Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv2ch2
Seleccione su búsqueda
miig

​​​​​​

 Volume 2 Chapter 2

Chapter 2

The Petrologic Nature of the "Medellín Dunite" Revisited: An Algebraic Approach and Proposal of a New Definition of the Geological Body   

Antonio GARCIA–CASCO, Jorge Julián RESTREPO, Ana María CORREA–MARTÍNEZ, Idael Francisco BLANCO–QUINTERO, Joaquín Antonio PROENZA, Marion WEBER, and Lidia BUTJOSA

https://doi.org/10.32685/pub.esp.36.2019.02


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 2: 978-958-52959-3-3

ISBN digital Vol. 2: 978-958-52959-8-8​


Citation is suggested as: 

Garcia–Casco, A., Restrepo, J.J., Correa–Martínez, A.M., Blanco–Quintero, I.F., Proenza, J.A., Weber, M. & Butjosa, L. 2020. The petrologic nature of the “Medellín Dunite” revisited: An algebraic approach and proposal of a new definition of the geological body. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 45–75. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.02


Download c​hapter  ​​​     

Download EndNote reference​ 


Abstract 


The “Medellín Dunite", the main ultramafic body of the Central Cordillera of Colombia, constitutes a fragment of oceanic lithospheric mantle formed at a back–arc basin/incipient arc scenario emplaced onto the western continental margin of Pangaea during Triassic time. This body has been classically, and is still considered, mainly of dunite composition. However, in spite of two subsequent metamorphic imprints that obscure the primary mantle mineralogical composition, there is petrographic and geochemical evidence that points to a harzburgitic nature of the unit. In order to overcome the petrographic effects of medium–T metamorphism, metasomatism, and serpentinization, we analyzed published and new major–element geochemical data by means of algebraic methods to approximate the mantle mineralogical composition of ultramafic rocks. The restored mantle mineralogy clearly indicates that the body is mainly of harzburgitic composition, and therefore we propose that the term “Medellín Dunite" should no longer be applied to avoid terminological confusion. Furthermore, a phase–relation approach in simple systems for the metamorphic evolution allows identifying the main reason for the contradictory terminology used so far: olivine is paragenetic (stable) with tremolite and talc during medium–T (ca. 600 °C) metamorphic imprint undergone by the body. During this initial metamorphic event, characterized by full hydration (as opposed to the late–stage serpentinization), mantle pyroxenes reacted out and medium–T olivine formed while high–T olivine persisted metastably as a likely consequence of moderate temperature and sluggish diffusion kinetics. On the other hand, we analyze two likely geodynamic scenarios to provide a common context of metamorphism for the ultramafic body and associated metabasites (Aburrá Ophiolite): (i) ocean–floor metamorphism and (ii) intra–backarc subduction–initiation metamorphism. The latter allows a new tectonic view of the Aburrá Ophiolite, formed by tectonic units from the upper and downgoing plates on a nascent active plate margin. For all these reasons, we propose the new term “Medellín Metaharzburgitic Unit" in order to combine in a single term the original high–T mantle composition, its subsequent metamorphic transformation, and the independent tectonic character of the ultramafic body.

 

Keywords: Medellín Dunite, Medellín Metaharzburgitic Unit, metaharzburgite, phase relations, ophiolite.​




Resumen 

La “Dunita de Medellín", principal cuerpo ultramáfico de la cordillera Central de Colombia, constituye un fragmento de manto litosférico oceánico formado en un ambiente de cuenca de retroarco/arco incipiente emplazado sobre el margen continental occidental de Pangea durante el periodo Triásico. Este cuerpo es y ha sido clásicamente considerado de composición esencialmente dunítica. Sin embargo, y a pesar de dos eventos metamórficos subsecuentes sufridos que han enmascarado su composición mineralógica mantélica primaria, existe evidencia petrográfica y geoquímica que indica una naturaleza harzburgítica generalizada de la unidad. Para evitar los efectos petrográficos del metamorfismo de T–media, metasomatismo y serpentinización, analizamos datos geoquímicos publicados y nuevos de rocas ultramáficas mediante métodos algebraicos para deducir su composición mineralógica mantélica primaria. La mineralogía mantélica reconstruida claramente indica que el cuerpo es principalmente de composición harzburgítica y, por tanto, proponemos que el término “Dunita de Medellín" no debe aplicarse en el futuro para evitar confusiones terminológicas. Aún más, un análisis de las relaciones de fases en sistemas simples durante la evolución metamórfica sufrida permite identificar la razón principal por la cual se ha llegado a esta terminología contradictoria: el olivino es paragenético (estable) con tremolita y talco durante el evento metamórfico generalizado de T–media (ca. 600 °C) sufrido por el cuerpo. Durante este evento metamórfico inicial, caracterizado por hidratación completa (a diferencia de la serpentinización tardía), se consumieron los piroxenos primarios mantélicos y se formó olivino, en tanto que el olivino de T–alta persistió de forma metaestable probablemente como consecuencia de una cinética de difusión lenta a temperatura moderada. Por otro lado, analizamos dos posibles ambientes geodinámicos para ofrecer un contexto común para el metamorfismo del cuerpo ultramáfico y las rocas básicas asociadas (Ofiolita de Aburrá): (i) metamorfismo de fondo oceánico y (ii) metamorfismo de inicio de subducción intra cuenca de retroarco. Este último modelo permite una nueva conceptualización tectónica de la Ofiolita de Aburrá, conformada por unidades tectónicas pertenecientes al techo y muro del incipiente margen de placa activo. Por todo ello, proponemos el nuevo término “Unidad Metaharzburgítica de Medellín" para unir en una sola expresión la composición mantélica original de T–alta, la subsiguiente transformación metamórfica y la naturaleza tectónica independiente del cuerpo ultramáfico. 

 

Palabras clave: Dunita de Medellín, Unidad Metaharzburgítica de Medellín, metaharzburgita, relaciones de fases, ofiolita.

 ​



Abbreviations ​ 

An                                            Anorthite

Atg                                          Antigorite

Ath                                         Anthophyllite

Brc                                          Brucite

Cal                                         Calcite

Chl                                         Chlorite

Chu                                       Clinohumite

CIPW                                   Cross, Iddings, Pierson, and Washington

CMAS                                 CaO–MgO–Al2O3–SiO2

CMS                                      CaO–MgO–SiO2

CNPq                                 Conselho Nacional de Desenvolvimento Científico e Tecnológico

Cpx                                       Clinopyroxene

Di                                                                              Diopside

Dol                                           Dolomite

En                                              Enstatite

Fl                                               H2O–fluid

Fo                                             Forsterite

Grt                                             Garnet

IAT                                            Island–arc tholeiite

ICP–OES                       Inductively coupled plasma optical emission spectrometry

LOI                                           Loss on ignition

Lz                                                Lizardite

Mgs                                        Magnesite

MORB                                 Mid–ocean ridge basalt

Ol                                               Olivine

Opx                                         Orthopyroxene

P                                                    Pressure

Per                                            Periclase

Qz                                             Quartz

Spl                                            Spinel

T                                                    Temperature

Tlc                                              Talc

Tr                                                  Tremolite

*                                                    Total Fe expressed as FeO

** LOI                                  Loss on ignition​



References 


Álvarez, A.J. 1987. Tectonitas dunitas de Medellín, departamento de Antioquia, Colombia. Boletín Geológico, 28(3): 9–44.

 

Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P. & Humphris, S.E. 2006. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15° N (ODP Leg 209, Site 1274). Geophysical Research Letters, 33(13): 1–4. https://doi.org/10.1029/2006GL025681

 

Blanco–Quintero, I.F., Proenza–Fernandez, J.A., García–Casco, A., Tauler, E. & Galí–Medina, S. 2011. Serpentinites and serpentinites within a fossil subduction channel: La Corea mélange, eastern Cuba. Geologica Acta, 9(3–4): 389–405. https://doi.org/10.1344/105.000001662

 

Blanco–Quintero, I.F., García–Casco, A., Toro, L.M., Moreno–Sánchez, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Lázaro, C. & Morata, D. 2014. Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15): 1852–1872. https://doi.org/10.1080/00206814.2014.963710

 

Bonnemains, D., Escartín, J., Mével, C., Andreani, M. & Verlaguet, A. 2017. Pervasive silicification and hanging wall overplating along the 13° 20' N oceanic detachment fault (Mid–Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 18(6): 2028–2053. https://doi.org/10.1002/2017GC006846

 

Boschi, C., Dini, A., Baneschi, I., Bedini, F., Perchiazzi, N. & Cavallo, A. 2017. Brucite–driven CO2 uptake in serpentinized dunites (Ligurian Ophiolites, Montecastelli, Tuscany). Lithos, 288–289: 264–281. https://doi.org/10.1016/j.lithos.2017.07.005

 

Botero, G. 1963. Contribución al conocimiento de la geología de la zona central de Antioquia. Universidad Nacional de Colombia, Anales de la Facultad de Minas, 57, 101 p. Medellín.

 

Boudier, F., Ceuleneer, G. & Nicolas, A. 1988. Shear zones, thrusts and related magmatism in the Oman Ophiolite: Initiation of thrusting on an oceanic ridge. Tectonophysics, 151(1–4): 275–296. https://doi.org/10.1016/0040-1951(88)90249-1

 

Brady, J.B. & Stout, J.H. 1980. Normalizations of thermodynamic properties and some implications for graphical and analytical problems in petrology. American Journal of Science, 280(2): 173–189. https://doi.org/10.2475/ajs.280.2.173

 

Bustamante, A., Cardona, A. & Durán, C.T. 1999. Estratigrafía y petrogénesis de las sedimentitas paleozoicas en el flanco occidental de la cordillera Central, departamento de Antioquia. Bachelor thesis, Universidad EAFIT, 102 p. Medellín.

 

Cárdenas–Párraga, J., García–Casco, A., Proenza, J.A., Harlow, G.E., Blanco–Quintero, I.F., Lázaro, C., Villanova–de–Benavent, C. & Núñez–Cambra, K. 2017. Trace–element geochemistry of transform–fault serpentinite in high–pressure subduction mélanges (eastern Cuba): Implications for subduction initiation. International Geology Review, 59(16): 2041–2064. https://doi.org/10.1080/00206814.2017.1308843

 

Chakraborty, S. 1997. Rates and mechanisms of Fe–Mg interdiffusion in olivine at 980°–1300 °C. Journal of Geophysical Research: Solid Earth, 102(B6): 12317–12331. https://doi.org/10.1029/97JB00208

 

Chakraborty, S. 2010. Diffusion coefficients in olivine, wadsleyite and ringwoodite. Reviews in Mineralogy and Geochemistry, 72(1): 603–639. https://doi.org/10.2138/rmg.2010.72.13

 

Chen, L., Chu, F.Y., Zhu, J.H., Dong, Y.H., Yu, X., Li, Z.G. & Tang, L.M. 2015. Major and trace elements of abyssal peridotites: Evidence for melt refertilization beneath the ultraslow–spreading southwest Indian Ridge (53° E segment). International Geology Review, 57(13): 1715–1734. https://doi.org/10.1080/00206814.2015.1029014

 

Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B. & Chiaradia, M. 2014. Permo–Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191: 383–402. https://doi.org/10.1016/j.lithos.2013.12.020

 

Coleman, R.G. 1977. Ophiolites: Ancient oceanic lithosphere? Springer–Verlag, 229 p. Berlin–Heildelberg, New York.

 

Correa–Martínez, A.M. 2007. Petrogênese e evolução do Ofiolito de Aburrá, Cordilheira Central dos Andes Colombianos. Doctoral thesis, Universidade de Brasília, 204 p. Brasilia.

 

Correa–Martínez, A.M. & Martens, U. 2000. Caracterización geológica de las anfibolitas de los alrededores de Medellín. Bachelor thesis, Universidad Nacional de Colombia, 363 p. Medellín.

 

Correa–Martínez, A.M. & Nilson, A. 2003. Dunitas de Medellín y Metagabros de El Picacho: Posibles fragmentos de ofiolita subtipo harzburgita, tipo zona de suprasubducción. IX Congreso Colombiano de Geología. Memoirs, p. 46–47. Medellín.

 

Correa–Martínez, A.M., Nilson, A.A. & Pimentel, M. 2004. The Aburra Ophiolitic Complex, Antioquia–Colombia a fragment of a harzburgite ophiolite–type. 32nd International Geological Congress. Abstracts, 1, p. 374–375. Florence, Italy.

 

Correa–Martínez, A.M., Martens, U., Restrepo, J.J., Ordóñez–Carmona, O. & Martins, M. 2005. Subdivisión de las metamorfitas básicas de los alrededores de Medellín–cordillera Central de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 29(112): 325–344.

 

Evans, B.W. 1977. Metamorphism of Alpine peridotite and serpentinite. Annual Review of Earth and Planetary Sciences, 5: 397–447. https://doi.org/10.1146/annurev.ea.05.050177.002145

 

Fisher, G.W. 1989. Matrix analysis of metamorphic mineral assemblages and reactions. Contributions to Mineralogy and Petrology, 102(1): 69–77. https://doi.org/10.1007/BF01160191

 

Fisher, G.W. 1993. An improved method for algebraic analysis of metamorphic mineral assemblages. American Mineralogist, 78(11–12): 1257–1261.

 

Fyfe, W.S., Price, N.J. & Thompson, A.B. 1978. Fluids in the Earth's crust. Elsevier, 401 p. Amsterdam.

 

González, H. 2001. Memoria explicativa: Mapa geológico del departamento de Antioquia. Scale 1:400 000. Ingeominas, 240 p. Medellín.

 

González–Ospina, L.J. 2016. Petrogénesis de los complejos ultramáficos de Heliconia–Angelópolis y del oriente de Medellín, Antioquia, Colombia. Master thesis, Universidad Nacional de Colombia, 108 p. Bogotá.

 

Guillot, S., Schwartz, S., Reynard, B., Agard, P. & Prigent, C. 2015. Tectonic significance of serpentinites. Tectonophysics, 646: 1–19. https://doi.org/10.1016/j.tecto.2015.01.020

 

Hart, S.R. & Zindler, A. 1986. In search of a bulk–Earth composition. Chemical Geology, 57(3–4): 247–267. https://doi.org/10.1016/0009-2541(86)90053-7

 

Hernández–González, J.S. 2014. Mineralizaciones de Cr y elementos del grupo del platino (EGP) asociadas a las Metaperidotitas de Medellín, Colombia. Master thesis, Universidad de Barcelona and Universidad Autónoma de Barcelona, 21 p. Barcelona.

 

Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. & Wänke, H. 1979. The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules. 10th Lunar and Planetary Science Conference. Proceedings, p. 2031–2050. Houston, USA.

 

Jaramillo, J.S., Cardona, A., León, S., Valencia, V. & Vinasco, C. 2017. Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6° 35' N, western flank of the Central Cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76: 460–481. https://doi.org/10.1016/j.jsames.2017.04.012

 

Khedr, M.Z. & Arai, S. 2010. Hydrous peridotites with Ti–rich chromian spinel as a low–temperature forearc mantle facies: Evidence from the Happo–O'ne Metaperidotites (Japan). Contributions to Mineralogy and Petrology, 159(2): 137–157. https://doi.org/10.1007/s00410-009-0420-7

 

Kimball, K.L., Spear, F.S. & Dick, H.J.B. 1985. High temperature alteration of abyssal ultramafics from the islas Orcadas fracture zone, South Atlantic. Contributions to Mineralogy and Petrology, 91(4): 307–320. https://doi.org/10.1007/BF00374687

 

Kodolányi, J., Pettke, T., Spandler, C., Kamber, B.S. & Gméling, K. 2012. Geochemistry of ocean floor and fore–arc serpentinites: Constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2): 235–270. https://doi.org/10.1093/petrology/egr058

 

Lázaro, C., Blanco–Quintero, I.F., Rojas–Agramonte, Y., Proenza, J.A., Núñez–Cambra, K. & García–Casco, A. 2013. First description of a metamorphic sole related to ophiolite obduction in the northern Caribbean: Geochemistry and petrology of the Güira de Jauco Amphibolite Complex (eastern Cuba) and tectonic implications. Lithos, 179: 193–210. https://doi.org/10.1016/j.lithos.2013.08.019

 

Le Bas, M.J. & Streckeisen, A.L. 1991. The IUGS systematics of igneous rocks. Journal of the Geological Society, 148(5): 825–833. https://doi.org/10.1144/gsjgs.148.5.0825

 

Le Maitre, R.W., editor. 2002. Igneous rocks. A classification and glossary of terms. 2nd edition. Recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Cambridge University Press, 236 p. New York, USA. https://doi.org/10.1017/CBO9780511535581

 

Lindsley, D.H. 1983. Pyroxene thermometry. American Mineralogist, 68(5–6): 477–493.

 

Malvoisin, B. 2015. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical. Earth and Planetary Science Letters, 430: 75–85. https://doi.org/10.1016/j.epsl.2015.07.043

 

Martens, U. 2003. Crenulación de las Anfibolitas de Medellín y milonitización del Neis Augen de las Palmas: ¿Evidencias de un cabalgamiento post–Cretácico medio de la Dunita de Medellín? IX Congreso Colombiano de Geología. Memoirs, p. 39–40. Medellín.

 

Martens, U., Restrepo, J.J., Ordóñez–Carmona, O. & Correa–Martínez, A.M. 2014. The Tahamí and Anacona Terranes of the Colombian Andes: Missing links between the South American and Mexican Gondwana margins. The Journal of Geology, 122(5): 507–530. https://doi.org/10.1086/677177

 

Maya, M. & González, H. 1995. Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2–3): 43–57.

 

McDonough, W.F. & Sun, S.S. 1995. The composition of the Earth. Chemical Geology, 120(3–4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

 

Milliken, K.L., Lynch, F.L. & Seifert, K.E. 1996. Marine weathering of serpentinites and serpentinite breccias, Sites 897 and 899, Iberia abyssal plain. In: Whitmarsh, R.B., Sawyer, D.S., Klaus, A. & Masson, D.G. (editors), Proceedings of the Ocean Drilling Program, Scientific Results 149, p. 529–540.

 

Nicolas, A. & Boudier, F. 2003. Where ophiolites come from and what they tell us. In: Dilek, Y. & Newcomb, S. (editors), Ophiolite concept and the evolution of geological thought. Geological Society of America, Special Paper 373, p. 137–152. Boulder, Colorado. https://doi.org/10.1130/0-8137-2373-6.137

 

Niu, Y. 2004. Bulk–rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post–melting processes beneath mid–ocean ridges. Journal of Petrology, 45(12): 2423–2458. https://doi.org/10.1093/petrology/egh068

 

Nivia, A., Marriner, G. F., Kerr, A. C., & Tarney, J. 2006. The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes: Journal of South American Earth Sciences, 21(4): 423–436. https://doi.org/10.1016/j.jsames.2006.07.002

 

O'Hanley, D.S. 1996. Serpentinites: Records of tectonic and petrological history. Oxford Monographs on Geology and Geophysics, 34. Oxford University Press, 277 p. Oxford.

 

Ordóñez–Carmona, O. 2001. Caracterização isotópica Rb–Sr e Sm–Nd dos principais eventos magmáticos nos Andes colombianos. Doctoral thesis, Universidad de Brasilia, 176 p. Brasilia.

 

Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G. & Harvey, J. 2006. Geochemistry of abyssal peridotites (Mid–Atlantic Ridge, 15° 20' N, ODP Leg 209): Implications for fluid/ rock interaction in slow spreading environments. Chemical Geology, 234(3–4): 179–210. https://doi.org/10.1016/j.chemgeo.2006.04.011

 

Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J. & Leat, P.T. 2000. Geochemistry and tectonic significance of peridotites from the south Sandwich arc–basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36–53. https://doi.org/10.1007/s004100050572

 

Pereira, E., Ortiz, F. & Prichard, H. 2006. Contribución al conocimiento de las Anfibolitas y Dunitas de Medellín (Complejo Ofiolítico de Aburrá). DYNA, 73(149): 17–30.

 

Proenza, J.A., Escayola, M., Ortiz, F., Pereira, E. & Correa–Martínez, A.M. 2004. Dunite and associated chromitites from Medellín (Colombia). 32nd International Geological Congress. Memoirs, I, p. 507. Florence, Italy.

 

Putirka, K., Ryerson, F.J., Perfit, M. & Ridley, W.I. 2011. Mineralogy and composition of the oceanic mantle. Journal of Petrology, 52(2): 279–313. https://doi.org/10.1093/petrology/egq080

 

Rendón, D.A. 1999. Cartografía y caracterización de las unidades geológicas del área urbana de Medellín. Bachelor thesis, Universidad Nacional de Colombia, 113 p. Medellín.

 

Restrepo, J.J. 1986. Metamorfismo en el sector norte de la cordillera Central de Colombia. Universidad Nacional de Colombia, Trabajo presentado como requisito parcial para la promoción a Profesor Titular. unpublished report, 276 p. Medellín.

 

Restrepo, J.J. 2008. Obducción y metamorfismo de ofiolitas triásicas en el flanco occidental del Terreno Tahamí, cordillera Central de Colombia. Boletín de Ciencias de la Tierra, (22): 49–100.

 

Restrepo, J.J. & Toussaint, J.F. 1973. Obducción cretácea en el occidente colombiano. Publicación Especial de Geología, 3, p. 1–26. Medellín.

 

Restrepo, J.J. & Toussaint, J.F. 1974. Obducción cretácea en el occidente colombiano. Universidad Nacional de Colombia, Anales de la Facultad de Minas, 58, p. 73–105. Medellín.

 

Restrepo, J.J. & Toussaint, J.F. 1984. Unidades litológicas de los alrededores de Medellín. Primera conferencia sobre riesgos geológicos del valle de Aburrá. Sociedad Colombiana de Geología. Memoirs, p. 1–26. Medellín.

 

Restrepo, J.J., Toussaint, J.F., González, H., Cordani, U., Kawashita, K., Linares, E. & Parica, C. 1991. Precisiones geocronológicas sobre el occidente colombiano. Simposio sobre magmatismo andino y su marco tectónico. Memoirs, I, p. 1–22. Manizales.

 

Restrepo, J.J., Frantz, J.C., Ordóñez–Carmona, O., Correa–Martínez, A.M., Martens, U. & Chemale, F. 2007. Edad triásica de formación de la Ofiolita de Aburrá, flanco occidental de la cordillera Oriental. XI Congreso Colombiano de Geología. Abstracts, p. 49. Bucaramanga.

 

Restrepo, J.J., Ordóñez–Carmona, O., Armstrong, R. & Pimentel, M.M. 2011. Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. Journal of South American Earth Sciences, 32(4): 497–507. https://doi.org/10.1016/j.jsames.2011.04.009

 

Restrepo, J.J., Ibañez–Mejia, M. & García–Casco, A. 2012. U–Pb zircon ages of the Medellín Amphibolites (Central Cordillera of Colombia) reveal mid–Cretaceous tectonic juxtaposition of Triassic and mid–Cretaceous metamorphic complexes. VIII South American Symposium on Isotope Geology. USB memory device, 33 slides. Medellín.

 

Riel, N., Jaillard, E., Martelat, J.E., Guillot, S. & Braun, J. 2018. Permian – Triassic Tethyan realm reorganization: Implications for the outward Pangea margin. Journal of South American Earth–Sciences, 81: 78–86. https://doi.org/10.1016/j.jsames.2017.11.007

 

Robertson, A. 2004. Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the eastern Mediterranean and Oman regions. Earth Science Reviews, 66(3–4): 331–387. https://doi.org/10.1016/j.earscirev.2004.01.005

 

Rodríguez, G. & Correa–Martínez, A.M. 2015. Edad jurásica del Neis Milonítico de Sajonia y su posible significado en la evolución geotectónica del sector noroccidental de la cordillera Central de Colombia. Simposio: Tectónica jurásica en la parte noroccidental de Sur América y bloques adyacentes. Abstracts, 1 p. Medellín.

 

Rodríguez, G., González, H. & Zapata, G. 2005. Memoria explicativa: Geología de la plancha 147 Medellín Oriental. Scale: 1:100 000. Ingeominas, 300 p. Bogotá.

 

Schmädicke, E. 2000. Phase relations in peridotitic and pyroxenitic rocks in the model systems CMASH and NCMASH. Journal of Petrology, 41(1): 69–86. https://doi.org/10.1093/petrology/41.1.69

 

Schmid, R., Fettes, D., Harte, B., Davis, E. & Desmons, J. 2007. How to name a metamorphic rock. Recommendations by the International Union of Geological Sciences Subcommission on the systematics of metamorphic rocks: Web version 01/02/07. http://www.bgs.ac.uk/SCMR/docs/papers/paper_1.pdf (consulted in December 2011).

 

Snow, J.E. & Dick, H.J.B. 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20): 4219–4235. https://doi.org/10.1016/0016-7037(95)00239-V

 

Spear, F.S. 1995. Metamorphic phase equilibria and pressure–temperature–time paths. Mineralogical Society of America Monographs, 1995, 799 p. Washington, D.C.

 

Spear, F.S., Rumble III, D. & Ferry, J.M. 1982. Linear algebraic manipulation of n–dimensional composition space. In: Ferry, J.M. (editor), Characterization of metamorphism through mineral equilibria. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry 10, p. 53–104.

 

Spikings, R., Cochrane, R., Villagómez, D., van der Lelij, R., Vallejo, C., Winkler, W. & Beate, B. 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1): 95–139. https://doi.org/10.1016/j.gr.2014.06.004

 

Stern, R.J. 2004. Subduction initiation: Spontaneous and induced. Earth and Planetary Science Letters, 226(3–4): 275–292. https://doi.org/10.1016/j.epsl.2004.08.007

 

Streckeisen, A. 1976. To each plutonic rock its proper name. Earth–Science Reviews, 12(1): 1–33. https://doi.org/10.1016/0012-8252(76)90052-0

 

Thompson, J.B. 1982. Composition space: An algebraic and geometric approach. In: Ferry, J.M. (editor), Characterization of metamorphism through mineral equilibria. Mineralogical Society of America, Reviews in Mineralogy 10, p. 1–31.

 

Torres–Roldán, R.L., García–Casco, A. & García–Sánchez, P.A. 2000. CSpace: An integrated workplace for the graphical and algebraic analysis of phase assemblages on 32–bit wintel platforms. Computers & Geosciences, 26(7): 779–793. https://doi.org/10.1016/S0098-3004(00)00006-6

 

Toussaint, J.F. & Restrepo, J.J. 1989. Acreciones sucesivas en Colombia: Un nuevo modelo de evolución geológica. V Congreso Colombiano de Geología. Memoirs, I, p. 127–146. Bucaramanga.

 

Trommsdorff, V. & Connolly, J.A.D. 1990. Constraints on phase diagram topology for the system CaO−MgO−SiO2−CO2−H2O. Contributions to Mineralogy and Petrology, 104(1): 1–7. https://doi.org/10.1007/BF00310641

 

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003

 

Vinasco, C.J., Cordani, U.G., González, H., Weber, M. & Peláez, C. 2006. Geochronological, isotopic, and geochemical data from Permo–Triassic granitic gneisses and granitoids of the Colombian central Andes. Journal of South American Earth Sciences, 21(4): 355–371. https://doi.org/10.1016/j.jsames.2006.07.007

 

Wakabayashi, J. & Dilek, Y. 2003. What constitutes 'emplacement' of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles. In: Dilek, Y. & Robinson, P.T. (editors), Ophiolites and Earth history. Geological Society of London, Special Publication 218, p. 427–448. https://doi.org/10.1144/GSL.SP.2003.218.01.22

 

Whitney, D.L. & Evans, B.W. 2010. Abbreviations for names of rock–forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371


Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: relacionciudadana@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer