Chapter 17

Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia: Implications for the Tectonic Evolution of the Northern Andes in Northwestern South America

Sergio AMAYA–FERREIRA*, Carlos Augusto ZULUAGA†, and Matthias BERNET‡

Abstract Apatite and zircon fission–track data from crystalline rocks collected along an east–to–west elevational profile across the Bucaramanga strike–slip fault in the Cepitá area and thermal history modeling show the four–stage thermal history of the southwestern Santander Massif of the northern Andes in Colombia. A 60 my phase of burial heating from the Late Jurassic to the Late Cretaceous was followed by three cooling phases beginning in approximately 65–60 Ma, which were related to regional tectonic events. The Late Cretaceous – early Paleocene accretion of an island arc and interactions of the Caribbean Plate with the northwestern South America plate first triggered the surface uplift and erosional exhumation of the Santander Massif. During the late Oligocene – early Miocene, the collision of the Panamá–Chocó Block with northwestern South America caused an acceleration in the cooling and exhumation of the Santander Massif and differential surface uplift to the east and west of the Bucaramanga Fault in the Cepitá area. The present–day topography of the Santander Massif probably formed at that time. Locally recorded late Miocene cooling may be related to movement on the secondary fault pattern in the study area or minor magmatic activity.

Keywords: exhumation, fission–track analysis, Santander Massif, Bucaramanga Fault, thermal modeling.

Resumen Datos de huellas de fisión en apatito y zircon de rocas cristalinas colectadas a lo largo de un perfil de elevación este–oeste a través de la Falla de Bucaramanga, falla de rumbo, en el área de Cepitá y el modelamiento de la historia termal muestran una historia termal en cuatro etapas para el suroeste del Macizo de Santander de los Andes del norte en Colombia. A los 60 millones de años, una fase de calentamiento por enterramiento desde el Jurásico Tardío al Cretácico Tardío fue seguida por tres fases de enfriamiento que comenzaron aproximadamente a los 65–60 Ma, y están relacionadas con eventos tectónicos regionales. En el Cretácico Tardío–Paleoceno temprano, la creación de un arco de islas y las interacciones de la Placa del Caribe con el noroccidente de la Placa de Suramérica desencadenaron el primer levantamiento de superficie y la

exhumación erosiva del Macizo de Santander. Durante el final del Oligoceno y el Mioceno temprano, la colisión del Bloque Panamá–Chocó con el noroeste de Suramérica provocó la aceleración del enfriamiento y de la exhumación del Macizo de Santander y la elevación diferencial de la superficie al este y al oeste de la Falla de Bucaramanga en el área de Cepitá. Probablemente, la topografía actual del Macizo de Santander se formó en ese momento. El enfriamiento del Mioceno tardío registrado localmente puede estar relacionado con el movimiento en el patrón de falla secundaria en el área de estudio o con la actividad magmática menor.

Palabras clave: exhumación, análisis de huellas de fisión, Macizo de Santander, Falla de Bucaramanga, modelamiento termal.

1. Introduction

The rise of orogenic mountain belts, particularly in the northern Andes, has a significant influence on regional climate and atmospheric circulation and precipitation patterns, and forms barriers to species migration and the creation of new habitats and ecological niches (e.g., Hoorn et al., 2010; Mapes et al., 2003). For paleogeographic reconstructions, it is important to link the exhumation of deep-seated crystalline rocks and the formation of high orogenic topography with the plate–tectonic evolution of the area of interest. Here, we present a study on the exhumation history of the southern Santander Massif in northeastern Colombia because this mountain belt holds a key position in the northern Andes, forming the northwest–striking continuation of the Eastern Cordillera at the junction between the Eastern Cordillera and the Mérida Andes in Venezuela to the east (Figure 1). The Santander Massif is part of the so-called Maracaibo Block, which is delineated by the Santa Marta–Bucaramanga and Oca strike-slip Fault Systems and the southwestern fold-and-thrust belt of the Mérida Andes (Figure 1; e.g., Colletta et al., 1997; Mann et al., 2006). The Maracaibo Block also includes the Sierra Nevada de Santa Marta and the serranía de Perijá (Figure 1). The cooling history of the crystalline rocks of the central and southern Santander Massif has been previously studied with low-temperature thermochronology, with apatite fission–track (AFT) ages ranging from 20 to 7 Ma and zircon fission–track (ZFT) ages ranging from 172 to 20 Ma (Amaya et al., 2017; Shagam et al., 1984; van der Lelij et al., 2016; Villagómez et al., 2011). In addition, from outcrops to the city of Bucaramanga and the Bucaramanga Fault, Mora et al. (2015) first presented AHe ages between 8.2 and 16 Ma and ZHe ages between 22.6 and 24.2 Ma. Along the same profile, Amaya et al. (2017) demonstrated an exhumed ZFT partial annealing zone, which was rapidly exhumed between 25 and 20 Ma. All these data show the importance of late Oligocene regional tectonics driving the exhumation of the Santander Massif along the Bucaramanga Fault, which is related to the break-up of the Farallón Plate and the collision of the Panamá–Chocó Block with northwestern South America (Farris et al., 2011; Taboada et al., 2000; O’Dea et al., 2016). This regional tectonic influence has already been shown in the exhumation of the Antioquian Batholith in the Central Cordillera (Restrepo–Moreno et al., 2009). Parra et al. (2012) argued, on the basis of AFT data from the Nuevo Mundo Syncline sedimentary basin fill and thermal modeling, for a Paleocene – early Eocene (60–50 Ma) phase of pronounced shortening and cooling of the western margin of the Eastern Cordillera associated with tectonic inversion and the first surface uplift and erosion of the Eastern Cordillera. However, the Parra et al. (2012) study lacked information from ZFT or zircon (U–Th)/He thermochronometers and therefore the pre–depositional thermal histories in their models were fully unconstrained. Regardless, the absence of Cretaceous sedimentary cover rocks in large areas of the Santander Massif, which are otherwise widespread in the Eastern Cordillera of Colombia, suggests erosion was an important process during the exhumation history of the Santander Massif. Evidence of Paleogene and Neogene erosional exhumation of the Santander Massif basement and sedimentary cover rocks is preserved in the stratigraphic sequences of the Lisama, La Paz, Esmeraldas, Mugrosa, Colorado, and Real Formations in the Nuevo Mundo, Armas, and Andes Synclines of the Middle Magdalena Valley (Figure 1; Caballero et al., 2013; Parra et al., 2012; Sánchez et al., 2012). Deformation of the Middle Magdalena Valley area probably began during the Paleocene, with structures such as the Lisama Anticline (Caballero et al., 2013).

The objective of this study was to more precisely constrain the exhumation history of the southwestern Santander Massif in the Cepitá area, to the east and west of the Chocamocha River (Figure 2). Thus far, very few and spatially dispersed thermochronological data have been published from this region (Caballero et al., 2013; Shagam et al., 1984; van der Lelij et al., 2016). Therefore, we present data of 10 AFT and 9 ZFT samples collected from igneous and metamorphic crystalline rocks along a profile across the Chocamocha Canyon and the Bucaramanga Fault System near Cepitá, referred to here as the western and eastern blocks of the Santander Massif (Figures 2, 3), respectively. The Chocamocha River does not exactly follow the trace of the Bucaramanga Fault System but does mark the present–day morphologic separation between the two blocks. While the western block reaches an elevation of only approximately 1600 m in the study area, the eastern block rises to more than 3200 m in this part of the Santander Massif (Figure 3).
Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia

Cretaceous
Neogene
Jurassic
Paleogene
Quaternary

Sure of crystalline rocks at high surface elevations implies both exhumation and surface uplift. The thermochronological data of this study were used in t–T models to provide constraints on the timing of cooling. The cooling histories were then interpreted in terms of erosional and tectonic exhumation. To constrain the difference in relative surface uplift between the western and eastern blocks, ZFT cooling ages at similar elevations on both sides of the Bucaramanga Fault were compared. Furthermore, the apparent fission–track cooling ages were translated into exhumation rates (e.g., Willett & Brandon, 2013) for the crystalline rocks that were buried beneath sedimentary rocks at least since the Late Jurassic and throughout most of the Cretaceous.

2. Geological Setting

The fault–bounded triangular Maracaibo Block in the northern Andes is an interesting geological feature, as this block not only hosts the highest coastal mountain belt in the world including the 5700 m–high Pico Cristobal Colón of the Sierra Nevada de Santa Marta, but also features the Santander Massif, the serranía de Perijá, and the Mérida Andes of Venezuela along two of its three sides (Figure 1). Even if two of the main bounding faults of the Maracaibo Block, the dextral Oca Fault to the north and the sinistral Santa Marta–Bucaramanga Fault on its western flank, are strike–slip fault systems with an unknown vertical offset, considerable topographic surface elevations have been attained in the Sierra Nevada de Santa Marta and the Santander Massif (up to 4530 m at Paramo del Almorzadero). The Santa Marta–Bucaramanga Fault extends for over 600 km from Santa Marta in the north to the Chicamocha Canyon, approximately 40–70 km south of Bucaramanga, where it ceases defining the western margin of the Santander Massif (Figure 1). The Boconó strike–slip fault dominates the late Miocene to Pliocene evolution and exhumation of the Mérida Andes of Venezuela (Bermúdez et al. 2010, 2011, 2013; Kohn et al. 1984), but the southeastern fold–and–thrust belt is thought to delimit the Maracaibo Block to the southeast against the South American continental plate (e.g., Figure 1; Colletta et al., 1997; Mann et al., 2006).

Late Proterozoic to Paleozoic metamorphic rocks intruded by Triassic and Jurassic plutonic rocks form the crystalline core

Figure 1. Overview map showing the major tectonic features of northern South America (modified from Colmenares & Zoback, 2003). (SCF) Southern Caribbean Marginal Fault; (SNSM) Sierra Nevada de Santa Marta; (OAF) Oca–Ancón Fault; (SSF) San Sebastián Fault System; (LBESF) Los Bajos–El Soldado Fault System; (SP) serranía de Perijá; (MTB) Maracaibo Triangular Block; (SBF) Santa Marta–Bucaramanga Fault; (BF) Boconó Fault; (PS2) Panamá suture zone; (SM) Santander Massif; (GF) Garrapatas Fault; (IBF) Ibagué Fault; (NMS) Nuevo Mundo Syncline; (EC) Eastern Cordillera; (MMV) Middle Magdalena Valley; (EAFSS) Eastern Andean Front Fault System; (DGM) Dolores–Guayaquil Megashear.
of the Santander Massif (Goldsmith et al., 1971). In this study, only the late Proterozoic Bucaramanga Gneiss, Paleozoic Silgará Schists, Jurassic Mogotes Batholith and Pescadero Granite are of interest because samples were only collected from these lithological units to the east and west of the Chicamocha River (Figures 2, 3). The Jurassic and Cretaceous sedimentary cover rocks, with a cumulative thickness of ca. 2500 to ca. 3500 m (Shagam et al., 1984), were used as a constraint for thermal history modeling for the phase and amplitude of the Jurassic and Cretaceous burial heating in the study area. A zircon fission
track age in the study area of 172.0 ± 16.4 Ma from the Pes-
cadero Granite of van der Lelij et al. (2016) indicates that burial
heating was insufficient to fully reset the zircon fission–track
system to the west of the Bucaramanga Fault. Our samples of
the western profile were collected between 612 and 1347 m
elevation between Cepitá and Aratoca, whereas eastern profile
samples were collected from elevations ranging between 900
and 1050 m to the east of Cepitá (Figure 2; Table 1).

The Chicamocha River is a tributary of the Magdalena
River. In the Cepitá area, the Chicamocha River flows in a
N–NW direction, before following the secondary NE–SW–
oriented fault pattern of the Santander Massif and turning to
the SW and flowing toward the village of Jordán (Figure 2). In
the study area, the Chicamocha Canyon shows at least 1000
m of incision with respect to the highest elevations of the
western block (Figure 3).

3. Methods

3.1. Fission–Track Analysis

Sample preparation for the fission–track analysis was complet-
ed at the Servicio Geológico Colombiano in Bogotá, following
the methodology described by Amaya et al. (2017). All samples
were irradiated at the FRM II research reactor in Garching,
Germany. For track length measurements of horizontally con-
fined tracks, apatite samples were irradiated with 24Cf at the
University of Melbourne. Samples were analyzed dry at 1250x
with an Olympus BX51 optical microscope, using the FTStage
4.04 system of Trevor Dumitru in the fission–track laboratory
of the Servicio Geológico Colombiano in Bogotá and in the
fission–track laboratory at ISTerre, Université Grenoble Alpes.

3.2. Time–Temperature History Modeling

For t–T history modeling of the western profile samples, we used
the QTQt program (v 4.6) of Gallagher (2012) to model age pairs
of samples for which we have AFT and ZFT data and length mea-
surements of horizontally confined tracks in apatite. The QTQt
program determines cooling history scenarios using a Bayesian
transdimensional Markov Chain Monte Carlo approach, which
determines simple thermal history models to avoid over interpri-
tation of the observed data (Gallagher, 2012). The output models
were the maximum likelihood (best–fit) or expected (weighted
mean from the posterior distribution) models. The program per-
mits the insertion of constraint boxes to include other geological
information on the timing of subsidence, burial, or exhumation
in the model. AFT data are used to constrain a cooling history
below 110 °C (Donelick et al., 2005). ZFT data can constrain
the cooling history at temperatures below ca. 240 °C for radia-
tion–damaged zircons and common orogenic cooling rates (e.g.,
Bernet, 2009; Brandon et al., 1998).

Our study also employed the most robust and revealing
method plotting length against a kinetic parameter (Dpar),
noting whether trends exist and, if possible, defining coherent
kinetic populations (e.g., Burtner et al., 1994). This approach
not only can result in more accurate age interpretation but also
allows length data to be segregated to enable proper inverse
modeling. Because fission–track lengths shorten as a function
of the thermal history they have undergone, a set of length mea-
surements constitutes an integrated record of the temperatures
experienced by a sample.

3.3. Exhumation Rate Estimates

First–order exhumation rates based on AFT and ZFT ages can
be estimated from the simple 1–D thermal advection model
age2dot created by Mark BRANDON (see Ehlers et al.,
2005). For these first–order estimates, we assumed a constant
pre–exhumation thermal gradient of 30 °C/km, which we ac-
knowledge is a very simplistic assumption but sufficient for the
purpose of this study. The AFT model was selected for chlorine
apatite, which is justifiable with regard to the measured Dpar
values shown in Table 2. For the ZFT model, we selected an-
nealing parameters for radiation–damaged zircon, given that
the ZFT cooling ages are on average older than 100 Ma for
the western block. For the eastern block samples 13SACZ03
and 07, we used a zero–damage model, considering that these
zircons rapidly cooled below the zircon fission–track closure
temperature and through the zircon partial annealing zone be-
tween 25 and 20 Ma (Table 3).

4. Results

4.1. Fission–Track Data

The samples from the western profile, to the west of the
Chicamocha River and the Bucaramanga Fault zone, have
AFT ages between 36 and 7 Ma depending on elevation
(Figure 4a). The lowest sample, i.e., 12SACEP11 from the
Silgará Schists, yields a central AFT age of 21.4 ± 5.5 Ma
and was collected at 612 m along the secondary fault pat-
ttern of the Santander Massif (Figures 2, 3; Table 2). Sample
12SACEP16 from the Silgará Schists yields a central AFT
age of 18.9 ± 7.1 Ma, with a mean Dpar value of 1.88 μm.
Sample 12SACP08 yields a central AFT age of 12.9 ± 4.6
Ma, with a mean Dpar value of 2.17 μm. The highest sam-
ple of the western block, i.e., 12SACEP17 from the Silgará
Schists, was collected at 1347 m and has a central AFT age
of 34.5 ± 17.5 Ma. The oldest AFT age in the western block, i.e.,
36.2 ± 5.8 Ma, was recorded for sample 13SACZ01 at 945 m.
Forty–nine horizontally confined track length measurements
yielded an average c–axis projected track length of 13.84 ±
2.74 μm. The mean Dpar value of these samples is 1.92 μm.
Table 1. Fission–track samples, Cepitá area, Santander Massif.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Longitude (°W)</th>
<th>Latitude (°N)</th>
<th>Elevation (m)</th>
<th>Lithology</th>
<th>Stratigraphic unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12SACEP02</td>
<td>−72.9838216</td>
<td>6.7535936</td>
<td>651</td>
<td>mica schist</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>12SACEP05</td>
<td>−72.9876257</td>
<td>6.7615073</td>
<td>741</td>
<td>amphibolite</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>12SACEP06</td>
<td>−72.9855766</td>
<td>6.7638081</td>
<td>757</td>
<td>mica schist</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>12SACEP08</td>
<td>−72.9954973</td>
<td>6.7778402</td>
<td>952</td>
<td>mica schist</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>12SACEP11</td>
<td>−73.0067275</td>
<td>6.8158368</td>
<td>612</td>
<td>mica schist</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>12SACEP13</td>
<td>−73.0137446</td>
<td>6.7962065</td>
<td>826</td>
<td>mica schist</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>12SACEP14</td>
<td>−73.0039793</td>
<td>6.8028367</td>
<td>1063</td>
<td>mica schist</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>12SACEP16</td>
<td>−72.9970256</td>
<td>6.794193</td>
<td>1202</td>
<td>garnet–mica schist</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>13SACZ01</td>
<td>−72.9954700</td>
<td>6.7778000</td>
<td>954</td>
<td>amphibolite</td>
<td>Silgará Schists</td>
</tr>
<tr>
<td>13SACZ02</td>
<td>−72.9942340</td>
<td>6.7715950</td>
<td>1006</td>
<td>granite</td>
<td>Pescadero Granite</td>
</tr>
<tr>
<td>13SACZ03</td>
<td>−72.9514600</td>
<td>6.7744600</td>
<td>1050</td>
<td>quartz vein</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>13SACZ04a</td>
<td>−72.9520300</td>
<td>6.7740000</td>
<td>1022</td>
<td>andesitic dike</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>13SACZ04b</td>
<td>−72.9520300</td>
<td>6.7743618</td>
<td>1022</td>
<td>gneiss</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>13SACZ05</td>
<td>−72.9555273</td>
<td>6.7735458</td>
<td>935</td>
<td>migmatite</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>13SACZ07</td>
<td>−72.9601810</td>
<td>6.7795084</td>
<td>1003</td>
<td>gneiss</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>Eastern block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13SACZ03</td>
<td>−72.9514600</td>
<td>6.7744600</td>
<td>1050</td>
<td>quartz vein</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>13SACZ04a</td>
<td>−72.9520300</td>
<td>6.7740000</td>
<td>1022</td>
<td>andesitic dike</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>13SACZ04b</td>
<td>−72.9520300</td>
<td>6.7743618</td>
<td>1022</td>
<td>gneiss</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>13SACZ05</td>
<td>−72.9555273</td>
<td>6.7735458</td>
<td>935</td>
<td>migmatite</td>
<td>Bucaramanga Gneiss</td>
</tr>
<tr>
<td>13SACZ07</td>
<td>−72.9601810</td>
<td>6.7795084</td>
<td>1003</td>
<td>gneiss</td>
<td>Bucaramanga Gneiss</td>
</tr>
</tbody>
</table>

Table 2. Santander Massif (Cepitá area) apatite fission–track data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>r_c (10^4 cm^-2)</th>
<th>r_s (10^4 cm^-2)</th>
<th>N_l</th>
<th>N_i</th>
<th>$P(c^2)$ (ppm)</th>
<th>U (ppm)</th>
<th>Central Age (Ma)</th>
<th>$\pm 2\sigma$ MDpar (µm)</th>
<th>$\pm 2\sigma$ Length* (µm)</th>
<th>$\pm 2\sigma$ a- and c-axis projected track lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western block</td>
<td></td>
</tr>
<tr>
<td>12SACEP06</td>
<td>17</td>
<td>8.56</td>
<td>62</td>
<td>9.74</td>
<td>705</td>
<td>1.19</td>
<td>0.0</td>
<td>12</td>
<td>19.6</td>
<td>9.6</td>
<td>2.08</td>
</tr>
<tr>
<td>12SACEP08</td>
<td>20</td>
<td>5.53</td>
<td>38</td>
<td>7.08</td>
<td>486</td>
<td>1.19</td>
<td>19.4</td>
<td>9</td>
<td>12.9</td>
<td>4.6</td>
<td>2.17</td>
</tr>
<tr>
<td>12SACEP11</td>
<td>20</td>
<td>0.91</td>
<td>8</td>
<td>16.2</td>
<td>1420</td>
<td>1.19</td>
<td>0.9</td>
<td>20</td>
<td>21.4</td>
<td>5.5</td>
<td>1.94</td>
</tr>
<tr>
<td>12SACEP13</td>
<td>20</td>
<td>1.06</td>
<td>12</td>
<td>2.39</td>
<td>270</td>
<td>1.19</td>
<td>68.4</td>
<td>3</td>
<td>7.3</td>
<td>4.6</td>
<td>–</td>
</tr>
<tr>
<td>12SACEP14</td>
<td>20</td>
<td>6.13</td>
<td>74</td>
<td>5.46</td>
<td>659</td>
<td>1.20</td>
<td>55.9</td>
<td>7</td>
<td>18.5</td>
<td>4.8</td>
<td>–</td>
</tr>
<tr>
<td>12SACEP16</td>
<td>20</td>
<td>9.89</td>
<td>67</td>
<td>9.11</td>
<td>617</td>
<td>1.19</td>
<td>0.5</td>
<td>11</td>
<td>18.9</td>
<td>7.1</td>
<td>1.88</td>
</tr>
<tr>
<td>12SACEP17</td>
<td>20</td>
<td>3.07</td>
<td>20</td>
<td>1.46</td>
<td>95</td>
<td>1.20</td>
<td>80.5</td>
<td>2</td>
<td>34.5</td>
<td>17.5</td>
<td>1.98</td>
</tr>
<tr>
<td>13SACZ01*</td>
<td>20</td>
<td>4.26</td>
<td>49</td>
<td>1.96</td>
<td>225</td>
<td>1.10</td>
<td>80.4</td>
<td>3</td>
<td>36.2</td>
<td>5.8</td>
<td>1.92</td>
</tr>
<tr>
<td>Eastern block</td>
<td></td>
</tr>
<tr>
<td>13SACZ04a</td>
<td>20</td>
<td>10.7</td>
<td>80</td>
<td>27.3</td>
<td>2051</td>
<td>1.23</td>
<td>0.1</td>
<td>33</td>
<td>6.9</td>
<td>2.4</td>
<td>1.98</td>
</tr>
<tr>
<td>13SACZ04b</td>
<td>15</td>
<td>50.6</td>
<td>54</td>
<td>34.8</td>
<td>371</td>
<td>1.27</td>
<td>94.0</td>
<td>41</td>
<td>25.3</td>
<td>7.7</td>
<td>2.38</td>
</tr>
</tbody>
</table>

Note: Fission–track age is given as central ages (Galbraith & Laslett, 1993). Samples were counted dry with BX51 Olympus microscopes at 1250x magnification at the Servicio Geológico Colombiano in Bogotá and at ISTerre, Grenoble. Ages were calculated with the BINOMFIT program of Brandon (2002), using a zeta value of 274.44 ± 11.56 (2SE) and the IRMM540R uranium glass standard (15 ppm U).

*Calculated with a zeta of 303.52 ± 9.90 (2SE).

**c-axis projected track lengths.
Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia

ZFT ages in the western block range between 123 and 265 Ma (Figure 4a; Table 3).

In the eastern profile, the AFT ages of two samples collected at the same elevation from an andesitic dike within the Bucaramanga Gneiss and the Bucaramanga Gneiss itself are 6.9 ± 2.4 Ma and 25 ± 7.7 Ma, with Dpar values of 1.98 μm and 2.38 μm and mean track lengths of 15.52 μm and 15.88 μm, respectively (Figure 2; Table 2). The ZFT ages of the three samples from the eastern block are approximately 25 Ma (samples 13SACZ03 and 07) and 89 Ma (sample 13SACZ05; Figure 2; Table 3).

Using a common pre–25 Ma thermal gradient of 30 °C/km and the age–offset of the ZFT ages of samples collected at similar elevations on both sides of the Bucaramanga Fault allows estimation of the relative uplift along the Bucaramanga Fault (Figure 5). Furthermore, the exhumed AFT and ZFT partial annealing zones can be constrained (Figures 4b, 5). The over–dispersion of single grain ages in individual samples, which is reflected by a P (χ2) value < 5% (Tables 2, 3), indicate complex grain–age distributions. Over–dispersion may be due to the intrinsic variation in the uranium concentration and radioactive decay, given that spontaneous track formation follows a Poisson
498

4.2. Thermal History Modeling

We performed thermal history modeling for samples from the western profile, combining AFT age, Dpar, ZFT age, and AFT track length data. Although the track length data indicate relatively rapid cooling through the partial annealing zone (PAZ), the average Dpar values are in general >1.75 µm (Figure 6), indicating that the analyzed apatites are relatively slow annealing (Donelick et al., 2005). This condition is probably because annealing resistance increases with increasing chlorine content (Green et al., 1985). We used our track length data to constrain our QTQt models. Furthermore, the models were based on apatite fission–track age, track length, Dpar value, zircon fission–track ages, and 100 000 attempted paths. The constraint boxes for inverse modeling were placed following the forward model to match the observed fission–track ages as closely as possible and the stratigraphic constraint box between 160 Ma to 130 Ma that constrains the Jurassic sedimentation (Sarmiento–Rojas et al., 2006) and between 120 Ma to 60 Ma that constrains the burial of sedimentary rocks, at least since the Late Jurassic and throughout most of the Cretaceous (Sarmiento–Rojas et al., 2006). Our track lengths data are similar to van der Lelij et al. (2016), who presented a mean AFT track length of 15.13 ± 1.03 µm for sample 10VDL22 in the study area with an AFT age of 20 Ma (Figure 2; Table 4), which we used for constraining the t–T modeling of rapidly cooled AFT grains with apparent cooling ages < ca. 25 Ma. This, in combination with AFT age, AFT Dpar, ZFT age, track length, and surface temperature data, al-

Figure 5. ZFT age–offset plot between the western and eastern blocks. This figure shows the relative uplift on both sides along the Bucaramanga Fault. Furthermore, exhumed ZFT partial annealing zones of each block can be seen.

Figure 6. Plot of track length versus Dpar, showing trends defining coherent kinetic populations with values of track lengths of ca. 15 µm and Dpar > 1.5.
Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia

4.3. Exhumation Rates

On the basis of the AFT ages, long–term exhumation rates during the Miocene – Pliocene were on the order of 0.2–0.3 km/my for the western block and 0.5–1.3 km/my for the eastern block (Figure 8). The partially reset ZFT ages of the western block indicate that the exhumation of the western block since the early Paleocene was not sufficient to exhume fully reset zircons. Because of partial annealing, no precise exhumation rates could be determined; however, these rates were on the order of 0.1–0.2 km/my. Samples 13SACZ04 and 13SACZ07 indicate that, on average, the eastern block has been exhumed at a rate of 0.3 km/my since approximately 25 Ma (Figure 8).

5. Discussion

5.1. Insights from Thermochronology

The t–T history modeling using our thermochronological data of the southwestern Santander Massif shows that the western and eastern blocks on both sides of the Bucaramanga Fault have different thermal histories. The inverse modeling of the ZFT data...
of the western block shows burial heating since the Late Jurassic, followed by nearly isothermal conditions during the Late Cretaceous and monotonic cooling that started during the early Paleocene (Figure 7b). This monotonic cooling was most likely caused by erosional exhumation of the Santander Massif and removal of overlying sedimentary cover and crystalline basement rocks.

With the exception of sample 12SACEP13, the AFT ages of the western block show a typical age–elevation trend of an exhumed AFT partial annealing zone (Figure 4b), with exhumation and cooling below approximately 120 °C occurring at ca. 20 Ma. This is consistent with the published AFT ages at low elevations (625–900 m) of Caballero et al. (2013), Shagam et al. (1984), and van der Lelij et al. (2016) along the Bucaramanga Fault zone to the north of the Cepitá area (Table 4). Movement on the NE–SW–oriented secondary fault pattern seems to be more recent, given the late Miocene AFT cooling age of sample 12SACEP13 at 826 m. As the western block had already cooled below ca. 120 °C during the early Miocene, this younger cooling age may be related to cooling after frictional heating in the secondary fault zone; however, more research is needed to confirm this hypothesis.

The non–annealed to partially annealed ZFT ages of the western block may indicate residence of the rocks near the top or just above of a fossil ZFT partial annealing zone, whose base is not yet exposed in the western block. The ZFT ages of 123 Ma to 167 Ma, found in the present study at 650–1350 m in the western block are similar to ZFT ages of 120–150 Ma found at 3200–3500 m in the eastern block of the Santander Massif to the east of Bucaramanga (Amaya et al., 2017). This suggests a difference in uplift of approximately 2000 m between the western and eastern blocks. Based on the late Oligocene 25 Ma ZFT ages of samples 13SACZ03 and 13SACZ07 at similar elevations (1003 and 1050 m) of the eastern block in the Cepitá area (Table 3) and the approximately 25–20 Ma ZFT ages in the lower part of the Bucaramanga–Picacho profile of Amaya et al. (2017), the differential uplift started during the late Oligocene to early Miocene (Figure 5) but may have continued until the late Miocene – Pliocene, given the young AFT cooling ages of Amaya et al. (2017) to the east of the Bucaramanga fault.

The difference in the AFT ages of samples 13SACZ04a and 13SACZ04b and the ZFT age of sample 13SACZ03 from the eastern block at similar elevations of 1050 and 1022 m, respectively, is interesting sample 13SACZ04b was collected from the Bucaramanga Gneiss (Table 1) and shows an age of 25.3 ± 7.7 Ma during the rapid late Oligocene – early Miocene cooling also observed in the ZFT data. However, sample 13SACZ04a

Figure 8. Relationship between fission–track age and exhumation rate determined for a 30 °C/km steady–state thermal gradient and an average surface temperature of 10 °C for the apatite and zircon fission–track system. The exhumation rates were estimated from the curves of the appropriate thermochronological system. Data obtained from the agezedot program of M. BRANDON (see Ehlers et al., 2005).
was collected from an andesitic dike and has an apparent AFT cooling age of 6.9 ± 2.4 Ma (Tables 1, 2). Even if this age is not very well constrained, it suggests possibly short–lived magmatic activity, and hydrothermal fluid flow, in this part of the Santander Massif. The relation of this late Miocene magmatic activity to the formation of late Miocene hydrothermal gold mineralization in the California Vetas area of the Santander Massif (e.g., Mantilla–Figuerola et al., 2013; Urueña, 2014) or the volcanic activity at the same time in the Eastern Cordillera Paipa–Iza Complex (Bernet et al., 2016) is not clear at this stage and warrants further research. Nonetheless, we believe that based on field evidence this very minor magmatic activity in the study area did not affect the apatites of sample 13SACZ4b, and that the AFT age of that sample records exhumation cooling.

5.2. Regional Tectonic Control on Cooling and Exhumation

The thermal history model (Figure 7b), in combination with the AFT and ZFT age–elevation data of the western and eastern blocks discussed above, reveal a four–stage thermal history in connection with regional tectonic events for the southwestern Santander Massif. After the 60 my phase of subsidence and burial heating (stage 1) between the Late Jurassic and Late Cretaceous, cooling of the crystalline rocks of the Santander Massif started during the Late Cretaceous – early Paleocene. We believe this initiation of cooling was related to the Late Cretaceous accretion of an island–arc to the west of South America (e.g., Jaillard et al., 2000) and interaction of the Caribbean Plate with the western margin of South America (Bayona et al., 2013), which led to surface uplift and erosion in the area of the Santander Massif, as documented in the surrounding sedimentary basins, such as the Cesar Basin sedimentary record (e.g., lithic fragments in the Late Cretaceous to Paleocene Colón Formation) to the north of the Santander Massif (Figure 1; Ayala–Calvo et al., 2009, Bayona et al., 2013; Villamil, 1999) or the Nuevo Mundo Syncline to the west of the Santander Massif (Figure 1; Caballero et al., 2013).

The third stage of the thermal history is marked by rapid cooling and exhumation along the Bucaramanga Fault in the Santander Massif during the collision of the Panamá–Chocó Block with the northwestern South American plate at approximately 25 Ma (Farris et al., 2011; O’Dea et al., 2016), possibly as a result of the Farallón Plate break–up also at approximately 25 Ma (Taboada et al. 2000). This means the rocks were already being exhumed during the Oligocene, but exhumation particularly accelerated in the eastern block during the late Oligocene. This result is consistent with previously published thermochronological data reported by Amaya et al. (2017) from samples collected to the west of the Suratá Fault and near Bucaramanga, which indicate that cooling caused by exhumation of the PAZ occurred between 25 and 20 Ma, and from plutonic rocks that intruded the Bucaramanga Gneiss and Silgará Schists, which also indicate that the exhumation of the Santander Massif was already underway during the Oligocene (Caballero et al., 2013).

Furthermore, late Oligocene to early Miocene exhumation is a common phenomenon in the northern Andes and has already been described for the Antioquian Batholith of the Central Cordillera (Restrepo–Moreno et al., 2009), the Caparo Block of the southwestern Mérida Andes (Bermúdez et al., 2010; Kohn et al., 1984), and the Sierra Nevada de Santa Marta of the northern Santander Massif (Figure 9b).

Finally, late Miocene cooling ages, as observed along the secondary NE–SW–oriented fault pattern (sample 12SACEP13), and minor magmatic activity (sample 13SAC–Z04A) in the Santander Massif are approximately contemporaneous with the initiation of significant surface uplift of the Eastern Cordillera (Mora et al., 2009). Such young AFT cooling ages have also been found along the Boconó Fault in the Mérida Andes (Bermúdez et al., 2010, 2011; Kohn et al., 1984). Therefore, a regional tectonic driver was also likely responsible for this latest exhumation stage in the Santander Massif, which may have been related to the subduction of the Caribbean Plate and slab break–off (Vargas & Mann, 2013). However, we have not ruled out that the late Miocene cooling ages in the western Santander Massif indicate the initiation of exhumation in the eastern Santander Massif during the Pliocene – Pleistocene related to the buttress effect of the collision of the Chocó Block as described by Velandia (2017).

5.3. Topographic Evolution

The Bucaramanga Fault played a very important role in the exhumation of the crystalline basement and surface uplift of the Santander Massif to greater than 3600–4530 m in elevation, generating asymmetric topography as seen in the eastern and western blocks of the Bucaramanga Fault and other fault blocks within the Santander Massif (Amaya et al., 2017). The topography observed today in the Santander Massif is the result of all of the accumulated deformation of the massif since the beginning of its uplift by inversion of geological structures in the Late Cretaceous – early Paleocene until the Pliocene – Pleistocene when faulted structures in a NE direction accommodated the deformation, with displacement in course, possibly due to the collision and buttress effect of the Chocó Block (Velandia, 2017; Villamizar, 2017). Recently published studies have identified that the structure of the Santander Massif is composed of tectonic blocks (e.g., Amaya et al., 2017; van der Leij et al., 2016), and in this study, we identified two tectonic blocks, namely, the western and eastern blocks of the Bucaramanga Fault, each with different thermal histories, as described above. Using our thermochronological data, a new model for the topographic evolution of the Santander Massif in the Cepitá area is proposed (Figures 9, 10). We believe that
Figure 9. Model geodynamic topographic evolution of the Santander Massif. Crustal — scale cross— section from 65 Ma to 20 Ma, showing the relationship between exhumation and topographic evolution of Santander Massif and regional tectonics. (a) In Late Cretaceous and early Paleocene times, the collision of the Caribbean Plate with the northwestern South American continental margin produced reactivation of intraplate structures that contributed to the exhumation and surface uplift of the Santander Massif. (b) Regional tectonics setting, showing the collision of the Panamá Arc with the northwestern South American continental margin and its effects on the exhumation and topographic evolution of the Santander Massif. (SM) Santander Massif; (SNSM) Sierra Nevada de Santa Marta; (AB) Antoquian Batholith. (a) Position of the Caribbean Plate, Central America Arc, and direction of movement of the plates is taken and modified by Spikings et al. (2015). (b) Position of the Caribbean Plate, the Panamá Arc, and directions of movement of the plates, is taken and modified by Boschman et al. (2014).

the topographic development of the Santander Massif initiated during the Late Cretaceous – early Paleocene, although this development occurred along inversion structures and was not strong (Figure 9a). In contrast to the Mérida Andes, which reached their present–day elevation by the late Miocene (Ber-múdez et al., 2017), the present–day topographic elevations of the Santander Massif were probably in place during the late Oligocene – early Miocene (Figure 9b), when the Panamá arc collided with northwestern South America. The surface up-lift of the eastern block reached overall much higher surface
Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia

Mary Luz PEÑA, Yolanda CAÑÓN, Lorena RAYO, and Cindy URUEÑA. This research was supported by COLCIENCIAS grant 110156933549 and Universidad Nacional de Colombia grant 28170 awarded to Carlos ZULUAGA, and by LabEx International grant 2014 and a BQR Sud grant awarded to Matthias BERNET at ISTerre, Université Grenoble Alpes. The manuscript was improved through the constructive and detailed reviews of Roelant VAN DER LELIJ and Barry KOHN. We would also like to thank Barry KOHN for completing the 252Cf irradiations of our AFT samples, which helped improve our thermal history models.

6. Conclusion

Our main conclusions about the tectonic and thermal evolution of the Santander Massif from this thermochronological study are summarized as follows. (i) Cooling of the Santander Massif crystalline rocks, related to erosional exhumation, began during the Late Cretaceous – early Paleocene at approximately 65–60 Ma. (ii) A second cooling phase related to Bucaramanga Fault activity and erosion caused by the Panamá–Chocó Block collision with northwestern South America started during the late Oligocene to early Miocene. (iii) The latest phase of cooling occurred during the Pliocene – Pleistocene but can primarily be observed along the secondary fault pattern in the Santander Massif. All three phases of faster or slower cooling can be related to regional tectonic events in the northern Andes.

Our dataset furthermore illustrates that exhumation of the Santander Massif basement rocks on both sides of the Bucaramanga Fault was asymmetric because there is an approximately 2000 m difference in elevation between rocks with similar ZFT cooling ages in the eastern and western blocks, and the overall surface elevations of the eastern block are much higher than those of the western block.

Acknowledgments

We would like to thank the Thermochronology Laboratory of the Servicio Geológico Colombiano for allowing sample preparation, and we particularly acknowledge the help and support of Mary Luz PEÑA, Yolanda CAÑÓN, Lorena RAYO, and Cindy URUEÑA. This research was supported by COLCIENCIAS grant 110156933549 and Universidad Nacional de Colombia grant 28170 awarded to Carlos ZULUAGA, and by LabEx International grant 2014 and a BQR Sud grant awarded to Matthias BERNET at ISTerre, Université Grenoble Alpes. The manuscript was improved through the constructive and detailed reviews of Roelant VAN DER LELIJ and Barry KOHN. We would also like to thank Barry KOHN for completing the 252Cf irradiations of our AFT samples, which helped improve our thermal history models.

References

Figure 10. Photograph of the eastern block Bucaramanga Fault in the Cepitá area showing position of the paleozone of the partial annealing zone of the zircon fission track (PAZ–ZFT).

Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia

Explanation of Acronyms, Abbreviations, and Symbols:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFT</td>
<td>Apatite fission track</td>
</tr>
<tr>
<td>PAZ</td>
<td>Partial annealing zone</td>
</tr>
<tr>
<td>ZFT</td>
<td>Zircon fission track</td>
</tr>
</tbody>
</table>

Authors’ Biographical Notes

Sergio AMAYA–FERREIRA is a geologist at the Universidad Nacional de Colombia, Bogotá, and is also a specialist in environmental engineering at the Universidad Industrial de Santander. He received his Master of Science degree in geology from the Universidad Nacional de Colombia Sede Bogotá, and a Doctoral degree in geosciences from the same university. Dr. AMAYA’s main research interest is the evolution of mountain ranges and sedimentary basins using low–temperature thermochronology (AFT and ZFT) and provenance analysis. He has worked as an associate professor at the School of Geology at the Universidad Industrial de Santander and as a specialized geologist in the fission–track laboratory at the Servicio Geológico Colombiano. He has also guided the following research projects in thermochronology and geochronology: “Structure and geological evolution of the crystalline basement of the Santander Massif, Eastern Cordillera, Colombia”, “Petrological characterization of the Berlin Orthogneiss Unit, Santander Massif, Colombia”, and “Evaluation of thermal maturity of gas associated with coals of the Umbr Formation in the Middle Magdalena Valley and of the Guaduas Formation in the Umbia Syncline, Eastern Cordillera, Colombia”. The first two projects have contributed to broadening our understanding of the evolution of the northern Andes in the South American northwestern fringe, which remains under discussion. The thermal maturity assessment projects have contributed to determining the potential of unconventional coal bed methane hydrocarbons in Colombia’s coal basins. Currently, Dr. AMAYA is a member of the Grupo de Exploración de Minerales Metálicos in the Dirección de Recursos Minerales of the Servicio Geológico Colombiano and is currently working on a research project concerning the “application of multidisciplinary approaches, petrological, geochronological, and thermochronological, to the exploration of deposits”.

Carlos Augusto ZULUAGA is an assistant professor and researcher in the Departamento de Geociencias of the Universidad Nacional de Colombia. He works on petrology applied to crustal evolution, thermodynamic modeling, and the tectonic evolution of the northern Andes.
Matthias BERNET has a PhD in geology from Yale University, USA. Since 2010, he has been the advisor of the thermochronology laboratory at the Servicio Geológico Colombiano, collaborated on several research projects of the Servicio Geológico Colombiano and helped with the implementation of the research facilities of the “Investigaciones y Aplicaciones Nucleares y Geocronológicas” Group. He is an expert in using detrital thermochronology, clastic sedimentology, and multi-disciplinary provenance analyses to study the exhumation histories of mountain belts in the northern Andes of Colombia and Venezuela, the European Alps, the Himalaya, and the Tibetan Plateau. Currently, he is the director of the ISTerre Thermochronology Laboratory at the Université Grenoble Alpes in France.