Home
Aumentar fuente
Aumentar contraste
Lengua de señas
Two Cretaceous Subduction Events in the Central Cordillera: Insights from the High P–Low T Metamorphism
Camilo BUSTAMANTE and Andres BUSTAMANTE
https://doi.org/10.32685/pub.esp.36.2019.14
ISBN impreso obra completa: 978-958-52959-1-9
ISBN digital obra completa: 978-958-52959-6-4
ISBN impreso Vol. 2: 978-958-52959-3-3
ISBN digital Vol. 2: 978-958-52959-8-8
Citation is suggested as:
Bustamante, C. & Bustamante, A. 2019. Two Cretaceous subduction events in the Central Cordillera: Insights from the high P–low T metamorphism. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 485–498. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.14
Download chapter
Download EndNote reference
The scarcity of high–pressure metamorphic rocks at the Earth's surface due to the specific conditions required for their formation and preservation makes it difficult to access the information about subduction zones that they can provide. The northern Andes are characterized by several occurrences of blueschists and, in minor proportions, eclogites, whose origins are yet to be unraveled. The metamorphic rocks found herein include the Pijao amphibolitized eclogites, Barragán blueschists and associated garnet–amphibolites, and Jambaló blueschists found in Colombia as well as the Raspas Metamorphic Complex in Ecuador. All these rocks have been correlated into a single Early Cretaceous high–pressure metamorphic belt based on regional geochemistry and geochronological data. A compilation of the most recent whole–rock geochemistry and Ar–Ar and Lu–Hf ages from the three high–pressure sequences in Colombia indicates that at least two different subduction events have been recorded in the Central Cordillera of Colombia. The first event, involving subduction and collision, occurred at ca. 130–120 Ma and is represented by the Pijao, Barragán, and Raspas high–pressure rocks, which have N–MORB–like protoliths and are contemporaneous with the end of the arc–related magmatism of the northern Andes, related to an oblique convergence between the Farallón Plate and the continental margin of South America. The second event of subduction is represented only by the Jambaló blueschists at ca. 70–60 Ma, whose protolith is akin to basalt formed in a plume–influenced intra–oceanic arc that was accreted to the continental margin. No reliable correlation is possible for these rocks as yet.
Keywords: blueschist, eclogite, northern Andes, high–pressure metamorphism.
Las rocas metamórficas de alta presión son escasas en la superficie de la Tierra debido a sus condiciones especiales de formación y conservación. Esta escasez dificulta el acceso a la información que este tipo de rocas puede proporcionar sobre las zonas de subducción. Los Andes del norte se caracterizan por varias ocurrencias de esquistos azules y, en menor proporción, eclogitas cuyo origen aún no es claro. Entre estas ocurrencias se incluyen las eclogitas anfibolitizadas de Pijao, los esquistos azules y anfibolitas granatíferas asociadas de Barragán, y los esquistos azules de Jambaló en Colombia, así como el Complejo Metamórfico Raspas en Ecuador. Todas se han correlacionado como un único cinturón metamórfico de alta presión del Cretácico Temprano sobre la base de datos regionales de geoquímica y geocronología. Una recopilación de los datos más recientes de geoquímica en roca total y las edades Ar–Ar y Lu–Hf de las tres manifestaciones de alta presión en Colombia registra al menos dos eventos de subducción diferentes en la cordillera Central de Colombia. El primer evento de subducción y colisión ocurrió a ca. 130–120 Ma y está representado por las rocas de alta presión de Pijao, Barragán y Raspas, las cuales tienen protolitos tipo N–MORB y son contemporáneas con el final del magmatismo de arco de los Andes del norte, relacionado con una convergencia oblicua entre la Placa de Farallón y el margen continental de Suramérica. El segundo evento de subducción solo está representado por los esquistos azules de Jambaló con edades de ca. 70–60 Ma, cuyo protolito es afín a basaltos formados en un arco intraoceánico con influencia de una pluma mantélica y acrecionados a la margen continental. Hasta ahora no existe una correlación confiable entre estas rocas y otras similares.
Palabras clave: esquisto azul, eclogita, Andes del norte, metamorfismo de alta presión.
Abbreviations
HREE Heavy rare earth element
LREE Light rare earth element
MREE Middle rare earth element
N–MORB Normal mid–ocean ridge basalt
REE Rare earth element
Agard, P., Yamato, P., Jolivet, L. & Burov, E. 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth–Science Reviews, 92(1–2): 53–79. https://doi.org/10.1016/j.earscirev.2008.11.002
Alcárcel, F.A. & Gómez, J., compilers. 2019. Mapa Geológico de Colombia 2019. Scale 1:2 000 000. Servicio Geológico Colombiano. Bogotá.
Aspden, J.A. & McCourt, W.J. 1986. Mesozoic oceanic terrane in the central Andes of Colombia. Geology, 14(5): 415–418. https://doi.org/10.1130/0091-7613(1986)14<415:MOTITC>2.0.CO;2
Aspden, J.A., Bonilla, W. & Duque, P. 1995. The El Oro Metamorphic Complex, Ecuador: Geology and economic mineral deposits. British Geological Survey, Overseas Geology and Mineral Resources 67, 63 p. Nottingham, UK.
Avellaneda, D.S., Cardona, A. & Valencia, V. 2017. Yuxtaposición de escamas metamórficas contrastantes en las rocas del Grupo Bugalagrande y Complejo Rosario: Implicaciones en un régimen de subducción/colisión para el Cretácico Inferior. XVI Congreso Colombiano de Geología. Memoirs, p. 1805–1808. Santa Marta.
Blanco–Quintero, I.F., García–Casco, A., Toro, L.M., Moreno–Sánchez, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Lázaro, C. & Morata, D. 2014. Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15): 1852–1872. https://doi.org/10.1080/00206814.2014.963710
Bosch, D., Gabriele, P., Lapierre, H., Malfere, J.L. & Jaillard, E. 2002. Geodynamic significance of the Raspas Metamorphic Complex (SW Ecuador): Geochemical and isotopic constraints. Tectonophysics, 345(1–4): 83–102. https://doi.org/10.1016/S0040-1951(01)00207-4
Botero, G. 1963. Contribución al conocimiento de la geología de la zona central de Antioquia. Universidad Nacional de Colombia, Anales de la Facultad de Minas, 57, 101 p. Medellín.
Bourgois, J., Toussaint, J.F., González, H., Azema, J., Calle, B., Desmet, A., Murcia, L.A., Acevedo, A.P., Parra, E. & Tournon, J. 1987. Geological history of the Cretaceous ophiolitic complexes of northwestern South America (Colombian Andes). Tectonophysics, 143(4): 307–327. https://doi.org/10.1016/0040-1951(87)90215-0
Brun, J.P. & Faccenna, C. 2008. Exhumation of high–pressure rocks driven by slab rollback. Earth and Planetary Science Letters, 272(1–2): 1–7. https://doi.org/10.1016/j.epsl.2008.02.038
Bustamante, A. 2008. Geotermobarometria, geoquímica, geocronologia e evolução tectônica das rochas da fácies xisto azul nas áreas de Jambaló (Cauca) e Barragán (Valle del Cauca), Colômbia. Doctoral thesis, Universidade de São Paulo, 242 p. São Paulo. https://doi.org/10.11606/T.44.2008.tde-22082008-155904
Bustamante, A., Juliani, C., Hall, C.M. & Essene, E.J. 2011. 40Ar/39Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia: Implications on the styles of accretion in the northern Andes. Geologica Acta, 9(3–4): 351–362. https://doi.org/10.1344/105.000001697
Bustamante, A., Juliani, C., Essene, E.J., Hall, C.M. & Hyppolito, T. 2012. Geochemical constraints on blueschist– and amphibolite–facies rocks of the Central Cordillera of Colombia: The Andean Barragán region. International Geology Review, 54(9): 1013–1030. https://doi.org/10.1080/00206814.2011.594226
Bustamante, C., Archanjo, C.J., Cardona, A. & Vervoort, J.D. 2016. Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long–term arc maturity. Geological Society of America Bulletin, 128(11–12): 1762–1779. https://doi.org/10.1130/B31307.1
Bustamante, C., Archanjo, C.J., Cardona, A., Bustamante, A. & Valencia, V.A. 2017a. U–Pb ages and Hf isotopes in zircons from parautochthonous Mesozoic terranes in the western margin of Pangea: Implications for the terrane configurations in the northern Andes. The Journal of Geology, 125(5): 487–500. https://doi.org/10.1086/693014
Bustamante, C., Cardona, A., Archanjo, C.J., Bayona, G., Lara, M. & Valencia, V. 2017b. Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the northern Andes of Colombia: A record of post–collisional arc magmatism. Lithos, 277: 199–209. https://doi.org/10.1016/j.lithos.2016.11.025
Cardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C., Niño, H., Ramírez, V., Valencia, V., Rincón, D., Vervoort, J.D. & Zapata, S. 2012. From arc–continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean–South America Plate boundary. Tectonophysics, 580: 58–87. https://doi.org/10.1016/j.tecto.2012.08.039
Clauer, N. & Chaudhuri, S. 1999. Isotopic dating of very low–grade metasedimentary and metavolcanic rocks: Techniques and methods. In: Frey, M. & Robinson, D. (editors), Low–grade metamorphism. Blackwell–Science, p. 202–226. https://doi.org/10.1002/9781444313345.ch7
Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A. & Chiaradia, M. 2014. Distinguishing between in–situ and accretionary growth of continents along active margins. Lithos, 202–203: 382–394. https://doi.org/10.1016/j.lithos.2014.05.031
Dallmeyer, R.D. & Takasu, A. 1992. 40Ar/39Ar ages of detrital muscovite and whole–rock slate/phyllite, Narragansett Basin, RI–MA, USA: Implications for rejuvenation during very low–grade metamorphism. Contributions to Mineralogy and Petrology, 110(4): 515–527. https://doi.org/10.1007/BF00344085
De Souza, H.A.F., Espinosa, A. & Delaloye, M. 1984. K–Ar ages of basic rocks in the Patía valley, southwest Colombia. Tectonophysics, 107(1–2): 135–145. https://doi.org/10.1016/0040-1951(84)90031-3
Ernst, W.G. 1988. Tectonic history of subduction zones inferred from retrograde blueschist P–T paths. Geology, 16(12): 1081–1084. https://doi.org/10.1130/0091-7613(1988)016<1081:THOSZI>2.3.CO;2
Feininger, T. 1980. Eclogite and related high–pressure regional metamorphic rocks from the Andes of Ecuador. Journal of Petrology, 21(1): 107–140. https://doi.org/10.1093/petrology/21.1.107
Feininger, T. 1982. Glaucophane schist in the Andes at Jambalo, Colombia. The Canadian Mineralogist, 20(1): 41–48.
García–Ramírez, C.A., Ríos–Reyes, C.A., Castellanos–Alarcón, O.M. & Mantilla–Figueroa, L.C. 2017. Petrology, geochemistry and geochronology of the Arquía Complex´s metabasites at the Pijao–Génova sector, Central Cordillera, Colombian Andes. Boletín de Geología, 39(1): 105–126.
González, H. 1997. Metagabros y eclogitas asociadas en el área de Barragán, departamento del Valle, Colombia. Geología Colombiana, 22: 151–170.
John, T., Scherer, E.E., Schenk, V., Herms, P., Halama, R. & Garbe–Schönberg, D. 2010. Subducted seamounts in an eclogite–facies ophiolite sequence: The Andean Raspas Complex, SW Ecuador. Contributions to Mineralogy and Petrology, 159(2): 265–284. https://doi.org/10.1007/s00410-009-0427-0
Kerr, A.C., Marriner, G.F., Tarney, J., Nivia, Á., Saunders, A.D., Thirlwall, M.F. & Sinton, C.W. 1997. Cretaceous basaltic terranes in western Colombia: Elemental, chronological and Sr–Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6): 677–702. https://doi.org/10.1093/petrology/38.6.677
Leal–Mejía, H. 2011. Phanerozoic gold metallogeny in the Colombian Andes: A tectono–magmatic approach. Doctoral thesis, Universitat de Barcelona, 989 p. Barcelona.
Maruyama, S., Liou, J.G. & Terabayashi, M. 1996. Blueschists and eclogites of the world and their exhumation. International Geology Review, 38(6): 485–594. https://doi.org/10.1080/00206819709465347
Maya, M. & González, H. 1995. Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2–3): 43–57.
McCourt, W.J. & Feininger, T. 1984. High pressure metamorphic rocks in the Central Cordillera of Colombia. British Geological Survey Reprint Series, 84(1): 28–35.
Meschede, M. 1986. A method of discriminating between different types of mid–ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chemical Geology, 56(3–4): 207–218. https://doi.org/10.1016/0009-2541(86)90004-5
Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5): 757–775. https://doi.org/10.1016/0016-7037(74)90149-5
Núñez, A. & Murillo, A. 1978. Esquistos de glaucofana en el municipio de Pijao, Quindío (Colombia). II Congreso Colombiano de Geología. Memoirs, II, p. 17. Bogotá.
Orrego, A., Cepeda, H. & Rodríguez, G. 1980a. Esquistos glaucofánicos en el área de Jambaló, Cauca (Colombia). Geología Norandina, (1): 5–10.
Orrego, A., Restrepo J.J., Toussaint, J.F. & Linares, E. 1980b. Datación de un esquisto sericítico de Jambaló, Cauca. Boletín de Ciencias de la Tierra, (5–6): 133–134.
Pindell, J.L. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In: James, K.H., Lorente, M.A. & Pindell J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 1–55. https://doi.org/10.1144/SP328.1
Ramos, V.A. 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Kay, S.M., Ramos, V.A. & Dickinson, W.R. (editors), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Memoirs 204, p. 31–65. https://doi.org/10.1130/2009.1204(02)
Restrepo, J.J. & Toussaint, J.F. 1988. Terranes and continental accretion in the Colombian Andes. Episodes, 11(3): 189–193.
Spikings, R., Cochrane, R., Villagómez, D., van der Lelij, R., Vallejo, C., Winkler, W. & Beate, B. 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1): 95–139. https://doi.org/10.1016/j.gr.2014.06.004
Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (editors), Magmatism in the ocean basins. Geological Society of London, Special Publication 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Villagómez, D. & Spikings, R. 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous – Tertiary evolution of the northern Andes. Lithos, 160–161: 228–249. https://doi.org/10.1016/j.lithos.2012.12.008
Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003
Winchester, J.A. & Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2