Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv2ch11
Seleccione su búsqueda
miig

 Volume 2 Chapter 11

Chapter  11

Dinosaur Footprints from the Lower Cretaceous, Bata Formation, Colombia (South America), and the Possible Interchange of Large Ornithopods between Southern Laurasia and Northern Gondwana​   

Leslie F. NOÈMarcela GÓMEZ–PÉREZ, José Vicente RODRÍGUEZ, Alejandro CORRALES-GARCÍA , and William G. CARANTON-MATEUS

https://doi.org/10.32685/pub.esp.36.2019.11


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 2: 978-958-52959-3-3

ISBN digital Vol. 2: 978-958-52959-8-8​


Citation is suggested as: 

Noè, L.F., Gómez–Pérez, M., Rodríguez, J.V., Corrales–García, A. & Caranton–Mateus, W.G. 2020. Dinosaur footprints from the Lower Cretaceous, Batá Formation, Colombia (South America), and the possible interchange of large ornithopods between southern Laurasia and northern Gondwana. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 375–401. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.11


Download chapter  ​    

Download EndNote reference


Abstract 


Dinosaur remains from northwestern South America are rare, with only extremely scarce fossil evidence recovered from Colombia. Here we report six dinosaur footprints preserved on a sub–vertical bedding plane of the upper Valanginian – lower Hauterivian Batá Formation, Santa María, Boyacá Department, Colombia. The Batá Formation consists of a thick succession of conglomerates and sandstones with shale intercalations interpreted as deposited along the palaeoshoreline of an epicontinental seaway. Four of the footprints form a trackway made by a single dinosaur, which is interpreted as a sub–adult ornithopod, estimated at 8 m in length, weighing around 2.5 metric tons, and travelling at an average walking speed of almost 5 km/h. The footprints are assigned to the ichnogenus Iguanodontipus, and were probably produced by an iguanodontian dinosaur. Prior to this work, Iguanodontipus was considered an exclusively European taxon, making this a unique record of the ichnogenus in Gondwana. The presence of Iguanodontipus in northern South America suggests an Early Cretaceous sweepstake, with dinosaurs crossing Tethys Ocean into modern–day northern Africa, and migrating along the northern shores of Gondwana into modern–day South America. Range extension of iguanodontian ornithopods southwards into Gondwana during the Early Cretaceous was apparently prevented by the Central Gondwana Desert Belt, possibly as a result of the palaeoecology of these dinosaurs, which seem to have had an affinity for environments rich in water and lush vegetation. A migration route across Tethys and the Central Gondwana Desert Belt helps explain similarities between northern Gondwanan and southern Laurasian dinosaurs, and the differences between northern and southern Gondwanan faunas, during the Early Cretaceous.

 

Keywords: dinosaur, ichnofossils, Lower Cretaceous, Gondwana, Laurasia, faunal interchange.​



Resumen 


Los restos de dinosaurio del noroeste de Suramérica son raros, con muy pocas evidencias fósiles recuperadas en Colombia. Aquí reportamos seis huellas de dinosaurio preservadas en una capa subvertical del Valanginiano superior–Hauteriviano inferior de la Formación Batá, Santa María, departamento de Boyacá, Colombia. La Formación Batá consiste en una secuencia espesa de conglomerados y areniscas con intercalaciones de lodolitas interpretadas como depósitos de la línea de costa de un antiguo mar epicontinental. Cuatro de las huellas forman una pista dejada por un único dinosaurio, interpretado como un ornitópodo subadulto, con una longitud estimada de 8 m, un peso de 2,5 toneladas métricas y que viajaba a un ritmo normal de casi 5 km/h. Las huellas se asignaron al icnogénero Iguanodontipus, y fueron probablemente hechas por un dinosaurio tipo iguanodontiano. Antes de este trabajo, Iguanodontipus se consideraba como un taxón exclusivamente europeo, por lo que este registro sería el único en Gondwana. La presencia de Iguanodontipus en el norte de Suramérica sugiere la existencia de una comunicación terrestre durante el Cretácico Temprano, con dinosaurios cruzando el océano Tetis hacia el norte de África actual, y migrando a lo largo de la costa norte de Gondwana hasta lo que hoy es Suramérica. La extensión del rango de los ornitópodos iguanodontes hasta el sur de Gondwana durante el Cretácico Temprano no ocurrió debido a la presencia del Cinturón del Desierto de Gondwana Central, posiblemente como un resultado de la paleoecología de los ornitópodos, los cuales tenían afinidad por el agua y la vegetación exuberante. Una ruta de migración a través del Tetis y una barrera en el Cinturón del Desierto de Gondwana Central explicarían las similitudes entre los dinosaurios del norte de Gondwana y el sur de Laurasia, y las diferencias entre las faunas de norte y sur de Gondwana, durante el Cretácico Temprano.

 

Palabras clave: dinosaurio, icnofósiles, Cretácico Inferior, Gondwana, Laurasia, intercambio faunístico.​


Abbreviations 


α, β, γ                                                         Divarication angles (between II–III, III–IV, II–IV (= total divarication) respectively)

A, B, C                                                      Anterior–most points of II, III, IV respectively

AC–G                                                          Alejandro CORRALES–GARCÍA

AT                                                                     Anterior triangle (triangle connecting points A, B, C)

ATh                                                                Anterior triangle height (length of the line passing through B and perpendicular to A–C)

ATw                                                             Anterior triangle width (length A–C)

Avg                                                                Average

BLII, BLIII, BLIV                        Length of toe free segment (A, B, C along lines A–F, B–F, C–F to the intersection with lines                                                                                                         through   D (perpendicular to A–F), D–E, E (perpendicular to C–F) respectively)

D, E                                                               Posteriormost points of hypices (between II–III, III–IV respectively)

DF (with number)            Río Batá dinosaur fooprints

F                                                                     Rear of metatarsophalangeal (“heel") pad impression (the posterior–most point of the footprint)

FA                                                                     Footprint axis (line B–F)

FL                                                                       Footprint length (distance B–F [≡ LIII])

FR                                                                     Footprint rotation (the angle between FA and TA)

FW                                                                  Footprint width (maximum width perpendicular to FL)

HH                                                                 Hip height (4 × FL)

II, III, IV                                                  Digit number (also prefixed by B)

JVR–J                                                                                 José Vicente RODRÍGUEZ

K, M                                                             “heel"–hypex lengths (D–F, E–F respectively)

LFN                                                               Leslie Francis NOÈ

LII, LIII, LIV                                      Digital lengths (lengths of II, III, and IV along A–F, B–F, and C–F respectively)

LIPs                                                              Large Igneous Provinces

MG–P                                                       Marcela GÓMEZ–PÉREZ

OAE                                                             Oceanic anoxic events

PA                                                                   Pace angulation (angle between points B of three consecutive footprints)

pCO2                                                         Partial pressures of carbon dioxide 

PL                                                                   Pace length (line joining points B of consecutive left and right footprints)

SGC                                                             Servicio Geológico Colombiano

SL                                                                 Stride length (the line joining points B on consecutive footprints on the same (left or right) side)

TA                                                                 Trackway axis (the line midway between the lateral–most points of the left and right footprints)

TTL                                                              Total trackway length (distance from F of DF1 to B of DF4)

TW                                                 External trackway width (distance between the lines joining the lateral–most point of the footprints                                                                             forming the trackway, and approximately parallel to TA) 

WBII, WBIII, WBIV             Width at base of free segment of toe (length of line passing through D perpendicular to A–F, D–                                                                                E, length of line passing through E perpendicular to C–F)

WGC–M                                                  William G. CARANTON–MATEUS 

WMII, WMIII, WMIII         Width at middle of free segment of toe (length half way between BLII, BLIII, BLIV, and                                                                                                                         perpendicular to A–F, B–F, C–F, respectively)


References 


Alley, N.F., Hore, S.B. & Frakes, L.A. 2019. Glaciations at high–latitude southern Australia during the Early Cretaceous. Australian Journal of Earth Sciences, 66(4): 1–51. https://doi.org/10.1080/08120099.2019.1590457

 

Barrett, P.M., Benson, R.B.J., Rich, T.H. & Vickers–Rich, P. 2011. First spinosaurid dinosaur from Australia and the cosmopolitanism of Cretaceous dinosaur faunas. Biology Letters, 7: 933–936. https://doi.org/10.1098/rsbl.2011.0466

 

Bittencourt, J.S. & Langer, M.C. 2011. Mesozoic dinosaurs from Brazil and their biogeographic implications. Anais da Academia Brasileira de Ciências, 83(1): 23–60. http://dx.doi.org/10.1590/S0001-37652011000100003

 

Bosellini, A. 2002. Dinosaurs “re–write" the geodynamics of the eastern Mediterranean and the paleogeography of the Apulia Platform. Earth Science Reviews, 59(1–4): 211–234. https://doi.org/10.1016/S0012-8252(02)00075-2

 

Botero–Arango, G. 1937. Bosquejo de paleontología colombiana, 2nd edition. Imprenta Nacional, 84 p. Bogotá.

 

Buffetaut, E. 2000. A forgotten episode in the history of dinosaur ichnology: Carl Degenhardt's report on the first discovery of fossil footprints in South America (Colombia, 1839). Bulletin de la Société Géologique de France, 171(1): 137–140.

 

Bürgl, H. 1958. El Jurásico e Infracretáceo del río Batá, Boyacá. Boletín Geológico, 6(1–3): 169–211.

 

Bürgl, H. 1964. El “Jura–Triásico" de Colombia. Boletín Geológico, 12(1–3): 5–31.

 

Canudo, J.I. 2006. La ambigüedad paleobiogeográfica de los dinosaurios ibéricos durante el Cretácico Inferior. In: Salense, E. (editor), Actas de las III Jornadas sobre Dinosaurios y su Entorno, Colectivo Arqueológica–Paleontológico: 21–45. Salas de los Infantes, Burgos, España.

 

Canudo, J.I., Barco, J.L., Pereda–Suberbiola, X., Ruiz–Omeñaca, J.I., Salgado, L., Fernández–Baldor, F.T. & Gasulla, J.M. 2009. What Iberian dinosaurs reveal about the bridge said to exist between Gondwana and Laurasia in the Early Cretaceous. Bulletin de la Société Géologique de France, 180(1): 5–11. https://doi.org/10.2113/gssgfbull.180.1.5

 

Carballido, J.L., Salgado, L., Pol, D., Canudo, J.I. & Garrido, A. 2012. A new basal rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuquén Basin: Evolution and biogeography of the group. Historical Biology, 24(6): 631–654. https://doi.org/10.1080/08912963.2012.672416

 

Carballido, J.L., Pol, D., Parra–Ruge, M.L., Padilla–Bernal, S., Páramo–Fonseca, M.E. & Etayo–Serna, F. 2015. A new Early Cretaceous brachiosaurid (Dinosauria, Neosauropoda) from northwestern Gondwana (Villa de Leiva, Colombia). Journal of Vertebrate Paleontology, 35(5): 1–12. https://doi.org/10.1080/02724634.2015.980505

 

Castanera, D., Pascual, C., Razzolini, N.L., Vila, B., Barco, J.L. & Canudo, J.I. 2013. Discriminating between medium–sized tridactyl trackmakers: Tracking ornithopod tracks in the base of the Cretaceous (Berriasian, Spain). PLOS ONE, 8(11): e81830. https://doi.org/10.1371/journal.pone.0081830

 

Charbonnier, G., Morales, C., Duchamp–Alphonse, S., Westermann, S., Adatte, T. & Föllmi, K.B. 2017. Mercury enrichment indicates volcanic triggering of Valanginian environmental change. Scientific Reports, 7(40808): 1–6. https://doi.org/10.1038/srep40808

 

Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.X. 2013 (updated v2019/05). The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199–204.

 

Costa da Silva, R., Barboni, R., Dutra, T., Marques–Godoy, M. & Barros–Binotto, R. 2012. Footprints of large theropod dinosaurs and implications on the age of Triassic biotas from southern Brazil. Journal of South American Earth Sciences, 39: 16–23. https://doi.org/10.1016/j.jsames.2012.06.017

 

Cox, C.B. 1974. Vertebrate palaeodistributional patterns and continental drift. Journal of Biogeography, 1(2): 75–94.

 

Dalla–Vecchia, F.M. 1994. Jurassic and Cretaceous sauropod evidence in the Mesozoic carbonate platforms of the southern Alps and Dinarids. Gaia, (10): 65–73.

 

Dalla–Vecchia, F.M. 1998. Theropod footprints in the Cretaceous Adriatic–Dinaric carbonate platform, Italy and Croatia. Gaia, (15): 355–367.

 

Dalla–Vecchia, F.M. 2008. The impact of dinosaur palaeoichnology in palaeoenvironmental and paleogeographic reconstructions: The case of the Periadriatic carbonate platforms. Oryctos, 8: 89–106.

 

Dalla–Vecchia, F.M. & Tarlao, A. 2000. New dinosaur track sites in the Albian (Early Cretaceous) of the Istrian Peninsula, Croatia–Part II. Memorie di Scienze Geologiche, 52(2): 227–292.

 

Davies, T.J., Buckley, L.B., Grenyer, R. & Gittleman, J.L. 2011. The influence of past and present climate on the biogeography of modern mammal diversity. Philosophical Transactions of the Royal Society B, 366(1577): 2526–2535. https://doi.org/10.1098/rstb.2011.0018

 

Day, J.J., Norman, D.B., Upchurch, P. & Powell, H.P. 2002. Dinosaur locomotion from a new trackway. Nature, 415(6871): 494–495. https://doi.org/10.1038/415494a

 

Degenhardt, C. 1840. Fuss–Spuren eines Vogels im rothen Sandstein in Mexiko. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde Jahrgang 1840, p. 485.

 

de Klerk, W.J., Forster, C.A., Sampson, S.D., Chinsamy, A. & Ross, C.F. 2000. A new coelurosaurian dinosaur from the Early Cretaceous of South Africa. Journal of Vertebrate Paleontology, 20(2): 324–332. https://doi.org/10.1671/0272-4634(2000)020[0324:ANCDFT]2.0.CO;2

 

de la Fuente, M.S., Salgado, L., Albino, A., Báez, A.M., Bonaparte, J.F., Calvo, J.O., Chiappe, L.M., Codorniú, L.S., Coria, R.A., Gasparini, Z., González–Riga, B.J., Novas, F.E. & Pol, D. 2007. Tetrápodos continentales del Cretácico de la Argentina: Una síntesis actualizada. Asociación Paleontológica Argentina, Publicación Especial, 11: 137–153.

 

de Valais, S., Candeiro, C.R., Tavares, L.F., Alves, Y.M. & Cruvinel, C. 2015. Current situation of the ichnological locality of São Domingos from the Corda Formation (Lower Cretaceous), northern Tocantins state, Brazil. Journal of South American Earth Sciences 61: 142–146. https://doi.org/10.1016/j.jsames.2014.09.023

 

Díaz–Martínez, I., Pereda–Suberbiola, X., Pérez–Lorente, F. & Canudo, J.I. 2015. Ichnotaxonomic review of large ornithopod dinosaur tracks: Temporal and geographic implications. PLOS ONE, 10(2): e0115477. https://doi.org/10.1371/journal.pone.0115477

 

Díaz–Martínez, I., de Valais, S. & Cónsole–Gonella, C. 2016. First evidence of Hadrosauropodus in Gondwana (Yacoraite Formation, Maastrichtian – Danian), northwestern Argentina. Journal of African Earth Sciences, 122: 79–87. https://doi.org/10.1016/j.jafrearsci.2016.02.012

 

Erba, E. 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52(1–4): 85–106. https://doi.org/10.1016/j.marmicro.2004.04.007

 

Erba, E., Bartolini, A. & Larson, R.L. 2004. Valanginian Weissert oceanic anoxic event. Geology, 32(2): 149–152. https://doi.org/10.1130/G20008.1

 

Etayo–Serna, F., De Porta, N.S., De Porta, J. & Gaona, T. 2003. The Batá Formation of Colombia is truly Cretaceous, not Jurassic. Journal of South American Earth Sciences, 16(3): 113–117. https://doi.org/10.1016/S0895-9811(03)00048-8

 

Ezcurra, M.D. 2009. Theropod remains from the uppermost Cretaceous of Colombia and their implications for the palaeozoogeography of western Gondwana. Cretaceous Research, 30(5): 1339–1344. https://doi.org/10.1016/j.cretres.2009.08.004

 

Ezcurra, M.D. & Agnolín, F.L. 2012. A new global palaeobigeographical model for the late Mesozoic and early Tertiary. Systematic Biology, 61(4): 553–566. https://doi.org/10.1093/sysbio/syr115

 

Farlow, J.O., Dodson, P. & Chinsamy, A. 1995. Dinosaur biology. Annual Review of Ecology and Systematics, 26: 445–471.

 

Figueiredo, S., Dinis, P., Belo, J., Rosina, P. & Bachtsevanidou–Strantzali, I. 2017. A new record of a possible ornithopod footprint from the Lower Cretaceous of Cabo Espichel, Sesimbra, Portugal. Bollettino della Società Paleontologica Italiana, 56 (2): 217–231.

 

Flórez, M. J. & Carrillo, G. 1994. Estratigrafía de la sucesión litológica basal del Cretácico del Valle Superior del Magdalena. In: Etayo–Serna, F. (editor), Estudios geológicos del Valle Superior del Magdalena. Universidad Nacional de Colombia, p. II–1–II–26. Bogotá.

 

Francischini, H., Dentzien–Dias, P.C., Fernandes, M.A. & Schultz, C.L. 2015. Dinosaur ichnofauna of the Upper Jurassic/Lower Cretaceous of the Paraná Basin (Brazil and Uruguay). Journal of South American Earth Sciences, 63: 180–190. https://doi.org/10.1016/j.jsames.2015.07.016

 

Gallina, P.A., Apesteguía, S., Haluza, A. & Canale, J.I. 2014. A diplodocid sauropod survivor from the Early Cretaceous of South America. PLOS ONE, 9(5): e97128. https://doi.org/10.1371/journal.pone.0097128

 

Geyer, O.F. 1967. Das Typus–Profil der Morrocoyal–Formation, Unterlias; Depto. Bolívar, Kolumbien. Mitteilungen aus dem Instituto Colombo Alemán de Investigaciones Científicas, 1: 53–63.

 

Gheerbrant, E. & Rage, J.C. 2006. Paleobiogeography of Africa: How distinct from Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology, 241(2): 224–246. https://doi.org/10.1016/j.palaeo.2006.03.016

 

Gong, Z., Langereis, C.G. & Mullender, T.A.T. 2008. The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth and Planetary Science Letters 273(1–2), 80–93. https://doi.org/10.1016/j.epsl.2008.06.016

 

Gröcke, D.R., Price, G.D., Robinson, S.A., Baraboshkin, E.Y., Mutterlose, J. & Ruffell, A.H. 2005. The upper Valanginian (Early Cretaceous) positive carbon–isotope event recorded in terrestrial plants. Earth and Planetary Science Letters, 240(2): 495–509. https://doi.org/10.1016/j.epsl.2005.09.001

 

Hasiotis, S.T., Platt, B.F., Hembree, D.I. & Everhart, M.J. 2007. The trace–fossil record of vertebrates. In: Miller III, W. (editor), Trace fossils: Concepts, problems, prospects. Elsevier, p. 196–218. Amsterdam. https://doi.org/10.1016/B978-044452949-7/50138-8

 

Haughton, S.H. 1915. On some dinosaur remains from Bushmanland. Transactions of the Royal Society of South Africa 5(1): 259–264. https://doi.org/10.1080/00359191509519723

 

Heine, C., Yeo, L.G. & Müller, R.D. 2015. Evaluating global paleoshoreline models for the Cretaceous and Cenozoic. Australian Journal of Earth Sciences, 62(3): 275–287. https://doi.org/10.1080/08120099.2015.1018321

 

Henderson, D.M. 2003. Footprints, trackways, and hip heights of bipedal dinosaurs: Testing hip height predictions with computer models. Ichnos, 10(2–4): 99–114. https://doi.org/10.1080/10420940390257914

 

Hutchinson, J.R. 2005. Dinosaur locomotion. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., p. 1–7. https://doi.org/10.1038/npg.els.0003320

 

Iglesias, A., Artabe, A.E. & Morel, E.M. 2011. The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biological Journal of the Linnean Society, 103(2): 409–422. https://doi.org/10.1111/j.1095-8312.2011.01657.x

 

Irving, E.M. 1975. Structural evolution of the northernmost Andes, Colombia. U.S. Geological Survey, Professional Paper 846, p. 1–47. Washington, USA. https://doi.org/10.3133/pp846

 

Jaillard, E., Sempere, T., Soler, P., Carlier G. & Marocco, R. 1995. The role of Tethys in the evolution of the northern Andes between late Permian and late Eocene times. In: Nairn, A.E.M., Ricou, L.–E., Vrielynck, B. & Dercourt, J. (editors), The ocean basins and margins, Volume 8: The Tethys Ocean. Plenum Press: 463–492. New York. https://doi.org/10.1007/978-1-4899-1558-0_15

 

Kim, J.Y., Lockley, M.G., Kim, H.M, Lim, J.D. & Kim, K.S. 2009. New dinosaur tracks from Korea, Ornithopodichnus masanensis ichnogen. et ichnosp. nov. (Jindong Formation, Lower Cretaceous): Implications for polarities in ornithopod foot morphology. Cretaceous Research, 30(6): 1387–1397. https://doi.org/10.1016/j.cretres.2009.08.003

 

Kujau, A. 2012. Climatic and environmental dynamics during the Valanginian carbon isotope event: Evidence from geochemistry and palynology. Doctoral thesis, Ruhr–Universität Bochum, 175 p. Bochum, Germany.

 

Lallensack, J.N., van Heteren, A.H. & Wings, O. 2016. Geometric morphometric analysis of intratrackway variability: A case study on theropod and ornithopod dinosaur trackways from Münchehagen, Lower Cretaceous, Germany. PeerJ 4: e2059, p. 1–42. https://doi.org/10.7287/peerj.preprints.2004v1

 

Langston, W.J. 1953. Cretaceous terrestrial vertebrates from Colombia, South America. GSA Bulletin, 64(12): 1519.

 

Langston, W. 1965. Fossil crocodilians from Colombia and the Cenozoic history of the crocodylia in South America. University of California Publications in Geological Sciences, 52, 157 p. Berkeley, USA.

 

Langston, W.J. & Durham, J.W. 1955. A sauropod dinosaur from Colombia. Journal of Paleontology, 29(6): 1047–1051.

 

Lehmann, J., Ifrim, C., Bulot, L. & Frau, C. 2015. Paleobiogeography of Early Cretaceous ammonoids. In: Klug, C., Korn, D., De Baets, K., Kruta, I. & Mapes, R.H. (editors), Ammonoid paleobiology: From macroevolution to paleogeography. Topics in Geobiology, 44. Springer Netherlands, p. 229–257. Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-017-9633-0_9

 

Leonardi, G. 1989. Inventory and statistics of the South American dinosaurian ichnofauna and its paleobiological interpretation. In: Gillette, D.D. & Lockley, M.G. (editors), Dinosaur tracks and traces. Cambridge University Press, p. 165–178. Oakland, USA.

 

Llandres–Serrano, M., Vullo, R., Marugán–Lobón, J., Ortega, F. & Buscalioni, Á.D. 2013. An articulated hindlimb of a basal iguanodont (Dinosauria, Ornithopoda) from the Early Cretaceous Las Hoyas Lagerstätte (Spain). Geological Magazine, 150(3): 572–576. https://doi.org/10.1017/S0016756813000095

 

Lockley, M.G. 1991. Tracking dinosaurs: A new look at an ancient world. Cambridge University Press, 238 p. Cambridge, UK.

 

Lockley, M.G. 2009. New perspectives on morphological variation in tridactyl footprints: Clues to widespread convergence in developmental dynamics. Geological Quarterly, 53(4): 415–432.

 

Lockley, M.G., Wright, J.L. & Thies, D. 2004. Some observations on the dinosaur tracks at Münchenhagen (Lower Cretaceous), Germany. Ichnos, 11(3–4): 262–274. https://doi.org/10.1080/10420940490428805

 

Lockley, M.G., McCrea, R.T. & Matsukawa, M. 2009. Ichnological evidence for small quadrupedal ornithischians from the basal Cretaceous of SE Asia and North America: Implications for a global radiation. In: Buffetaut, E., Cuny, G., Le Loeuff, J. & Suteethorn, V. (editors), Late Palaeozoic and Mesozoic continental ecosystems in SE Asia. Geological Society of London, Special Publication 315, p. 255–269. https://doi.org/10.1144/SP315.18

 

Lockley, M.G., Xing, L., Lockwood, J.A.F. & Pond, S. 2014. A review of large Cretaceous ornithopod tracks, with special reference to their ichnotaxonomy. Biological Journal of the Linnean Society, 113(3): 721–736. https://doi.org/10.1111/bij.12294

 

Lockwood, J.A.F., Lockley, M.G. & Pond, S. 2014. A review of footprints from the Wessex Formation (Wealden Group, Lower Cretaceous) at Hanover Point, the Isle of Wight, southern England. Biological Journal of the Linnean Society, 113(3): 707–720. https://doi.org/10.1111/bij.12349

 

Mahlmann, W. 1840. Geognostische und meteorologische Notizen aus einem Schreiben des Bergwerks–Directors Carl Degenhardt an Herrn A. v. Humboldt, d. d. Marmato (Prov. Popayan) d. 1. November 1839. Monatsberichte über die Verhandlungen der Gesellschaft für Erdkunde zu Berlin, 1(11–12): 206–208.

 

Mannion, P.D., Allain, R. & Moine, O. 2017. The earliest known titanosauriform sauropod dinosaur and the evolution of Brachiosauridae. PeerJ, 5: e3217, p. 1–82. https://doi.org/10.7717/peerj.3217

 

Mao, K., Milne, R.I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R.R. & Renner, S.S. 2012. Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America, 109(20): 7793–7798. https://doi.org/10.1073/pnas.1114319109

 

Martinez, M., Deconinck, J.F., Pellenard, P., Riquier, L., Company, M., Reboulet, S. & Moiroud, M. 2015. Astrochronology of the Valanginian – Hauterivian stages (Early Cretaceous): Chronological relationships between the Paraná–Etendeka Large Igneous Province and the Weissert and Faraoni events. Global and Planetary Change, 131: 158–173. https://doi.org/10.1016/j.gloplacha.2015.06.001

 

Mateus, O. & Milán, J. 2008. Ichnological evidence for giant ornithopod dinosaurs in the Upper Jurassic Lourinhã Formation, Portugal. ORYCTOS, 8: 47–52.

 

Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M. & Müller, R.D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146: 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002

 

McLoughlin, S. 2001. The breakup history of Gondwana and its impact on pre–Cenozoic floristic provincialism. Australian Journal of Botany, 49(3): 271–300. https://doi.org/10.1071/BT00023

 

McNeil Alexander, R. 1976. Estimates of speeds of dinosaurs. Nature, 261(5556): 129–130. https://doi.org/10.1038/261129a0

 

Meissner, P., Mutterlose, J. & Bodin, S. 2015. Latitudinal temperature trends in the Northern Hemisphere during the Early Cretaceous (Valanginian – Hauterivian). Palaeogeography, Palaeoclimatology, Palaeoecology, 424: 17–39. https://doi.org/10.1016/j.palaeo.2015.02.003

 

Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie–Blick, N. & Pekar, S.F. 2005. The Phanerozoic record of global sea–level change. Science, 310(5752): 1293–1298. https://doi.org/10.1126/science.1116412

 

Milner, A.R.C. Vice, G.S, Harris, J.D. & Lockley, M.G. 2006. Dinosaur tracks from the Upper Cretaceous Iron Springs Formation, Iron County, Utah. In: Lucas, S.G. & Sullivan, R.M. (editors), Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science, Bulletin 35, p 105–113.

 

Mojica, J. & Kammer, A. 1995. Eventos jurásicos en Colombia. Geología Colombiana, (19): 165–172.

 

Montoya, D., Terraza, R., Reyes, G., Moreno, G. & Fúquen, J. 2008. Geología del Cinturón Esmeraldífero Oriental. Planchas 210, 229 y 228. Scale 1:100 000. Ingeominas. Bogotá.

 

Moratalla, J.J., Sanz, J.L. & Jimenez, S. 1988. Multivariate analysis on Lower Cretaceous dinosaur footprints: Discrimination between ornithopods and theropods. Geobios, 21(4): 395–408. https://doi.org/10.1016/S0016-6995(88)80042-1

 

Moreno, G., Terraza, R. & Montoya, D. 2009. Geología del cinturón esmeraldífero oriental (CEOR). Boletín de Geología, 31(2): 51–67.

 

Moreno, K., de Valais, S., Blanco, N., Tomlinson, A.J., Jacay, J. & Calvo, J.O. 2012. Large theropod dinosaur footprint associations in western Gondwana: Behavioural and palaeogeographic implications. Acta Palaeontologica Polonica, 57(1): 73–83. https://doi.org/10.4202/app.2010.0119

 

Moreno–Sánchez, M. & Gómez–Cruz, A.d.J. 2013. Huellas de dinosaurios en Colombia: Revisión y nuevos hallazgos. II Simposio Latinoamericano de Icnología. Abstract, p. 49. Santa Rosa de la Pampa, Argentina.

 

Moreno–Sánchez, M., Gómez, A.d.J. & Gómez, J. 2011. Reporte de huellas de dinosaurios en el Santuario de Fauna y Flora de Iguaque, en cercanías de Chíquiza, Boyacá, Colombia. Boletín de Geología, 33(2): 107–118.

 

Naish, D., Martill, D.M. & Frey, E. 2004. Ecology, systematics and biogeographical relationships of dinosaurs, including a new theropod, from the Santana Formation (?Albian, Early Cretaceous) of Brazil. Historical Biology, 16(2–4): 57–70. https://doi.org/10.1080/08912960410001674200

 

Nicosia, U., Massimo–Petti, F., Perugini, G., D'Orazi–Porchetti, S., Sacchi, E., Conti, M.A., Mariotti, N. & Zarattini, A. 2007. Dinosaur tracks as paleogeographic constraints: New scenarios for the Cretaceous geography of the Periadriatic region. Ichnos, 14(1–2): 69–90. https://doi.org/10.1080/10420940601006859

 

Noè, L.F. & Gómez–Pérez, M. 2020. Plesiosaurs, palaeoenvironments, and the Paja Formation Lagerstätte of central Colombia: An overview. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 441–483. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.13

 

Norman, D.B. 1980. On the ornithischian dinosaur Iguanodon bernissartensis from the Lower Cretaceous of Bernissart, Belgium. Institut Royal des Sciences Naturelles de Belgique, Mémoire 178, 103 p. Brussels, Belgium.

 

Norman, D.B. 2004. Basal Iguanodontia. In: Weishampel, D.B., Dodson, P. & Osmólska, H. (editors), The Dinosauria, 2nd edition. University of California Press, p. 413–437. Berkeley, USA.

 

Norman, D.B. 2013. On the taxonomy and diversity of Wealden iguanodontian dinosaurs (Ornithischia: Ornithopoda). Revue de Paléobiologie, 32(2): 385–404.

 

Owen, R. 1841. Report on British fossil reptiles: Part II. Report of the British Association for the Advancement of Science for 1841, p. 60–204. London, UK.

 

Owens, J.D., Lyons, T.W. & Lowery, C.M. 2018. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth and Planetary Science Letters, 499: 83–94. https://doi.org/10.1016/j.epsl.2018.07.021

 

Pascual–Arribas, C., Hernández–Medrano, N., Latorre–Macarrón, P. & Sanz–Pérez, E. 2009. El Icnogénero Iguanodontipus en el yacimiento de “Las Cuestas I", Santa Cruz de Yanguas, Soria. España. Studia Geologica Salmanticensia, 45(2): 105–128.

 

Pazos, P.J., Lazo, D.G., Tunik, M.A., Marsicano, C.A., Fernández, E.E. & Aguirre–Urreta, M.B. 2012. Paleoenvironmental framework of dinosaur tracksites and other ichnofossils in Early Cretaceous mixed siliciclastic–carbonate deposits in the Neuquén Basin, northern Patagonia, Argentina. Gondwana Research, 22(3–4): 1125–1140. https://doi.org/10.1016/j.gr.2012.02.003

 

Philippe, M., Bamford, M., McLoughlin, S., Alves, L.S.R., Falcon–Lang, H.J., Gnaedinger, S., Ottone, E.G., Pole, M., Rajanikanth, A., Shoemaker, R.E., Torres, T. & Zamuner, A. 2004. Biogeographic analysis of Jurassic – Early Cretaceous wood assemblages from Gondwana. Review of Palaeobotany and Palynology, 129(3): 141–173. https://doi.org/10.1016/j.revpalbo.2004.01.005

 

Platt, B.F., Suarez, C.A., Boss, S.K., Williamson, M., Cothren, J. & Kvamme, J.A.C. 2018. LIDAR–based characterization and conservation of the first theropod dinosaur trackways from Arkansas, USA. PLOS ONE, 13(1): e0190527. https://doi.org/10.1371/journal.pone.0190527

 

Poropat, S.F., Mannion, P.D., Upchurch, P., Hocknull, S.A., Kear, B.P., Kundrát, M., Tischler, T.R., Sloan, T., Sinapius, G.H.K., Elliott, J.A. & Elliott, D.A. 2016. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography. Scientific Reports, 6: 34467. https://doi.org/10.1038/srep34467

 

Rage, J.C. 1988. Gondwana, Tethys, and terrestrial vertebrates during the Mesozoic and Cainozoic. Geological Society of London, Special Publication 37(1): 255–273. https://doi.org/10.1144/GSL.SP.1988.037.01.18

 

Remes, K., Ortega, F., Fierro, I., Joger, U., Kosma, R., Marín–Ferrer, J.M., Ide, O.A. & Maga, A. 2009. A new basal sauropod dinosaur from the Middle Jurassic of Niger and the early evolution of Sauropoda. PLOS ONE, 4(9): e6924. https://doi.org/10.1371/journal.pone.0006924

 

Riccardi, A.C. 1991. Jurassic and Cretaceous marine connections between the southeast Pacific and Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1–4): 155–189. https://doi.org/10.1016/0031-0182(91)90134-D

 

Romilio, A. & Salisbury, S.W. 2011. A reassessment of large theropod dinosaur tracks from the mid–Cretaceous (late Albian – Cenomanian) Winton Formation of Lark Quarry, central–western Queensland, Australia: A case for mistaken identity. Cretaceous Research, 32(2): 135–142. https://doi.org/10.1016/j.cretres.2010.11.003

 

Santos, V.F., Callapez, P.M. & Rodrigues, N.P.C. 2013. Dinosaur footprints from the Lower Cretaceous of the Algarve Basin, Portugal: New data on the ornithopod palaeoecology and palaeobiogeography of the Iberian Peninsula. Cretaceous Research, 40: 158–169. https://doi.org/10.1016/j.cretres.2012.07.001

 

Sarjeant, W.A.S., Delair, J.B. & Lockley, M.G. 1998. The footprints of Iguanodon: A history and taxonomic study. Ichnos, 6(3): 183–202. https://doi.org/10.1080/10420949809386448

 

Scotese, C.R. & Golonka, J. 1992. Paleogeographic atlas. PALEOMAP Progress Report 20. University of Texas at Arlington, p. 1–34.

 

Seebacher, F. 2001. A new method to calculate allometric length–mass relationships of dinosaurs. Journal of Vertebrate Paleontology, 21(1): 51–60. https://doi.org/10.1671/0272-4634(2001)021[0051:ANMTCA]2.0.CO;2

 

Sereno, P.C., Wilson, J.A., Larsson, H.C.E., Dutheil, D.B. & Sues, H.D. 1994. Early Cretaceous dinosaurs from the Sahara. Science, 266(5183): 267–271. https://doi.org/10.1126/science.266.5183.267

 

Smith, A.G., Smith, D.G. & Funnell, B.M. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, 99 p. Cambridge, UK.

 

Svensen, H.H., Torsvik, T.H., Gallegaro, S., Augland, L., Heimdal, T.H., Jerram, D.A., Planke, S. & Pereira, E. 2018. Gondwana Large Igneous Provinces: Plate reconstructions, volcanic basins and sill volumes. In: Sensarma, S. & Storey, B.C. (editors), Large Igneous Provinces from Gondwana and adjacent regions. Geological Society of London, Special Publications 463: 17–40. https://doi.org/10.1144/SP463.7

 

Tennant, J.P., Mannion, P.D., Upchurch, P., Sutton, M.D. & Price, G.D. 2016. Biotic and environmental dynamics through the Late Jurassic – Early Cretaceous transition: Evidence for protracted faunal and ecological turnover. Biological Reviews, 92(2): 776–814. https://doi.org/10.1111/brv.12255

 

Terraza, R., Montoya, D., Reyes, G., Moreno, G., Fúquen, J. & Etayo–Serna, F. 2008. Geología del cinturón esmeraldífero oriental planchas 210, 228 y 229. Ingeominas, Internal report 2877, 129 p. Bogotá.

 

Terraza, R., Montoya, D., Reyes, G., Moreno, G., Fúquen, J., Torres, E., López, M., Nivia, A. & Etayo–Serna, F. 2013. Memoria explicativa: Geología de la plancha 229 Gachalá. Scale 1:100 000. Servicio Geológico Colombiano, Unpublished report, 296 p. Bogotá.

 

Thulborn, R.A. 2013. Lark Quarry revisited: A critique of the methods used to identify a large dinosaurian track–maker in the Winton Formation (Albian – Cenomanian), western Queensland, Australia. Alcheringa, 37(3): 312–330. https://doi.org/10.1080/03115518.2013.748482

 

Thulborn, T. 1990. Dinosaur tracks. Chapman and Hall, 410 p. London, UK.

 

Thulborn, T. 2016. Behaviour of dinosaurian track–makers in the Winton Formation (Cretaceous, Albian – Cenomanian) at Lark Quarry, western Queensland, Australia: running or swimming? Ichnos, 24(1): 1–18. https://doi.org/10.1080/10420940.2015.1129326

 

Torsvik, T.H. & Cocks, L.R.M. 2017. Earth history and palaeogeography. Cambridge University Press, 317 p. Cambridge, UK. https://doi.org/10.1017/9781316225523

 

Ulloa, C. & Rodríguez, E. 1979. Geología del cuadrángulo K–12 Guateque. Boletín Geológico, 22(1): 3–55.

 

van Hinsbergen, D.J.J., Torsvik, T.H., Schmid, S.M., Maţenco, L.C., Maffione, M., Vissers, R.L.M., Gürer, D. & Spakman, W. 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81: 79–229. https://doi.org/10.1016/j.gr.2019.07.009

 

Vialov, O.S. 1988. On the classification of dinosaurian traces. Ezhegodnik Vsesoyuznogo Paleontologicheskogo Obshchestva, 31: 322–325.

 

Weishampel, D.B., Barrett, P.M., Coria, R.A., le Loeuff, J., Xing, X., Xijin, Z., Sahni, A., Gomani, E.M.P. & Noto, C.R. 2004. Dinosaur distribution. In: Weishampel, D.B., Dodson, P. & Osmólska, H. (editors), The Dinosauria. 2nd edition, University of California Press, p. 517–606. Berkeley, USA.

 

Winkler, T.C. 1886. Histoire de l'ichnologie. Étude ichnologique sur les empreintes de pas d'animaux fossils, suivie de la description des plaques à impressions d'animaux, qui se trouvent au musée Teyler. Les Héritiers Loosjes, 200 p. Haarlem, the Netherlands.

 

Ziegler, A.M., Eshel, G., McAllister–Rees, P., Rothfus, T.A., Rowley, D.B. & Sunderlin, D. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia, 36(3): 227–254. https://doi.org/10.1080/00241160310004657


Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: relacionciudadana@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer