Home
Aumentar fuente
Aumentar contraste
Lengua de señas
Zircon U–Pb Geochronology and Hf–Nd–O Isotope Geochemistry of the Paleoproterozoic to Mesoproterozoic Basement in the Westernmost Guyana Shield
Mauricio IBAÑEZ–MEJIA and Umberto G. CORDANI
https://doi.org/10.32685/pub.esp.35.2019.04
ISBN impreso obra completa: 978-958-52959-1-9
ISBN digital obra completa: 978-958-52959-6-4
ISBN impreso Vol. 1: 978-958-52959-2-6
ISBN digital Vol. 1: 978-958-52959-7-1
Citation is suggested as:
Ibañez–Mejia, M. & Cordani, U.G. 2020. Zircon U–Pb geochronology and Hf–Nd–O isotope geochemistry of the Paleo– to Mesoproterozoic basement in the westernmost Guiana Shield. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 65–90. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.04
Download chapter
Download EndNote reference
Abstract
The crystalline basement of eastern Colombia, east of the frontal deformation zone of the north Andean Eastern Cordillera, is comprised by Precambrian igneous, metamorphic, and sedimentary rocks of the western Guiana Shield. Designated in the late seventies with the all–embracing stratigraphic name of 'Mitú Migmatitic Complex', the age, petrology, and tectonic history of the Precambrian basement in eastern Colombia has remained one of the least explored issues in South American geology. This chapter aims to present a brief overview of recent advances made to improve our general understanding of the geology of this wide region, using a compilation of the available U–Pb, Sm–Nd, Lu–Hf, and δ18O isotopic data obtained using modern methods. Using all the available U–Pb geochronologic data we show that, in general: (i) The Precambrian basement of the western Guiana Shield exhibits magmatic crystallization ages in the range from ca. 1.99 to ca. 1.38 Ga, and (ii) that four broad periods of magmatic activity, two in the mid–to late–Paleoproterozoic (ca. 1.99 and ca. 1.81–1.72 Ga), one in the early Mesoproterozoic (ca. 1.59–1.50 Ga), and one in the mid Mesoproterozoic (ca. 1.41–1.39 Ga) dominate the geology of the area. The (whole–rock) Nd and combined (zircon) Hf–O datasets indicate a general lack of 'depleted mantle' like mid–Paleoproterozoic or Mesoproterozoic crust, thus indicating that either the Proterozoic sub–continental mantle in the region was not as radiogenic as global mantle evolution models would suggest, or that reworking of older crust might have played an important role in the geological and geochemical evolution of the western Guiana Shield. Therefore, although the geochronologic results confirm that most of the exposed basement in eastern Colombia can be broadly considered to be of Rio Negro–Juruena–like affinity, this belt exhibits some distinct isotopic characteristics relative to similar age domains exposed south of the Amazon Basin. Furthermore, we note that the geochronologic data obtained to this date has failed to clearly identify an early– to mid–Mesoproterozoic terrane boundary in the Colombian basement, thus opening the possibility that a Rondonian–San Ignacio–like province is not represented in the Guiana Shield. Based on these recent field, geochemical, and geochronological observations, we consider the long and extensively used term 'Mitú Migmatitic Complex' to be now inadequate and obsolete, and argue that the current state of the knowledge of the Colombian Precambrian basement is such that the community should move towards adopting more accurate and modern petrologic, tectonic, and stratigraphic nomenclature. Lastly, we note that the recent discovery of Cretaceous magmatism affecting the Colombian continental interior in the Araracuara basement high highlights the importance of Mesozoic tectonic reactivation in controlling the structural and landscape evolution of the Colombian Amazon. This observation indicates that future geochronologic studies aimed at better understanding the temporal history of mafic magmatism in this region will be crucial for understanding its structural and tectonic evolution.
Keywords: Amazonian Craton, Proterozoic tectonics, U–Pb geochronology, Lu–Hf isotopes, Sm–Nd isotopes.
Resumen
El basamento cristalino del oriente colombiano, al este del frente de deformación andino de la cordillera Oriental, está compuesto por rocas ígneas, metamórficas y sedimentarias precámbricas pertenecientes al Escudo de Guayana. Agrupadas en la década de los setenta dentro de una unidad estratigráfica conocida como 'Complejo Migmatítico de Mitú', la edad, petrología, e historia tectónica de las unidades del basamento precámbrico en el oriente colombiano han permanecido como uno de los problemas menos explorados de la geología suramericana. Este capítulo tiene como objetivo presentar una revisión breve sobre los avances hechos en los últimos años para mejorar nuestro entendimiento geológico de esta amplia región, a partir de una compilación de información isotópica obtenida usando los sistemas U–Pb, Sm–Nd, Lu–Hf y δ18O con métodos analíticos modernos. Considerando los datos de geocronología U–Pb disponibles observamos que en general: (1) el basamento precámbrico del límite occidental del Escudo de Guayana exhibe edades de cristalización en el rango de ca. 1,99 a ca. 1,38 Ga y (2) que cuatro principales eventos de actividad magmática, dos en el Paleoproterozoico medio a tardío (ca. 1,99 y ca. 1,81–1,72 Ga), uno en el Mesoproterozoico temprano (ca. 1,59–1,50 Ga) y uno en el Mesoproterozoico medio (ca. 1,41–1,39 Ga), dominan la geología de esta región. Las composiciones isotópicas de Nd en roca total junto con resultados conjuntos de isótopos de Hf y O en circón indican una ausencia generalizada de material directamente derivado del 'manto empobrecido' en este basamento paleo– y mesoproterozoico. Dicha observación puede deberse a dos motivos particulares: (1) que el manto sublitosférico proterozoico en la región no era tan radiogénico como la mayoría de los modelos globales de evolución mantélica sugerirían o (2) que el retrabajamiento de corteza continental más antigua podría haber jugado un papel importante en la evolución geológica y geoquímica del occidente del Escudo de Guayana. Por consiguiente, a pesar de que los resultados geocronológicos confirman que la mayor parte del basamento expuesto en el oriente colombiano puede considerarse a grandes rasgos como afín a la Provincia Río Negro–Juruena, la margen occidental del Escudo de Guayana presenta características isotópicas distintivas con respecto a los dominios de basamento de edad semejante expuestos al sur de la Cuenca del Amazonas. En adición a lo antedicho, observamos que la base de datos geocronológica existente no permite a la fecha identificar claramente una sutura mesoproterozoica temprana a media en el basamento del oriente colombiano, lo que sugiere la posibilidad de que un dominio de basamento afín a la Provincia Rondoniana–San Ignacio no este expresado en el Escudo de Guayana. Basados en las observaciones de campo, geoquímicas y geocronológicas presentadas en este capítulo consideramos que el término estratigráfico 'Complejo Migmatítico de Mitú', que ha sido ampliamente usado, resulta ahora inadecuado para describir la complejidad geológica del área y por consiguiente es obsoleto. En lugar de esto, consideramos que el estado del conocimiento geológico del oriente colombiano ha avanzado lo suficiente para permitir que una nomenclatura petrológica, tectónica y estratigráfica moderna, que describa con mayor exactitud la geología del área y por ende más apropiada, sea adoptada. Para concluir, también observamos que el descubrimiento reciente de magmatismo de edad cretácica que afecta el interior continental colombiano en el alto de basamento de Araracuara resalta la importancia que la reactivación tectónica mesozoica tuvo en el desarrollo estructural y geomorfológico de la Amazonia colombiana. Esta observación indica que los futuros estudios geocronológicos enfocados a comprender mejor la historia temporal del magmatismo máfico en esta región serán cruciales para mejorar nuestro entendimiento sobre la evolución estructural y tectónica del oriente colombiano.
Palabras clave: Cratón Amazónico, tectónica proterozoica, geocronología U–Pb, geoquímica isotópica Lu–Hf, geoquímica isotópica Sm–Nd.
Abbreviations
CG Cuchivero Group
CHUR Chondritic uniform reservoir
DEM Digital elevation model
DM Depleted mantle
GAG Güejar–Apaporis Graben
GLOOS Global subducted sediments
ID–TIMS Isotope dilution thermal ionisation mass spectrometry
IGSN International Geo Sample Number
KDE Kernel density estimate
LA–ICP–MS Laser ablation inductively coupled plasma mass spectrometry
LIPs Large Igneous Provinces
MI Mauricio IBAÑEZ–MEJIA
MMC Mitú Migmatitic Complex
MT Mud Tank
PP Putumayo Province
PRORADAM Proyecto Radargramétrico del Amazonas
REE Rare earth element
RNJP Rio Negro–Juruena Province
RSIP Rondonian–San Ignacio Province
SHRIMP Sensitive high–resolution ion microprobe
UGC Umberto G. CORDANI
VSMOW Vienna standard mean ocean water
VTP Ventuari–Tapajós Province
References
Aldrich, L.T., Herzog, L.F., Doak, J.B. & Davis, G.L. 1953. Variations in strontium isotope abundances in minerals part I: Mass spectrometry analysis of mineral sources of strontium. Eos, Transactions American Geophysical Union, 34(3): 457–460. https://doi.org/10.1029/TR034i003p00457
Almeida, M.E., Macambira, M.J.B., Santos, J.O.S., do Nascimento, R.S.C. & Paquette, J.L. 2013. Evolução crustal do noroeste do Cráton Amazônico, Amazonas, Brasil, baseada em dados de campo, geoquímicos e geocronológicos. 13° Simpósio de Geologia da Amazônia, Anais, p. 201–204. Belém, Brazil.
Barrera, J.I. 1988. Contribución al conocimiento y petrografía del Complejo Migmatítico de Mitú y su correlación en las localidades de Araracuara y alrededores. Bachelor thesis, Universidad Nacional de Colombia, 123 p. Bogotá.
Barrios, F.J. 1983. Caracterização geocronológica da região amazônica da Venezuela. Master thesis, Universidade de São Paulo, 123 p. Sao Paulo, Brasil. https://doi.org/10.11606/D.44.1983.tde-15072015-155335
Barrios, F., Rivas, D., Cordani, U. & Kawashita, K. 1985. Geocronología del territorio federal Amazonas. I Simposium Amazónico, Memoirs, Boletín de Geología, Publicación Especial 10: 22–31. Puerto Ayacucho, Venezuela.
Barrios, F., Cordani, U.G. & Kawashita, K. 1986. Caracterización geocronologica del territorio federal Amazonas, Venezuela. VI Congreso Geológico Venezolano, Memoirs III, p. 1432–1480. Caracas, Venezuela.
Bettencourt, J.S., Leite, Jr., W.B., Ruiz, A.S., Matos, R., Payolla, B.L. & Tosdal, R.M. 2010. The Rondonian–San Ignacio Province in the SW Amazonian Craton: An overview. Journal of South American Earth Sciences, 29(1): 28–46. http://doi.org/10.1016/j.jsames.2009.08.006
Bispo–Santos, F., D'Agrella–Filho, M.S., Trindade, R.I.F., Janikian, L. & Reis, N.J. 2014a. Was there SAMBA in Columbia? Paleomagnetic evidence from 1790 Ma Avanavero mafic sills, northern Amazonian Craton. Precambrian Research, 244: 139–155. http://doi.org/10.1016/j.precamres.2013.11.002
Bispo–Santos, F., D'Agrella–Filho, M.S., Janikian, L., Reis, N.J., Trindade, R.I.F. & Reis, M.A.A.A. 2014b. Towards Columbia: Paleomagnetism of 1980–1960 Ma Surumu volcanic rocks, northern Amazonian Craton. Precambrian Research, 244: 123–138. http://doi.org/10.1016/j.precamres.2013.08.005
Bonilla–Pérez, A., Frantz, J.C., Charão–Marques, J., Cramer, T., Franco–Victoria, J.A., Mulocher, E. & Amaya–Perea, Z. 2013. Petrografía, geoquímica y geocronología del Granito de Parguaza en Colombia. Boletín de Geología, 35(2): 83–104.
Botev, Z.I., Grotowski, J.F. & Kroese, D.P. 2010. Kernel density estimation via diffusion. The Annals of Statistics, 38(5): 2916–2957. http://doi.org/10.1214/10-AOS799
Bouvier, A., Vervoort, J.D. & Patchett, P.J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2): 48–57. http://doi.org/10.1016/j.epsl.2008.06.010
Carneiro, M.C.R., Nascimento, R.S.C., Almeida, M.E., Salazar, C.A., da Trindade, I.R., de Oliveira–Rodrigues, V. & Passos, M.S. 2017. The Cauaburi magmatic arc: Litho–stratigraphic review and evolution of the Imeri Domain, Rio Negro Province, Amazonian Craton. Journal of South American Earth Sciences, 77: 310–326. http://doi.org/10.1016/j.jsames.2017.06.001
Cawood, P.A. & Pisarevsky, S.A. 2017. Laurentia–Baltica–Amazonia relations during Rodinia assembly. Precambrian Research, 292: 386–397. http://doi.org/10.1016/j.precamres.2017.01.031
Celada, C.M., Garzón, M., Gómez, E., Khurama, S., López, J.A., Mora, M., Navas, O., Pérez, R., Vargas, O. & Westerhof, A.B. 2006. Potencial de recursos minerales en el oriente colombiano: Compilación y análisis de la información geológica disponible (fase 0). Servicio Geológico Colombiano, unpublished report, 165 p. Bogotá.
Chamberlain, K.R., Schmitt, A.K., Swapp, S.M., Harrison, T.M., Swoboda–Colberg, N., Bleeker, W., Peterson, T.D., Jefferson, C.W. & Khudoley, A.K. 2010. In situ U–Pb SIMS (IN–SIMS) micro–baddeleyite dating of mafic rocks: Method with examples. Precambrian Research, 183(3): 379–387. http://doi.org/10.1016/j.precamres.2010.05.004
Cordani, U.G. & Teixeira, W. 2007. Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher Jr, R.D., Carlson, M.P., McBride, J.H. & Martínez–Catalá, J.R. (editors), 4–D Framework of continental crust. Geological Society of America, Memoir 200, p. 297–320. https://doi.org/10.1130/2007.1200(14)
Cordani, U.G., Tassinari, C.C.G., Teixeira, W., Basei, M.A.S. & Kawashita, K. 1979. Evolução tectônica da Amazônia com base nos dados geocronológicos. II Congreso Geológico Chileno, Memoirs 4, p. 137–148. Arica, Chile.
Cordani, U.G., Teixeira, W., D'agrella–Filho, M.S. & Trindade, R.I. 2009. The position of the Amazonian Craton in supercontinents. Gondwana Research, 15(3–4): 396–407. http://doi.org/10.1016/j.gr.2008.12.005
Cordani, U.G., Ramos, V.A., Fraga, L.M., Delgado, I., de Souza, K.G., Gomes, F.E.M., Schobbenhaus, C. & Cegarra, M. 2016a. Tectonic map of South America, 2nd edition. Scale 1:5 000 000. Commission for the Geological Map of the World.
Cordani, U.G., Sato, K., Sproessner, W. & Fernandes, F.S. 2016b. U–Pb zircon ages of rocks from the Amazonas territory of Colombia and their bearing on the tectonic history of the NW sector of the Amazonian Craton. Brazilian Journal of Geology, 46(1): 5–35. http://doi.org/10.1590/2317-4889201620150012
D'Agrella–Filho, M.S., Trindade, R.I.F., Queiroz, M.V.B., Meira, V.T., Janikian, L., Ruiz, A.S. & Bispo–Santos, F. 2016. Reassessment of Aguapeí, Salto do Céu, paleomagnetic pole, Amazonian Craton and implications for Proterozoic supercontinents. Precambrian Research, 272: 1–17. http://doi.org/10.1016/j.precamres.2015.10.021
DePaolo, D.J., Linn, A.M. & Schubert, G. 1991. The continental crustal age distribution: Methods of determining mantle separation ages from Sm–Nd isotopic data and application to the southwestern United States. Journal of Geophysical Research: Solid Earth, 96(B2): 2071–2088. https://doi.org/10.1029/90JB02219
Ernst, R.E., Bleeker, W., Soderlund, U. & Kerr, A.C. 2013. Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174: 1–14. http://doi.org/10.1016/j.lithos.2013.02.017
Evans, D.A.D. 2013. Reconstructing pre–Pangean supercontinents. Geological Society of America Bulletin, 125(11–12): 1735–1751. http://doi.org/10.1130/B30950.1
Fernandes, P.E.C.A., Pinheiro, S. da S., de Montalvão, R.M.G., Issler, R.S., Abreu, A.S. & Tassinari, C.C.G. 1976. Geologia. In: Divisão de publicação (editor), Projeto RADAMBRASIL. Levantamento de recursos naturais: Folha SA. 19 Içá, 11, p. 17–123. Rio de Janeiro, Brazil.
Fuck, R.A., Brito–Neves, B.B. & Schobbenhaus, C. 2008. Rodinia descendants in South America. Precambrian Research, 160(1–2): 108–126. http://doi.org/10.1016/j.precamres.2007.04.018
Galvis, J., Huguett, A. & Ruge, P. 1979. Geología de la Amazonia colombiana. Boletín Geológico, 22(3): 3–86.
Gaudette, H.E. & Olszewski Jr., W.J. 1985. Geochronology of the basement rocks, Amazonas territory, Venezuela and the tectonic evolution of the western Guiana Shield. Geologie en Mijnbouw, 64(2): 131–143.
Gaudette, H.E., Mendoza, V., Hurley, P.M. & Fairbairn, H.W. 1978. Geology and age of the Parguaza rapakivi granite, Venezuela. Geological Society of America Bulletin, 89(9): 1335–1340. https://doi.org/10.1130/0016-7606(1978)89<1335:GAAOTP>2.0.CO;2
Gibbs, A.K. 1987. Proterozoic volcanic rocks of the northern Guiana Shield, South America. In: Pharaoh, T.C., Beckinsale, R.D. & Rickard, D. (editors), Geochemistry and mineralization of Proterozoic volcanic suites. Geological Society of London, Special Publication 33, p. 275–288. London. https://doi.org/10.1144/GSL.SP.1987.033.01.19
Gibbs, A.K. & Barron, C.N. 1993. Geology of the Guiana Shield. Claredon Press, 245 p. New York, USA.
Gómez, J., Montes, N.E., Almanza, M.F., Alcárcel, F.A., Madrid, C.A. & Diederix, H. 2017. Geological map of Colombia 2015. Episodes, 40(3): 201–212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023
Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S. & Storey, C.D. 2010. The generation and evolution of the continental crust. Journal of the Geological Society, 167(2): 229–248. http://doi.org/10.1144/0016-76492009-072
Herzog, L.F. 1952. Natural variations in strontium isotope abundances in minerals: A possible geologic age method. Doctoral thesis, Massachusetts Institute of Technology, 122 p. Cambridge, USA.
Holland, M.E., Karlstrom, K.E., Gehrels, G.E., Shufeldt, O.P., Begg, G., Griffin, W. & Belousova, E. 2018. The Paleoproterozoic Vishnu Basin in southwestern Laurentia: Implications for supercontinent reconstructions, crustal growth, and the origin of the Mojave crustal province. Precambrian Research, 308: 1–17. https://doi.org/10.1016/j.precamres.2018.02.001
Horton, B.K., Saylor, J.E., Nie, J., Mora, A., Parra, M., Reyes–Harker, A. & Stockli, D.F. 2010. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U–Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10): 1423–1442. http://doi.org/10.1130/B30118.1
Ibañez–Mejia, M. 2014. Timing and rates of Precambrian crustal genesis and deformation in northern South America. Doctoral thesis, University of Arizona, 334 p. Tucson, USA.
Ibañez–Mejia, M. 2020. The Putumayo Orogen of Amazonia: A synthesis. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 101–131. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.06
Ibañez–Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E. & Mora, A.R. 2011. The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research, 191(1–2): 58–77. https://doi.org/10.1016/j.precamres.2011.09.005
Ibañez–Mejia, M., Gehrels, G.E., Ruiz, J., Vervoort, J.D., Eddy, M.E. & Li, C. 2014. Small–volume baddeleyite (ZrO2) U–Pb geochronology and Lu–Hf isotope geochemistry by LA–ICP–MS. Techniques and applications. Chemical Geology, 384: 149–167. http://doi.org/10.1016/j.chemgeo.2014.07.011
Ibañez–Mejia, M., Pullen, A., Arenstein, J., Gehrels, G.E., Valley, J., Ducea, M.N., Mora, A.R., Pecha, M. & Ruiz, J. 2015. Unraveling crustal growth and reworking processes in complex zircons from orogenic lower–crust: The Proterozoic Putumayo Orogen of Amazonia. Precambrian Research, 267: 285–310. http://doi.org/10.1016/j.precamres.2015.06.014
Iizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y. & Suzuki, K. 2017. What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 274–275: 304–327. http://doi.org/10.1016/j.lithos.2017.01.006
Johansson, A. 2009. Baltica, Amazonia and the SAMBA connection–1000 million years of neighborhood during the Proterozoic? Precambrian Research, 175(1–4): 221–234. http://doi.org/10.1016/j.precamres.2009.09.011
Kemp, A.I.S., Hawkesworth, C.J., Collins, W.J., Gray, C.M., Blevin, P.L. & Edinburgh Ion Microprobe Facility. 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia. Earth and Planetary Science Letters, 284(3–4): 455–466. http://doi.org/10.1016/j.epsl.2009.05.011
Kronenberg, S. & Reeves, C.V. 2011. Vaupés and Amazonas Basins. In: Cediel, F. (editor), Petroleum geology of Colombia: Geology and hydrocarbon potential, 15. Agencia Nacional de Hidrocarburos and Universidad EAFIT, 103 p. Medellín.
Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., de Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P. Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break–up history of Rodinia: A synthesis. Precambrian Research, 160(1–2): 179–210. http://doi.org/10.1016/j.precamres.2007.04.021
Lugmair, G. W. & Marti, K. 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349–357. http://doi.org/10.1016/0012-821X(78)90021-3
Mora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L.I., Reyes, G. & Strecker, M. 2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: A reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21(1): 111–137. https://doi.org/10.1111/j.1365-2117.2008.00367.x
Nier, A.O. 1940. A Mass spectrometer for routine isotope abundance measurements. Review of Scientific Instruments, 11(7): 212–216. http://doi.org/10.1063/1.1751688
Nier, A.O. 1947. A mass spectrometer for isotope and gas analysis. Review of Scientific Instruments, 18(6): 398–411. http://doi.org/10.1063/1.1740961
Pinheiro, S.S., Fernandes, P.E.C.A., Pereira, E.R., Vasconcelos, E.G., Pinto, A.C., de Montalvão, R.M.G., Issler, R.S., Dall'Agnol, R., Teixeira, W. & Fernandes, C.A.C. 1976. Geologia. In: Divisão de publicação. (editor), Projeto RADAMBRASIL. Levantamento de recursos naturais: Folha NA. 19 Pico da Neblina, 11, p. 19–137. Rio de Janeiro, Brazil.
Pinson Jr, W.H., Hurley, P.M., Mencher, E. & Fairbairn, H.W. 1962. K–Ar and Rb–Sr ages of biotites from Colombia, South America. Geological Society of America Bulletin, 73(7): 907–910. https://doi.org/10.1130/0016-7606(1962)73[907:KARAOB]2.0.CO;2
Pisarevsky, S.A., Elming, S.A., Pesonen, L.J. & Li, Z.X. 2014. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Research, 244: 207–225. http://doi.org/10.1016/j.precamres.2013.05.014
Plank, T. & Langmuir, C.H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3–4): 325–394. http://doi.org/10.1016/S0009-2541(97)00150-2
Priem, H., Andriessen, P., Boelrijk, N., De Booder, H., Hebeda, E., Huguett, A., Verdumen, E. & Verschure, R. 1982. Geochronology of the Precambrian in the Amazonas region of southeastern Colombia (western Guiana Shield). Geologie en Mijnbouw, 61(3): 229–242.
Pullen, A., Ibañez–Mejia, M., Gehrels, G.E., Ibañez–Mejia, J.C. & Pecha, M. 2014. What happens when n=1000? Creating large–n geochronological datasets with LA–ICP–MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29(6): 971–980. https://doi.org/10.1039/C4JA00024B
Reis, N.J., de Faria, M.S.G., Fraga, L.M. & Haddad, R.C. 2000. Orosirian calc–alkaline volcanism and the Orocaima event in the northern Amazonian Craton, eastern Roraima state, Brazil. Revista Brasileira de Geociencias, 30(3): 380–383.
Reis, N.J., Teixeira, W., Hamilton, M.A., Bispo–Santos, F., Almeida, M.E. & D'Agrella–Filho, M.S. 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U–Pb ID–TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos, 174: 175–195. http://doi.org/10.1016/j.lithos.2012.10.014
Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., McNaughton, N.J. & Fletcher, I.R. 2000. A new understanding of the provinces of the Amazon Craton based on integration of field mapping and U–Pb and Sm–Nd geochronology. Gondwana Research, 3(4): 453–488. https://doi.org/10.1016/S1342-937X(05)70755-3
Santos, J.O.S., Potter, P.E., Reis, N.J., Hartmann, L.A., Fletcher, I.R. & McNaughton, N.J. 2003. Age, source, and regional stratigraphy of the Roraima Supergroup and Roraima–like outliers in northern South America based on U–Pb geochronology. Geological Society of America Bulletin, 115(3): 331–348. https://doi.org/10.1130/0016-7606(2003)115<0331:ASARSO>2.0.CO;2
Santos, J.O.S., Rizzotto, G.J., Potter, P.E., McNaughton, N.J., Matos, R.S., Hartmann, L.A., Cheemale, F. & Quadros, M.E.S. 2008. Age and autochthonous evolution of the Sunsás Orogen in west Amazon Craton based on mapping and U–Pb geochronology. Precambrian Research, 165(3–4): 120–152. http://doi.org/10.1016/j.precamres.2008.06.009
Schmitt, A.K., Chamberlain, K.R., Swapp, S.M. & Harrison, T.M. 2010. In situ U–Pb dating of micro–baddeleyite by secondary ion mass spectrometry. Chemical Geology, 269(3–4): 386–395. http://doi.org/10.1016/j.chemgeo.2009.10.013
Shrock, R.R. 1977. Geology at MIT 1865–1965, 1: The faculty and supporting staff. The MIT press, 1102 p. Cambridge, USA.
Söderlund, U., Patchett, P.J., Vervoort, J. & Isachsen, C.E. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3–4): 311–324. http://doi.org/10.1016/S0012-821X(04)00012-3
Söderlund, U., Hofmann, A., Klausen, M.B., Olsson, J.R., Ernst, R.E. & Persson, P.O. 2010. Towards a complete magmatic barcode for the Zimbabwe Craton: Baddeleyite U–Pb dating of regional dolerite dyke swarms and sill complexes. Precambrian Research, 183(3): 388–398. http://doi.org/10.1016/j.precamres.2009.11.001
Tassinari, C.C.G. & Macambira, M.J.B. 1999. Geochronological provinces of the Amazonian Craton. Episodes, 22(3): 174–182.
Tassinari, C.C.G., Cordani, U.G., Nutman, A.P., van Schmus, W.R., Bettencourt, J.S. & Taylor, P.N. 1996. Geochronological systematics on basement rocks from the Rio Negro–Juruena Province, Amazonian Craton, and tectonic implications. International Geology Review, 38(2): 161–175. https://doi.org/10.1080/00206819709465329
Teixeira, W., Tassinari, C.C.G. & Mondin, M. 2002. Características isotópicas (Nd e Sr) do plutonismo intrusivo no extremo NW do Cráton Amazônico, Venezuela, e implicações para a evolução Paleoproterozóica. Revista do Instituto de Geociências da Universidade de Sao Paulo, 2(1): 131–141. https://doi.org/10.5327/S1519-874X2002000100011
Teixeira, W., Hamilton, M.A., Lima, G.A., Ruiz, A.S., Matos, R. & Ernst, R.E. 2015. Precise ID–TIMS U–Pb baddeleyite ages (1110–1112 Ma) for the Rincón del Tigre–Huanchaca Large Igneous Province (LIP) of the Amazonian Craton: Implications for the Rodinia supercontinent. Precambrian Research, 265: 273–285. http://doi.org/10.1016/j.precamres.2014.07.006
Teixeira, W., Reis, N.J., Bettencourt, J.S., Klein, E.L. & Oliveira, D.C. 2019. Intraplate Proterozoic magmatism in the Amazonian Craton reviewed: Geochronology, crustal tectonics and global barcode matches. In: Srivastava, R.K., Ernst, R.E. & Peng, P. (editors), Dyke swarms of the world: A modern perspective. Springer Geology, p. 111–154. Singapore. https://doi.org/10.1007/978-981-13-1666-1_4
Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K. & Wei, C.S. 2005. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150: 561–580. https://doi.org/10.1007/s00410-005-0025-8
Vasquez, M., Altenberger, U., Romer, R.L., Sudo, M. & Moreno–Murillo, J.M. 2010. Magmatic evolution of the Andean Eastern Cordillera of Colombia during the Cretaceous: Influence of previous tectonic processes. Journal of South American Earth Sciences, 29(2): 171–186. http://doi.org/10.1016/j.jsames.2009.02.003
Veras, R.da S., Nascimento, R.S.C., Almeida, M.E., Paquette, J.L. & Carneiro, M.C.R. 2018. Paleoproterozoic basement of Içana Domain, Rio Negro Province, northwestern Amazonian Craton: Geology, geochemistry and geochronology (U–Pb and Sm–Nd). Journal of South American Earth Sciences, 86: 384–409. http://doi.org/10.1016/j.jsames.2018.07.003
Vervoort, J.D. & Kemp, A.I.S. 2016. Clarifying the zircon Hf isotope record of crust–mantle evolution. Chemical Geology, 425: 65–75. http://doi.org/10.1016/j.chemgeo.2016.01.023
Vervoort, J.D., Kemp, A.I.S., Fisher, C.M. & Bauer, A.M. 2017. Growth of Earth's earliest crust: The perspective from the depleted mantle. Goldschmidt2017 Conference, Abstracts, 1 p. Paris, France.