the magma chamber was refilled with magma 
input with a similar composition, allowing the amphibole to 
regrow around the breakdown corona. This continuous magma 
replenishment occurred from one magma chamber to another, 
sometimes with contrasting magmas creating identifiable min-
gling and mixing textures. Nevertheless, sometimes it would 
have happened with similar magmas, making it challenging to 
identify the mixing process.

8. Conclusions

The CF stratigraphy currently divides it between the Lower 
Member and the Upper Member (Calle & González 1980, 1982; 
Grosse 1926). However, the CF records highly active volcanism 
operating in a varying pull–apart basin that frequently changed 
its topographic relief. Therefore, fluvial environments (and their 
accommodation spaces) were also adjusted continuously to the 
new physical features. As a result, the CF documents the ut-
most heterogeneity of the lithofacies that cannot be constrained 
to specific isochronous intervals. Accordingly, we propose to 
stratigraphically group the CF into only one unit.

The magmatic event responsible for the formation of the 
CF was active between 9 and 6 Ma. During this time, intense 
magmatic activity dominated the Cauca valley with the intru-
sion of an essential volume of subvolcanic andesites (includ-
ing Cerro Tusa and La Pintada Intrusives). Moreover, basaltic 
intrusions fed composite volcanoes, which formed lava flows, 
pyroclastic density currents, and lahars, which remobilized the 
primary volcanic deposits. On the other hand, the so–called 
‘El Botón Magmatic Arc’ (characterized by a shoshonitic af-
finity and exclusively related Western Cordillera rocks with 
oceanic affinity) was active prior to the Combian magmatism 
between 12.5 and 9 Ma. Nevertheless, it was part of the same 
tectonic event.

The CVP is characterized by the presence of variable mag-
matic series. They are tholeiitic, calc–alkaline, and shoshonitic. 
The calc–alkaline series includes adakites and garnet–bearing 
rocks, whereby the adakites resulted from garnet fractionation 
within the garnet stability field of andesitic magmas. The geo-
chemical variability shown within the CVP results from the 
variable contribution of a modified mantle, sediment and crustal 
components, coupled with differentiation processes. The forma-
tion of the CVP is controlled by the Panamá–Chocó docking 

against the South American Plate through oblique convergence 
and the Caldas Tear.
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