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Zircon U–Pb and Fission–Track Dating  
Applied to Resolving Sediment Provenance  
in Modern Rivers Draining the Eastern  
and Central Cordilleras, Colombia

Cindy Lizeth URUEÑA–SUÁREZ1* , Mary Luz PEÑA–URUEÑA2* ,  
Jimmy Alejandro MUÑOZ–ROCHA3 , Lorena del Pilar RAYO–ROCHA4 , 
Nicolas VILLAMIZAR–ESCALANTE5 , Sergio AMAYA–FERREIRA6 ,  
Mauricio IBAÑEZ–MEJIA7 , and Matthias BERNET8 

Abstract Determining the crystallization and cooling ages of detrital zircons from an-
cient sedimentary rocks or modern river sediments is a powerful method for trac-
ing the sediment provenance and exhumation of orogenic mountain belts. Here, we 
present a study of the U–Pb and fission–track dating of detrital zircons from: (1) the 
sedimentary cover units of the Eastern Cordillera between Bogotá and Villavicencio 
and (2) the modern river sediments of the Guatiquía and Guayuriba Rivers, which drain 
the eastern flank of the Eastern Cordillera, and those of the Magdalena River at Girar-
dot, which drains the western flank of the Eastern Cordillera and the eastern part of 
the Central Cordillera. We use our data to highlight the advantages and limitations of 
using zircon U–Pb and fission–track dating in provenance studies, including the iden-
tification of original source areas, sediment recycling and the difficulty of detecting 
amagmatic orogens in the detrital zircon record. The data obtained in this study allow 
us to better understand the association between the exhumation of sources and their 
detrital zircon signatures in the modern rivers that drain part of the Eastern Cordillera.
Keywords: Detrital zircon, Eastern Cordillera of Colombia, Exhumation, Provenance.

Resumen La determinación de edades de cristalización y de enfriamiento de circones 
detríticos en rocas sedimentarias antiguas o sedimentos de ríos actuales es un poderoso 
método para trazar la proveniencia del sedimento y la exhumación de cinturones oro-
génicos. Aquí presentamos un estudio de dataciones U–Pb y trazas de fisión en circones 
de (1) las unidades sedimentarias de la cordillera Oriental entre Bogotá y Villavicencio 
y (2) sedimentos fluviales actuales de los ríos Guatiquía y Guayuriba, los cuales drenan 
el flanco oriental de la cordillera Oriental, y sedimentos del río Magdalena en Girardot, 
que drena el flanco occidental de la cordillera Oriental y la parte oriental de la cordillera 
Central. Usamos nuestros datos para resaltar las ventajas y limitaciones de usar datacio-
nes U–Pb y trazas de fisión para estudios de proveniencia, incluyendo la identificación 
de áreas fuente originales, el reciclaje de sedimentos y la dificultad de detectar orógenos 
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no magmáticos en el registro de circones detríticos. Los datos obtenidos en este estudio 
nos permitieron entender mejor la asociación entre la exhumación de fuentes y sus 
firmas detríticas en ríos actuales que drenan parte de la cordillera Oriental.
Palabras clave: circón detrítico, cordillera Oriental de Colombia, exhumación, proveniencia.

1. Introduction

Provenance studies that utilize the crystallization or cooling ages 
of detrital zircons have been proven to be useful in making paleo-
geographic reconstructions (e.g., Gehrels & Pecha, 2014), iden-
tifying tectonically induced changes in drainage patterns (e.g., 
Davis et al., 2010), placing time constraints on surface uplift 
(e.g., Horton et al., 2010), and fingerprinting pulses of magma-
tism (Caricchi et al., 2014). In recent decades, much progress 
has been made in the use of different geo– and thermochrono-
logical methods to gain information about sediment provenance 
and the exhumation of sediment source areas. Each individual 
dating technique offers unique information about provenance and 
exhumation. The strength of these analyses lies in combining 
different dating techniques on the same samples or even within 
the same grains to obtain crystallization and cooling ages that 
represent the geological history and processes that control a given 
source–to–sink system. Although apatite fission–track and U–
Pb double–dating have been developed and used in provenance 
studies (Mark et al., 2016), the most suitable mineral for this type 
of analysis is zircon (e.g., Bernet et al., 2006; Rahl et al., 2003; 
Reiners et al., 2005), as zircons are present in many upper crustal 
magmatic, metamorphic, and sedimentary rocks and are resistant 
to weathering. In this work, we use new examples of modern 
river samples from the Colombian Andes to explain how zircon 
fission–track (ZFT) and U–Pb dating can be used in provenance 
studies to better understand the temporal association between 
sources and depositional sites (Carter & Moss, 1999) and how 
the evolution of orogenic mountain belts in settings where large 
amounts of sediment are recycled from sedimentary source rocks 
and volcanic input may complicate the exhumational signal in 
such data (e.g., Carter & Moss, 1999; Jourdan et al., 2013). ZFT 
data, which provide information about the most recent thermal 
history and exhumation of source rocks, can complement U–Pb 
data, which reflect the original zircon crystallization age and its 
ultimate provenance.

Zircon U–Pb geochronology is the most common technique 
applied to provenance studies of detrital materials, including 
the sedimentary basins of the Colombian Andes (Horton et al., 
2010; Nie et al., 2010). The strength of this method lies in the 
ability of detrital zircons to retain the spectra of ages that char-
acterize the timing of the igneous and/or metamorphic (re)–
crystallization of their source terranes. This type of information 
is useful for establishing stratigraphic correlations and identify-
ing sediment source areas and/or their transport and deposition-
al histories (Kosler & Sylvester, 2003). In the same sense, ZFT 

data provide robust information about the most recent thermal 
history of a sediment source area after it cools below the ZFT 
closure temperature of approximately 250–200 °C, depending 
on the cooling rate, which is invaluable for elucidating the tec-
tonic and exhumation processes in a range of geodynamic set-
tings, especially during the evolution of convergent orogenic 
belts (Bernet & Garver, 2005; Brandon et al., 1998; Reiners 
& Brandon, 2006). Nonetheless, in cases of very slow cooling 
and/or reheating in the source area, detrital zircons may also re-
flect partial annealing in the source area, with apparent cooling 
ages that cannot be directly associated with a tectonic event or 
a particular orogenic phase (Bernet et al., 2001, 2006, 2009). 

The purpose of this chapter is to present the U–Pb and fis-
sion–track data from the first source–to–sink study of the Servi-
cio Geologico Colombiano (SGC) Geochronology Laboratory, 
using the tested analytical procedures and their application to 
resolve specific geological problems. The goal of this prelimi-
nary study is to determine the provenance signal in the modern 
river sediments of rivers draining the eastern and western foot-
hills of the Eastern Cordillera in Colombia using the combined 
ZFT and zircon U–Pb dating of the same samples. The detrital 
sediments studied here were taken from the Magdalena River at 
Girardot on the western flank of the Eastern Cordillera and from 
the Guatiquía and Guayuriba Rivers in the eastern foothills of 
the Eastern Cordillera (Figure 1).

2. Geological Framework

The geology of Colombia is tectonically and morphologically 
characterized by the stable Precambrian basement of the Am-
azon Craton in the eastern part of the country (Ibañez–Mejia 
& Cordani, 2020), as well as by the highlands of the Andean 
Belt, in which three cordilleras are separated from each other 
by intermountain valleys (Figure 1). Rivers such as the Bogotá 
River drain the Eastern Cordillera to the west into the Mag-
dalena River (Figure 2). The Magdalena River is one of the 
most important drainage systems of the Northern Andes, as it 

Figure 1. Shaded relief image of the Eastern Cordillera showing 
the main geomorphological and tectonic structures: Magdalena 
Valley; (SM) Santander Massif; (LSBF) La Salina–Bituima Fault Sys-
tem; (PIVC) Paipa–Iza Volcanic Complex; (QM) Quetame Massif; 
(SBB) Sabana de Bogotá Basin; Llanos Basin. Note the NE–SW trend 
of the cordillera, as well as the location of the study area (red box). 
The box in the smaller map shows the tectonic setting: (EC) Eastern 
Cordillera; (CC) Central Cordillera; (WC) Western Cordillera; (SNSM) 
Sierra Nevada de Santa Marta.
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Figure 2. (a) Shaded relief image of the study area showing the main river discharge in the Eastern and Western Cordilleras (Bogotá 
River, Guayuriba River, Guatiquía River). Locations of samples collected in this study are shown as blue circles, and those of Parra et 
al. (2009a, 2009b) are shown as blue triangles. (QM) Quetame Massif; (SP) Sumapaz Paramo; (CP) Chingaza Paramo. (b) Simplified and 
modified geological map from Gómez et al. (2015) with the locations of samples analyzed for zircon fission–track ages in this study 
shown as blue circles and those of Parra et al. (2009a, 2009b) shown as blue triangles.
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crosses Colombia from south to north over a distance of 1000 
km, collecting all of the tributaries coming from the western 
flank of the Eastern Cordillera, the eastern flank of the Central 
Cordillera, and, further downstream, the western Cordillera at 
the confluence with the Cauca River near Magangué. On the 
east side of the Eastern Cordillera, the drainage configuration 
is different. The rivers run from the foothills across the Llanos 
Basin from west to east to ultimately join either the Orinoco or 
Amazon Rivers. The Guatiquía and Guayuriba Rivers are two 
of the most important tributaries of the Meta River, which is 
part of the Orinoco Basin. With their springs in the Chingaza 
and Sumapaz Paramo regions in the Eastern Cordillera (Fig-
ure 2a), they drain Precambrian (Garzón Massif), Paleozoic 
(Quetame Massif), and Cretaceous sedimentary cover rocks 
(Figure 2b).

Different authors have used thermochronology and U–Pb 
geochronology to describe how the surface uplift, exhumation 
and deformation history of the Eastern Cordillera is related to 
the drainage and sedimentary basin evolution of the Llanos 
Foreland, which is limited by the Guaicáramo Fault System 
(i.e., Bande et al., 2012; Horton et al., 2010; Mora et al., 2008; 
Nie et al., 2010; Parra et al., 2009a, 2009b; Saylor et al., 2013). 
The evolution of the Eastern Cordillera as a highland started 
during the middle Eocene to Oligocene, and it intensified during 
the Miocene – Pliocene, after the tectonic inversion of pre–
existing Jurassic and Early Cretaceous graben structures and 
mid–crustal low–angle detachment faults (Colleta et al., 1990; 
Cooper et al., 1995; Dengo & Covey, 1993; Mora et al., 2006, 
2009; Sarmiento–Rojas et al., 2006). 

Since the Eocene, compressional deformation has migrated 
to the east (Mora et al., 2010; Parra et al., 2009a, 2009b, 2012), 
and a late Paleogene to Neogene foreland basin sequence be-
gan recording the erosional exhumation history of the adjacent 
basement highs in the Eastern Cordillera. According to Mora 
et al. (2008), the eastern flank has the highest mean elevations, 
and its topography exhibits deeply incised river canyons with 
dissected basement rocks. Based on thermochronological anal-
yses, this topography has been interpreted as a cause and con-
sequence of rapid exhumation rates, which have been attributed 
to climatic and tectonic forcing (Parra et al., 2009a, 2009b). The 
asymmetry in orogenic processes is believed to be caused by 
two main factors: (1) structural inheritance during inversion, 
and (2) initial topographic growth between 6 and 3 Ma, which 
built an orographic barrier that subsequently intercepted east-
erly moisture–bearing winds, thus leading to focused precipi-
tation and enhanced erosion (Mora et al., 2008). 

Although the initial surface uplift was probably moderate, 
after the Oligocene, the rise of the Eastern Cordillera blocked 
the arrival of zircons derived from the Guiana Shield to the 
hinterland interior. This dramatic change in local topography 
caused a shift in the sediment provenance of the sedimenta-
ry units deposited in the intermontane Magdalena River Basin 

(Horton et al., 2010; Nie et al., 2010), which has developed 
between the Central and Eastern Cordilleras since the Eocene. 

3. Materials and Methods

3.1. Sampling

In this study, two samples were collected along a Bogotá–Vi- 
llavicencio transect in a stratigraphic section of Paleozoic to 
Upper Cretaceous rocks (Figures 2, 3; Table 1); additionally, 
two river sediment samples of the main tributaries of the eastern 
flank of the Eastern Cordillera were collected close to Villavi-
cencio, and one was collected from a sandbar in the Magdale-
na River at Girardot. The U–Pb dating of detrital zircons was 
conducted on river sediment samples, and ZFT dating was per-
formed on both sedimentary rock and river samples. The oldest 
units in the area correspond to the metamorphic and metasedi-
mentary rocks of the Quetame Group, which are stratigraphical-
ly overlain by the Devonian sedimentary rocks of the Farallones 
Group (Areniscas de Gutiérrez Formation), the Jurassic sedi-
mentary rocks of the Brechas de Buenavista Formation, and a 
Cretaceous sedimentary section represented by the rocks of the 
Cáqueza and Une Formations, as well as the Upper Cretaceous 
Chipaque Formation. Active sediment samples from the Gua-
tiquía and Guayuriba Rivers were collected in proximity to the 
drainage slope inflection that represents the transition from the 
orogenic hinterland to the foreland basin system. These two riv-
ers extend from approximately the central axis of the mountain 
range and flow towards the east, mainly eroding Cretaceous and 
tertiary units. On the western flank of the Eastern Cordillera, 
one sample was taken from the Magdalena River on a sandbar 
close to the Girardot bridge, downstream of its confluence with 
the Bogotá River (Table 1). The Upper Magdalena River Ba-
sin drains not only the western flank of the Eastern Cordillera 
but also a large part of the Central Cordillera volcanic arc and 
crystalline basement. 

3.2. U–Pb Dating by LA–ICP–MS

Sedimentary provenance studies commonly use the U–Pb dating 
of detrital zircon grains as a tool with which to characterize the 
provenance of sediments, provided that the age spectra of their po-
tential source areas are known. This approach allows researchers 
to establish potential correlations between different sedimentary 
units and permits the quantification of the maximum depositional 
ages of strata in the absence of datable volcanic material (Dickin-
son & Gehrels, 2009; Gehrels, 2011). Laser ablation–inductively 
coupled plasma–mass spectrometry (LA–ICP–MS) is particular-
ly well suited for provenance studies, which are usually based 
on a large number of measurements (typically approximately 
100–120 grains per sample) in order to identify all major sedi-
mentary source components (Vermeesch, 2004; Bernet & Garver, 
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Figure 3. Schematic Paleozoic – Upper Cretaceous stratigraphic section with the locations of bedrock samples presented in this study 
(blue circles) and by Parra et al. (2009a, 2009b) (blue triangles).

Table 1. Sample information.

Sample Latitude N Longitude W Altitude (masl) Lithology Stratigraphic unit Depositional age

MB005 4° 9’ 12.312’’ 73° 42’ 49.284’’ 714 Sand Recent 0 Ma

MB006 4° 9’ 36.468’’ 73° 37’ 44.76’’ 450 Sand Recent 0 Ma

MB008 4° 12’ 21.204’’ 73° 44’ 4.776’’ 880 Metasandstone Areniscas de Gutiérrez Fm. Devonian

MB009 4° 24’’ 40.608’’ 73° 57’ 35.496’’ 1713 Quartz arenite Cáqueza Fm. ca. 127 Ma

13MB180 4° 17’ 35.16’’ 74° 48’ 36.036’’ 261 Sand Recent 0 Ma
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2005). Nevertheless, Pullen et al. (2014) recently demonstrated 
that large–n datasets (n= 300 to 1000) yield better precision in the 
distribution of U–Pb detrital zircon data and better approximate 
the true relative abundances of the major components in samples 
with multi–modal age spectra. In this study, we analyzed approx-
imately 220 detrital zircon grains from each sample.

Detrital zircons from the Guayuriba, Guatiquía, and Mag-
dalena River samples were mounted in epoxy resin together 
with age standards and polished to expose their internal grain 
surfaces. Cathodoluminescence (CL) images were taken using 
a Gatan MiniCL detector, attached to a JEOL JSM IT–300–LV 
scanning electron microscope (SEM) at the SGC in order to 
guide where analytical spots were placed on cores and/or rims; 
the operating conditions for SEM–CL images included an ac-
celerating voltage of 15 kV and a probe current of 60 nA. 

Following imaging, zircons were analyzed at the Geo-
chronology laboratory of the SGC using LA–ICP–MS. The 
instruments used were a Thermo Scientific® Element2 mag-
netic–sector ICP–MS coupled to a Photon Machine® ‘Excite’ 
excimer laser system (193 nm). The mosaic images used for the 
selection of ablation spots were constructed using the Chromi-
um2 software at 75% magnification. The following laser set-
tings were used: a spot size of 20 or 35 μm; a laser fluence of 
6.91 J/cm2; and an output energy of 94%. The number of pulses 
per burst was 126; they were fired at a frequency of 8 Hz for 
a total ablation duration of 28 seconds per analysis. The mass 
spectrometer was tuned with Sri Lanka zircons to maximize the 
signals of the isotopes of interest, i.e., 238U, 235U, 207Pb, 206Pb, 
208Pb, 232Th, 202Hg, and 204(Pb + Hg), and to minimize the oxide 
(254(UO)+/238U+) production at the sample interface. 

Instrumental fractionation was corrected using a standard–
sample bracketing approach, i.e., by analyzing reference zircon 
materials after every five unknowns and normalizing the data 
relative to the known (±CA)–ID–TIMS ages of the reference 
zircons. For further discussion of the data acquisition and re-
duction routines followed in this study, see Ibañez–Mejia et 
al. (2015) and Pullen et al. (2014). To validate the accuracy of 
our method, Plešovice crystals were analyzed alongside each 
sample and treated as unknowns during data reduction. These 
crystals have a known ID–TIMS age of 337.13 ± 0.37 Ma (Sla-
ma et al., 2008); thus, the results obtained here (see Supple-
mentary Information) demonstrate that our analytical approach 
is accurate and precise within ±2%, which is typical for U–Pb 
zircon analyses using LA–SC–ICP–MS methods (e.g., Chang 
et al., 2006; Frei & Gerdes, 2009; Ibañez–Mejia et al., 2015; 
Schaltegger et al., 2015; Pullen et al., 2014). 

Probability distribution diagrams were constructed using 
only 206Pb/238U ages that were concordant to determine the 
frequency and distribution of the values represented (i.e., the 
individual apparent ages) in each sample. The results were 
represented in concordia diagrams (Wetherill, 1956), where 
the obtained 206Pb/238U and 207Pb/235U isotopic ratios were plot-

ted to assess age concordance. Diagrams were constructed by 
discarding data that were more than 10% discordant based on 
the difference between the calculated 206Pb/238U and 207Pb/206Pb 
apparent ages for each spot. These diagrams were constructed 
in ISOPLOT V3.75® (Ludwig, 2012). The individual spot un-
certainties in the data presented here include internal analytical 
uncertainties only and are reported at the 2σ level. Determining 
the total uncertainties for each spot or mean age in this method 
requires the propagation of external reproducibility and other 
systematic sources of uncertainty, which, in our sessions, yielded 
average values of ca. 0.9% for the determination of 206Pb/238U 
and ca. 0.7% for that of 207Pb/206Pb. Consequently, the total un-
certainties in the mean ages of the samples and reference zir-
cons are reported in the form of ±A/B, where the first level of 
uncertainty A considers only the internal analytical uncertainties, 
and the second level B reflects the propagation of the external 
reproducibility of the standards and other sources of systematic 
error (see Ibañez–Mejia et al., 2015 for more details).

3.3. Zircon Fission–Track Dating

The sample preparation used for fission–track analysis at the 
Thermochronology Laboratory of the SGC consisted of mount-
ing zircon aliquots (with grain sizes of approximately 75 to 250 
µm) in Teflon® sheets, polishing the mounts to expose their 
internal grain surfaces, and etching the grains in a NaOH–KOH 
melt at 228 °C. Two to three grain mounts were prepared per 
sample and were etched for different lengths of time in order 
to obtain countable fission–tracks in the full grain age spectrum 
(e.g., Bernet et al., 2004). After etching, the grain mounts of all 
samples were cleaned and covered with mica sheets as external 
detectors. All samples were irradiated with thermal neutrons to-
gether with age standards and IRMM541 dosimeter glasses at 
well–thermalized reactor in Garching, Germany, using a nomi-
nal fluence of 0.5 × 1015 n.cm–2. After irradiation, mica detectors 
were etched for 18 minutes at 21 °C with 48% HF to reveal 
induced tracks. All samples were analyzed using an Olympus 
BH2 optical microscope and the FTStage 4.04 system at the 
Thermochronology Laboratory of the Institut des Sciences de la 
Terre, University Grenoble Alpes. Tracks were counted dry at a 
magnification of 1250X; 100 grains were analyzed per sample, 
and fission–track grain ages were calculated using the Binomfit 
software of Brandon (see Ehlers et al., 2005). The Fish Canyon 
Tuff and Buluk Tuff age standards were used for zeta calibration.

4. Results

4.1. Zircon U–Pb Dating

Devonian sedimentary rocks (sample MB–008) show relevant 
age peaks at 468.3 ± 0.7 Ma, representing 24% of the data, as 
well as main peaks at 905, 991, 1158, 1304, and 1500.1 ± 1.7 
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Ma, representing 27.5% of the data; the oldest age is 1702.3 Ma 
(Figure 4a). In contrast, Cretaceous sedimentary rocks (sample 
MB–009) have only two grains with apparent ages of 479.3 ± 
3.1 Ma and 650 ± 4.2 Ma; the remaining 94% of the data com-
prise peaks at 994.2 ± 2.2 Ma, 1177 Ma, 1320 Ma, 1438 Ma, 
1564.2 ± 1.7 Ma and 1685 Ma (Figure 4b). 

The detrital zircon U–Pb ages of the modern river sands 
from the eastern flank of the Eastern Cordillera are distributed 
between 830 and 1830 Ma, with a discrete peak at ca. 443 Ma 
(Figure 5). The Guayuriba River (MB–005) data define several 
(concordant) apparent age populations at 443.6 ± 3.6 Ma (which 
contains only a small proportion of the dated grains), 1027.8 ± 
3.1 Ma, 1198.3 ± 2.9 Ma, 1336.4 Ma, 1407.2 Ma, 1527.7 Ma, 
and 1665.8 Ma (Figure 5a). Similarly, the zircons from the Gua-
tiquía River (MB–006) define five populations at 451.4 ± 2.2 
Ma, 1022.8 ± 3.3 Ma, 1189.5 Ma, 1322 Ma, 1518.3 Ma, and 
1756.6 Ma (Figure 5b). On the other hand, the detrital zircon 
age spectra from our Magdalena River sample (13MB–180) are 
markedly different, as they are represented by four populations 
separated in two broad age ranges: the first range is represented 
by peaks falling between 156.76 ± 0.45 Ma and 268.56 ± 0.9 
Ma, and the second range is represented by peaks distributed 
between 1068.9 ± 4.8 Ma and 1483.6 ± 6.5 Ma (Figure 5c). All 
of these data are included in the Supplementary Information.

The SEM–CL images of the detrital zircons from the river 
samples show the internal structures and zoning patterns of the 
different age populations found with U–Pb dating. The Guayu-
riba River sample (Figure 6, MB–005) shows at least seven age 
populations, and all of its imaged grains mainly exhibit oscilla-

tory zoning. Some of these grains are often perturbed by convo-
luted local textures and characterized by complex crystal zoning 
patterns with local magmatic resorption (e.g., early Mesoprotero-
zoic crystals), and the oldest grains show thin overgrowth rims. 
In the Guatiquía River sample (Figure 7, MB–006), oscillatory 
zoning patterns are also predominant, but some of the middle to 
late Mesoproterozoic grains display convoluted to chaotic zon-
ing; as with the Guayuriba zircons, the oldest grains show thin 
overgrowth rims. The Magdalena River detrital zircons (Figure 
8, 13MB–180) mainly show oscillatory zoning patterns, which 
often exhibit areas of local recrystallization and homogeniza-
tion. Although it is not possible to determine the mechanisms 
and number of cycles that many of these re–worked zircons have 
experienced, their inheritance patterns suggest a magmatic origin 
for most of them. The grains that show overgrowth rims may 
suggest the presence of overprinting metamorphic events, but 
most of the observed rims are too thin to be dated. 

4.2. Detrital Zircon Fission–Track Analysis

The fission–track data obtained from the three river samples 
are presented in Table 2 and Table 3. The fission–track ages 
obtained for the Guayuriba River sample (MB005) show a 
spectrum of ages ranging from 8.8 to 530.1 Ma (Figure 9). The 
dispersion is very high (99.4%); accordingly, the P(χ2) value 
is zero. Using the peak–fitting algorithm (Galbraith & Green, 
1990), three statistically representative peaks can be detected 
at 15.6 ± 2 Ma, 110 ± 10 Ma, and 229 ± 18 Ma (Figure 9a). 
The Guatiquía River sample (MB006) shows a similar grain 
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Figure 6. Cathodoluminescence images (SEM–CL) of representative detrital zircon populations of Guayuriba River sample (MB–005); U/
Pb ages in Ma with 2–sigma uncertainty. Circles represent the areas used for analyses.
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Figure 7. Cathodoluminescence images (SEM–CL) of representative detrital zircon populations of Guatiquía River sample (MB–006); U/
Pb ages in Ma with 2–sigma uncertainty. Circles represent the areas used for analyses.

age distribution between 19.4 and 476.0 Ma, although it shows 
a smaller dispersion of 66.6%. Nevertheless, four statistically 
robust age peaks can be detected at 22.5 ± 3.5 Ma, 49.3 ± 4.6 
Ma, 98.2 ± 9.2 Ma, and 194 ± 13 Ma, although the first one only 
corresponds to 3.8% of the data (Figure 9b). 

The Magdalena River sample (13MB180) shows ages ranging 
from 28.1 to 327.9 Ma, with a dispersion of 36.3%. The main 
peak ages are 46.4 ± 4.6 Ma, 91.5 ± 5.6 Ma, and 233 ± 42 Ma 
(Figure 9c). Using Kolmogorov–Smirnov (KS) statistics, we com-
pared the grain age distributions between rivers. The ZFT grain 
age distributions from the Guayuriba and Guatiquía Rivers are 
similar, whereas the ZFT grain age distribution of the Magdalena 
River sample is statistically significantly different (Figure 10a).

5. Discussion

5.1. Provenance Information from Detrital 
Zircon U–Pb Ages 

The U–Pb dating of detrital zircons is a well–established prove-
nance tool that has been widely used in many different tectonic 
settings. This method provides information about the distri-
bution of crystallization ages from the original source region, 
which can be combined with careful analyses of igneous and/
or metamorphic overgrowth rims (if present) to track interme-
diate source areas and sediment recycling. The data obtained 
here provide an opportunity to discuss the strengths and short-
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Figure 8. Cathodoluminescence images (SEM–CL) of representative detrital zircon populations of Magdalena River sample (13MB–180); 
U/Pb ages in Ma with 2–sigma uncertainty. Circles represent the areas used for analyses.

comings of these methods by combining our new bedrock and 
modern river data. There is currently no consensus on the best 
way to interpret detrital zircon U–Pb age spectra in terms of 
the significance of peak heights when plotted on probability 
density function plots, differences in the relative abundances of 
peaks between different samples in stratigraphic successions, or 
which statistics should be applied to decompose the observed 
grain age spectra (Gehrels, 2011). Nonetheless, the different age 
peaks determined here using the RadialPlotter program (Ver-
meesch, 2009, 2012) are consistent with the zircon U–Pb data 
obtained from other studies in the Eastern Cordillera (Horton et 
al., 2010; Nie et al., 2010). The comparison of bedrock detrital 
zircon U–Pb data from Devonian and Cretaceous sedimentary 

rocks in the Eastern Cordillera along the Bogotá–Villavicen-
cio stratigraphic section hints at possible changes in the sedi-
ment provenance of these units. For the Devonian sedimentary 
rocks, a significant Ordovician zircon U–Pb age peak represents 
a source in the Cambrian – Ordovician crystalline basement 
of the Eastern Cordillera. The new zircon U–Pb data present-
ed in this study are compatible with the zircon U–Pb data of 
Horton et al. (2010), who also proposed an igneous source for 
Ordovician zircons corresponding to the local lower Paleozoic 
Andean basement rocks, which are related to magmatic activity 
in the Floresta and Santander Massifs (e.g., García–Ramírez 
et al., 2017; Jiménez–Triana, 2016; Restrepo–Pace, 1995; van 
der Lelij et al., 2016). On the other hand, zircons with Meso-
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proterozoic and Neoproterozoic U–Pb ages were most likely 
derived from basement sources such as the Garzón Massif or 
the Putumayo Basin, which are related to orogenic events asso-
ciated with the assembly of Rodinia (Ibañez–Mejia et al., 2011). 
Therefore, we conclude that two principal sediment source ar-
eas existed for the Devonian sedimentary rocks. In the detrital 
zircon age spectra obtained from the modern river samples an-
alyzed here, the Upper Ordovician signal is relatively minor but 
likely corresponds to the recycling of inherited zircons from the 
Farallones Group. 

In contrast, the zircon ages of the Lower Cretaceous sed-
imentary rocks are restricted to Proterozoic ages. The disap-
pearance of Phanerozoic zircons in the detrital age spectra is 
most likely related to the evolution of the basin from late–stage 
extension to thermal subsidence during the mid–Cretaceous and 
a lack of proximal basement erosion due to sedimentary in-
filling and burial (Horton et al., 2010). This suggests that the 
Ordovician arc terranes that were exposed in the Devonian were 
buried during the Cretaceous.

The modern river detrital zircon U–Pb spectra of the Guayu-
riba and Guatiquía Rivers samples indicate that the formation 
of the Eastern Cordillera, which has been forming since the 
Eocene, is not detectable in the zircon U–Pb record. Even the 
data reported by Saylor et al. (2013) for the Cusiana and Cra-
vo Sur Rivers, which are located further to the north of our 
study area, show similar signals as those obtained here, in ad-
dition to the appearance of some younger grains with ages of 
approximately 100 Ma in Cravo Sur derived from Cenozoic 
units that crop out in the foothills of the Eastern Cordillera. 
These zircons are simply recycled from the sedimentary cov-
er units or sourced from the Precambrian basement; however, 
no zircons with U–Pb ages reflecting the Eastern Cordilleran 
orogenesis exist. This interpretation is complemented by CL 

Table 2. Zircon fission–track central age data.

Sample n ρs (10+6 cm-2) Ns ρi (10+6 cm-2) Ni ρi (10+5 cm-2) P(χ2) Dispersion (%) Age (Ma)*  ± 2 σ U (ppm) ± 1 σ

MB005 100 6.72 9231 1.30 1792 3.84 0.0 99.4 112.8 25 170 9

MB006 100 7.40 8140 1.71 1880 3.83 0.0 66.6 114.3 19.2 223 12

13MB180 100 7.33 8131 2.32 2575 3.82 0.0 36.3 84.1 10.5 304 14

*Fission–track age is given as Central Age (Galbraith & Laslett, 1993). 
Note: Samples were counted dry with a BX51 Olympus microscope at 1250X magnification. Central ages and age ranges were determined with the BINOMFIT program 
of Brandon (see in Ehlers et al., 2005), using a zeta factor of 142.39 ± 6.48.

Table 3. Zircon fission–track peak age data.

Sample n Age range (Ma) P1 ± 2 σ % P2 ± 2 σ % P3 ± 2 σ % P4 ± 2 σ % P5 ± 2 σ %

MB005 100 8.8–530.1 15.6 4.0 11.4 110 20 33.9 229 36.0 54.7  –  –  –  –  –  –

MB006 100 19.4–476.0 22.5 7.0 3.8 49.3 9.2 12.4 98.2 18.4 26.0 194 26.0 57.8  –  –  –

13MB180 100 28.1–327.9 33.6 8.4 5.0 58.5 17 15 85.0 11.0 50.0 113 34.0 24.0 245 82 5.0

Note: Peak ages were determined with the RadialPlotter program of Vermeesch (2009).

images showing zircons with internal oscillatory zoning related 
to primary magmatic sources and recrystallized edges due to 
ancient metamorphic events. Furthermore, the oldest grains are 
broken, with sub–rounded edges. All of these data are indicative 
of sedimentary recycling. This is not a surprising result, as the 
Eastern Cordillera is, for the most part, an amagmatic mountain 
belt, and the level of regional metamorphic overprinting that 
it experienced was insufficient to leave a trace in the detrital 
zircon U–Pb age record. The magmatic activity related to the 
evolution of the Eastern Cordillera and that close to the study 
area is restricted to only two known events, namely: (1) the in-
trusion of gabbros and doleritic dikes during peak extension in 
the Late Cretaceous (Fabre & Delaloye, 1983; Moreno–Murillo 
et al., 2007; Vásquez et al., 2010); and (2) acidic volcanism 
occurring in the Paipa–Iza Volcanic Complex (Figure 1), which 
was active throughout the Pliocene – Pleistocene surface uplift 
of the Eastern Cordillera (Bernet et al., 2016). Nevertheless, 
evidence of these two sources is difficult to detect in the detrital 
zircon record because: (1) gabbros have low fertility for zircon 
crystallization and thus will be poorly represented in the detrital 
record (Moecher & Samson, 2006), and (2) Paipa–Iza Volcanic 
Complex zircons have dominantly Proterozoic and Paleozoic 
core and rim ages, and only a few rims and overgrowths reflect-
ing Pliocene – Pleistocene volcanic activity have been detected 
(Bernet et al., 2016). 

The Magdalena River sample detrital zircon U–Pb data 
reflect the zircon U–Pb ages of the Upper Magdalena River 
Basin, which covers the western flank of the Eastern Cordil-
lera and the eastern flank of the Central Cordillera. Figure 
10b shows the differences between the detrital zircon age 
distributions found in the rivers on the east flank of the East-
ern Cordillera and those the west flank, as represented by the 
Magdalena River, thus denoting the influence of the sedi-
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ments of the Central Cordillera. Although this drainage basin 
includes the active Nevado del Huila Volcano of the Central 
Cordillera, the youngest zircon U–Pb age peak determined 
in the Magdalena River sample reflects Jurassic plutonism 
(Bustamante et al., 2010, 2016; Zapata et al., 2016) but not 
recent volcanic input. The volcanic signal is too weak to be 
detected, as the quantity of young volcanic zircons is neg-
ligible compared to the zircons derived from the erosion of 
the crystalline basement and sedimentary cover rocks. Con-
sidering that 191 detrital zircons from sample 13MB–180 
were analyzed, we conclude that the abundance of modern 
volcanic crystals in this sample must be <0.5% (at least 1 
data point) for them to have avoided detection. Because of 
this detection limit problem, it is useful in many provenance 
and exhumation studies to analyze a much larger number of 
zircons (e.g., Pullen et al., 2014) and/or to combine detrital 
zircon U–Pb dating with fission–track dating on the same 
samples or within the same individual grains (e.g., Bernet 
et al., 2006; Carter & Bristow, 2000, 2003; Carter & Moss, 
1999; Jourdan et al., 2013).

Other peaks in this sample, such as those with Permian ages, 
could be related to magmatic activity in the Upper Magdale-
na Valley (Leal–Mejía, 2011; Rodríguez et al., 2017). The old 
peaks at 1068.9 Ma and 1483.6 Ma are related to either the 
erosion of basement units in the Eastern Cordillera and serranía 
de Las Minas (e.g., Ibañez–Mejia et al., 2011) or the reworking 
of Paleozoic and Mesozoic sedimentary rocks in the area con-
taining material from Amazon Craton sources. 

5.2. Provenance Information from Detrital 
Zircon Fission–Track Ages 

It is very common for cooling ages derived from detrital sam-
ples to cluster in certain age groups instead of representing a 
continuum of ages across the drainage area (Bernet & Spiegel, 
2004; Bernet et al., 2001, 2004; Cerveny et al., 1988; Spiegel 
et al., 2000), which has been shown in a range of studies per-
formed in orogens around the world (e.g., Bernet et al., 2009; 
Garver & Kamp, 2002; Stewart & Brandon, 2004). The num-
ber of age clusters or peaks that can be determined depends 
on the exhumation rates and relief in the drainage area, but 
the representation or significance of each peak depends on the 
number of grains dated per sample (Bernet, 2013; Naylor et 
al., 2015). The more grains that are analyzed, the more peaks 
can be fitted with peak–fitting routines if the age range is suffi-
ciently large and the peaks are well separated (Brandon, 1996; 

Figure 9. Radial plots of zircon fission–track data with main 
peak age populations of three river samples: (a) Guayuriba River 
(MB005), (b) Guatiquía River (MB006), and (c) Magdalena River 
(13MB180). The plots were made and peak ages were determined 
with the RadialPlotter program of Vermeesch (2009).
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Galbraith & Green, 1990; Naylor et al., 2015). If bedrock zir-
con fission–track data are available, then modern river detrital 
zircon fission–track data can be compared to bedrock data to 
determine the sediment provenance (e.g., Bernet et al., 2001, 
2004, 2009). This provides a baseline for provenance studies 
of ancient sandstones in associated sedimentary basins when 
studying long–term records of exhumation. In the absence of 
post–depositional thermal resetting, detrital zircon fission–track 
grain ages in ancient sedimentary rocks can only be the same or 
older than their actual sedimentation age. 

In this study, we can compare the detrital zircon fission–
track data of the Guayuriba and Guatiquía Rivers samples with 
the bedrock zircon fission–track data of Parra et al. (2009a, 
2009b) from the Bogotá–Villavicencio section (Figure 2b). The 
documented bedrock zircon fission–track ages range from 5.9 
± 0.4 Ma (sample Z10, Quetame Group) to 165.9 ± 12.9 Ma 
(sample Z20, Brechas de Buenavista Formation) in the frontal 
fold–and–thrust belt of the Eastern Cordillera. This bedrock age 
range contrasts with the single grain age spectra of 8.8 to 530.1 
Ma and 19.4 to 476.0 Ma obtained in the Guayuriba River and 
the Guatiquía River, respectively, in this study. 

Parra et al. (2009a, 2009b) defined an exhumed zircon fis-
sion–track partial annealing zone along the Bogotá–Villavi-
cencio profile. This means that the rocks containing partially 
annealed zircons remained at elevated temperatures of 180–220 
°C for 50 my or more during their burial in the basin (Reiners & 
Brandon, 2006). Partially annealed zircons provide “apparent” 
cooling ages that neither precisely reflect orogenic cooling nor 
maintain a pre–depositional provenance signal but rather repre-
sent a partially reset age signal. However, fully annealed zircons 
reflect orogenic exhumation. The central ages of fully reset zir-
cons range from 5.9 to 24 Ma from the Quetame Group to the 
middle of the Lower Cretaceous Macanal Formation, where the 
base of the exhumed ZFT partial annealing zone is located. The 
central ages of the partially reset zircons from within the partial 

annealing zone range from 61 to 166 Ma. The exhumation of 
the ZFT partial annealing zone started around 24 Ma; it was 
contemporaneous with major exhumation in the Santander Mas-
sif and the Antioquia Batholith in the Central Cordillera, which 
was linked to the collision of the Panamá–Chocó Block with the 
northwestern South American Plate (Amaya et al., 2017; Re-
strepo–Moreno et al., 2009). The exhumation of the ZFT partial 
annealing zone continued until the Pliocene – Pleistocene, and it 
was deformed and segmented during the formation and surface 
uplift of the Eastern Cordillera. This landscape is currently being 
eroded by surface processes, such as river incision, and its cool-
ing and exhumation history is reflected in the detrital grain ages 
of the Guayuriba and Guatiquía River samples. The youngest 
detrital zircon fission–track age peaks of both rivers fall between 
15 and 22 Ma. The zircons corresponding to these age peaks, 
which represent approximately 4–11 % of the analyzed grains, 
were derived from the fully reset zone (the Quetame Group to 
the middle Macanal Formation). The partially reset zircons with 
age peaks of approximately 50 to 110 Ma, which represent ap-
proximately 33–38 % of the analyzed grains, were derived from 
within the exhumed partial annealing zone (the upper Macanal 
to Chipaque Formations). Finally, 55–60 % of the Guayuriba 
and Guatiquía Rivers sample detrital zircons fall within the ap-
proximately 190–230 Ma age peaks, which were derived from 
Upper Cretaceous to Paleocene sedimentary rocks that were 
not affected by post–depositional partial annealing. Therefore, 
the two well–mixed modern river samples provide a complete 
representation of the bedrock cooling history in the drainage 
basins, including ages not observed in the 22 bedrock samples 
analyzed by Parra et al. (2009a, 2009b). Nonetheless, the Parra 
et al. (2009a, 2009b) data are critical for determining where the 
partial annealing zone is exposed in the drainage area, therefore 
making both datasets complementary. This demonstrates the 
usefulness of combining bedrock and modern river studies to 
understand orogenic evolution processes.
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The detrital ZFT peak ages can be used to estimate the 
long–term average exhumation rates within the drainage basins, 
assuming a monotonous cooling history, using the age2edot 
software of Brandon (see Ehlers et al., 2005). Zircons with ap-
parent Miocene cooling ages from the fastest exhuming areas in 
the Eastern Cordillera indicate exhumation rates on the order of 
approximately 0.3–0.4 km/My (Figure 11). These exhumation 
rates are moderately fast compared to those in other orogenic 
systems (see Montgomery & Brandon, 2002).

The Magdalena River sample, which yields a ZFT age 
spectrum of 28–328 Ma and age peaks at approximately 46, 
92, and 230 Ma, does not show the same exhumation signal 
as the Guayuriba and Guatiquía Rivers samples (Figure 9). 
The youngest age peak of the Magdalena River sample is ap-
proximately 20–30 my older than the youngest age peak of the 
Guayuriba and Guatiquía Rivers. This means that the exhuma-
tion occurring in the Upper Magdalena River Basin is slower 
than that on the eastern flank of the Eastern Cordillera, thus 
reflecting the asymmetric evolution of the Eastern Cordillera 
(Mora et al., 2008) and highlighting that volcanic zircons with 
young cooling ages are too low in abundance and therefore 
could not be detected. Similar to the zircon U–Pb data, the ZFT 
ages of the Magdalena River indicate that many of these zircons 
were recycled from older sedimentary units.

6. Conclusions

The U–Pb and ZFT data of the bedrock and modern river sed-
iments of the Eastern Cordillera between Bogotá and Villavi-
cencio, as well as the Magdalena River at Girardot, highlight 
the applications and complexities associated with interpreting 
detrital zircon age data. The main challenge of this technique is 
to use the observed grain age distributions to assign statistical 
significance to the observed age groups or peaks, and then to 
use these to identify the sediment provenance, detect sediment 
recycling and determine the cooling and exhumation histories 
of sediment source areas. 

The new U–Pb and ZFT data presented here allow us to make 
first–order observations about the provenance signals in modern 
rivers on the east and west flanks of the Eastern Cordillera, close 
to the Villavicencio and Girardot areas. On the east flank of the 
Eastern Cordillera, our data clearly show that the zircon U–Pb 
age spectra of the Paleozoic through Mesozoic sedimentary sec-
tion being eroded are related to sources in the Amazon Craton, 
the magmatic Paleozoic basement of the same Eastern Cordillera, 
and the exhumation of proximal Precambrian basement blocks. 
On the other hand, the Magdalena River sample indicates the 
presence of these same Eastern Cordillera sources plus the addi-
tion of younger Permian – Triassic and Jurassic zircons derived 
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from the reworking of Upper Magdalena Valley sedimentary 
units and/or the crystalline basement of the Central Cordillera. 

The ZFT data presented here complement the existing re-
cord of recent exhumation for the Eastern Cordillera determined 
based on the dating of bedrock samples, thus indicating that 
moderate exhumation rates occurred over the last 20 my and 
verifying the asymmetric nature of the surface uplift occurring 
across the length of the Eastern Cordillera fold–and–thrust belt.
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CA–ID–TIMS  Chemical abrasion thermal  
   ionization mass spectrometry  
   isotopic dilution
CL   Cathodoluminescence
ID–TIMS  Thermal ionization mass  
   spectrometry isotopic dilution
LA–ICP–MS  Laser ablation inductively coupled  
   plasma mass spectrometry

LA–SC–ICP–MS  Laser ablation single–cell  
   inductively coupled plasma  
   mass spectrometry
SEM   Scanning electron  
   microscope
SGC   Servicio Geológico Colombiano
ZFT   Zircon fission–track
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