Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv2ch6
Seleccione su búsqueda
miig

​​​

 Volume 2 Chapter 6

Chapter  6

140 Million Years of Tropical Biome Evolution   

Carlos JARAMILLO

https://doi.org/10.32685/pub.esp.36.2019.06


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 2: 978-958-52959-3-3

ISBN digital Vol. 2: 978-958-52959-8-8​


Citation is suggested as: 

Jaramillo, C. 2019. 140 million years of tropical biome evolution. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 209–236. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.06


Download chapter  

Download EndNote reference​ 


Abstract


The origin and development of Neotropical biomes are central to our understanding of extant ecosystems and our ability to predict their future. During the Cretaceous, biomass of tropical rainforests was mostly dominated by gymnosperms and ferns, forest structure was poorly stratified and the canopy was open and dominated by gymnosperms. Extant tropical rainforests first developed at the onset of the Cenozoic, as a result of the massive extinction of the Cretaceous – Paleocene boundary. Paleocene rainforests were multistratified, with an angiosperm–dominated canopy that had high photosynthetic potential. Tropical climate has followed global patterns of warmings and coolings during the last 60 Ma. Rainforest diversity has increased during the warmings while it has decreased during coolings. Several extant biomes, including páramos, cloud forest, savannas, and dry/xerophytic forest, have increase significantly during the late Neogene at the expense of the reduction of the rainforest. Timing and drivers of these changes are still unknown but seem to be related to the onset of our modern, cool–state climate since the onset of the Pleistocene, 2.6 Ma ago.

 

Keywords: Neotropical biomes, tropical rainforest, gymnosperms, angiosperms, evolution.​



Resumen

El origen y el desarrollo de los biomas neotropicales son fundamentales para nuestra comprensión de los ecosistemas actuales y nuestra capacidad para predecir su futuro. Durante el Cretácico, la biomasa de los bosques tropicales estaba dominada principalmente por gimnospermas y helechos, la estructura del bosque no poseía una estratificación marcada y el dosel era abierto y dominado por gimnospermas. Los bosques tropicales actuales se desarrollaron por primera vez al inicio del Cenozoico, como resultado de la extinción masiva del límite Cretácico–Paleoceno. Los bosques tropicales del Paleoceno eran multiestratificados, con un dosel dominado por angiospermas con alto potencial fotosintético. El clima tropical ha seguido patrones globales de calentamiento y enfriamiento durante los últimos 60 Ma. La diversidad del bosque tropical ha aumentado durante los calentamientos y disminuido durante los enfriamientos. Varios biomas que hoy existen, incluyendo páramos, bosques nubosos, sabanas y bosques secos/xerofíticos, han crecido significativamente desde el Neógeno tardío en áreas ocupadas previamente por el bosque tropical. Las causas y temporalidad de este cambio masivo en el paisaje aún se desconocen, pero parecen estar relacionadas con el inicio de nuestro clima frío moderno desde el comienzo del Pleistoceno, hace 2,6 Ma.

 

Palabras clave: biomas neotropicales, bosque tropical, gimnospermas, angiospermas, evolución.



Abbreviations 

PETM                 Paleocene Eocene Thermal Maximum

ETM                      Eocene Thermal Maximum

MMCO              Middle Miocene climatic optimum

GABI                   Great American Biotic Interchange

ITCZ                    Intertropical convergence zone

CAM                   Crassulacean acid metabolism

WUE                    Water use efficiency

DNA                    Deoxyribonucleic acid

WWF                  World Wildlife Fund


References 


Aber, J., Neilson, R., McNulty, S., Lenihan, J.M., Bachelet, D. & Drapek, R.J. 2001. Forest processes and global environmental change: Predicting the effects of individual and multiple stressors. BioScience, 51(9): 735–751. https://doi.org/10.1641/0006-3568(2001)051[0735:FPAGEC]2.0.CO;2

 

Aguilera, O. 2004. Tesoros paleontológicos de Venezuela, Urumaco, patrimonio natural de la humanidad. Editorial Arte, 148 p. Caracas.

 

Aguilera, O., Lundberg, J., Birindelli, J., Sabaj–Pérez, M., Jaramillo, C.A. & Sánchez–Villagra, M.R. 2013a. Palaeontological evidence for the last temporal occurrence of the ancient western Amazonian River outflow into the Caribbean. PLOS ONE, 8(9): 1–17. https://doi.org/10.1371/journal.pone.0076202

 

Aguilera, O., Moraes–Santos, H., Costa, S., Ohe, F., Jaramillo, C.A. & Nogueira, A. 2013b. Ariid sea catfishes from the coeval Pirabas (Northeastern Brazil), Cantaure, Castillo (northwestern Venezuela), and Castilletes (North Colombia) Formations (early Miocene), with description of three new species. Swiss Journal of Palaeontology, 132(1): 45–68. https://doi.org/10.1007/s13358-013-0052-4

 

Aguilera, O., Andrade, G.O., Lopes, R.T., Machado, A.S., Dos Santos, T.M., Marques, G., Bertucci, T., Aguiar, T., Carrillo–Briceño, J., Rodríguez, F. & Jaramillo, C.A. 2017. Neogene proto–Caribbean porcupinefishes (Diodontidae). PLOS ONE, 12(7): 1–26. https://doi.org/10.1371/journal.pone.0181670

 

Alda, F., Reina, R.G., Doadrio, I. & Bermingham, E. 2013. Phylogeny and biogeography of the Poecilia sphenops species complex (Actinopterygii, Poeciliidae) in Central America. Molecular Phylogenetics and Evolution, 66(3): 1011–1026. https://doi.org/10.1016/j.ympev.2012.12.012

 

Amson, E., Carrillo, J.D. & Jaramillo, C.A. 2016. Neogene sloth assemblages (Mammalia, Pilosa) of the Cocinetas Basin (La Guajira, Colombia): Implications for the Great American Biotic Interchange. Palaeontology, 59(4): 563–582. https://doi.org/10.1111/pala.12244

 

Anderson, J.B., Warny, S., Askin, R.A., Wellner, J.S., Bohaty, S.M., Kirshner, A.E., Livsey, D.N., Simms, A.R., Smith, T.R., Ehrmann, W., Lawver, L.A., Barbeau, D., Wise, S.W., Kulhanek, D.K., Weaver, F.M. & Majewski, W. 2011. Progressive Cenozoic cooling and the demise of Antarctica's last refugium. Proceedings of the National Academy of Sciences of the United States of America, 108(28): 11356–11360. https://doi.org/10.1073/pnas.1014885108

 

Antoine, P.O., Salas–Gismondi, R., Baby, P., Benammi, M., Brusset, S., Francechi, D., Espurt, N., Goillot, C., Pujos, F., Tejada, J. & Urbina, M. 2007. The middle Miocene (Laventan) Fitzcarrald fauna, Amazonian Peru. Cuadernos del Museo Geominero, 8: 19–24. Madrid.

 

Arakaki, M., Christin, P.A., Nyffeler, R., Lendel, A., Eggli, U., Ogburn, R.M., Spriggs, E., Moore, M.J. & Edwards, E.J. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. Proceedings of the National Academy of Sciences of the United States of America, 108(20): 8379–8384. https://doi.org/10.1073/pnas.1100628108

 

Archangelsky, S. & Taylor, T.N. 1993. The ultrastructure of in situ Clavatipollenites pollen from the Early Cretaceous of Patagonia. American Journal of Botany, 80(8): 879–885. https://doi.org/10.2307/2445507

 

Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A. & Tokos, K. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth and Planetary Sciences, 37: 117–134. https://doi.org/10.1146/annurev.earth.031208.100206

 

Bacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P. & Antonelli, A. 2015a. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences of the United States of America, 112(19): 6110–6115. https://doi.org/10.1073/pnas.1423853112

 

Bacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P. & Antonelli, A. 2015b. Reply to Lessios and Marko et al.: Early and progressive migration across the Isthmus of Panama is robust to missing data and biases. Proceedings of the National Academy of Sciences of the United States of America, 112(43): E5767–E5768. https://doi.org/10.1073/pnas.1515451112

 

Bacon, C.D., Molnar, P., Antonelli, A., Crawford, A.J., Montes, C. & Vallejo–Pareja, M.C. 2016. Quaternary glaciation and the Great American Biotic Interchange. Geology, 44(5): 375–378. https://doi.org/10.1130/G37624.1

 

Bassow, S.L., McConnaughay, K.D. & Bazzaz, F.A. 1994. The response of temperate tree seedlings grown in elevated CO2 to extreme temperature events. Ecological Applications, 4(3): 593–603. https://doi.org/10.2307/1941960

 

Bayona, G., Montes, C., Cardona, A., Jaramillo, C.A., Ojeda, G., Valencia, V. & Ayala–Calvo, C. 2011. Intraplate subsidence and basin filling adjacent to an oceanic arc–continent collision: A case from the southern Caribbean–South America plate margin. Basin Research, 23(4): 403–422. https://doi.org/10.1111/j.1365-2117.2010.00495.x

 

Beaulieu, J.M., O'Meara, B.C., Crane, P.R. & Donoghue, M.J. 2015. Heterogeneous rates of molecular evolution and diversification could explain the Triassic age estimate for angiosperms. Systematic Biology, 64(5): 869–878. https://doi.org/10.1093/sysbio/syv027

 

Bell, C.D., Soltis, D.E. & Soltis, P.S. 2010. The age and diversification of the angiosperms re–revisited. American Journal of Botany, 97(8): 1296–1303. https://doi.org/10.3732/ajb.0900346

 

Berry, J. & Björkman, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31: 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423

 

Bice, K.L., Birgel, D., Meyers, P.A., Dahl, K.A., Hinrichs, K. & Norris, R.D. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography and Paleoclimatology, 21(2): 1–17. https://doi.org/10.1029/2005PA001203

 

Billups, K., Ravelo, A.C., Zachos, J.C. & Norris, R.D. 1999. Link between oceanic heat transport, thermohaline circulation, and the intertropical convergence zone in the early Pliocene Atlantic. Geology, 27(4): 319–322. https://doi.org/10.1130/0091-7613(1999)027<0319:LBOHTT>2.3.CO;2

 

Bloch, J.I., Woodruff, E.D., Wood, A.R., Rincón, A.F., Harrington, A.R., Morgan, G.S., Foster, D.A., Montes, C., Jaramillo, C., Jud, N.A., Jones, D.S. & MacFadden, B.J. 2016. First North American fossil monkey and early Miocene tropical biotic interchange. Nature, 533(7602): 243–246. https://doi.org/10.1038/nature17415

 

Bowen, G.J. & Zachos, J.C. 2010. Rapid carbon sequestration at the termination of the Palaeocene – Eocene Thermal Maximum. Nature Geoscience, 3: 866–869. https://doi.org/10.1038/ngeo1014

 

Boyce, C.K. & Lee, J.E. 2010. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of the Royal Society of London Series B: Biological Sciences, 277: 3437–3443. https://doi.org/10.1098/rspb.2010.0485

 

Bralower, T.J., Thomas, D.J., Zachos, J.C., Hirschmann, M.M., Röhl, U., Sigurdsson, H., Thomas, E. & Whitney, D.L. 1997. High–resolution records of the late Paleocene Thermal Maximum and circum–Caribbean volcanism: Is there a causal link? Geology, 25(11): 963–966. https://doi.org/10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2

 

Brenner, G. 1974. Palynostratigraphy of the Lower Cretaceous Gevar'am and Talme Yafe Formations in the Gever'am 2 well (southern coastal plain Israel). Geological Survey of Israel Bulletin, 59: 1–27.

 

Burnham, R.J. 2009. An overview of the fossil record of climbers: Bejucos, sogas, trepadoras, lianas, cipós, and vines. Revistra Brasileira de Paleontologia, 12(2): 149–160. https://doi.org/10.4072/rbp.2009.2.05

 

Burnham, R.J. & Graham, A. 1999. The history of Neotropical vegetation: New developments and status. Annals of the Missouri Botanical Garden, 86(2): 546–589. https://doi.org/10.2307/2666185

 

Burnham, R.J. & Johnson, K.R. 2004. South American palaeobotany and the origins of Neotropical rainforests. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 359(1450): 1595–1610. https://doi.org/10.1098/rstb.2004.1531

 

Cadena, E.A. & Jaramillo, C. 2006. New Podocnemididae fossil turtles from the late Paleocene Cerrejón Formation, Guajira Peninsula, Colombia. 66th Annual Meeting of the Society of Vertebrate Paleontology. Unpublished Field Trip Guidebook, 43 p. Ottawa, Canada.

 

Cadena, E.A. & Jaramillo, C. 2015. The first fossil skull of Chelus (Pleurodira: Chelidae, Matamata turtle) from the early Miocene of Colombia. Palaeontologia Electronica, (18.2.32A): 1–10. https://doi.org/10.26879/545

 

Cadena, E.A. & Schweitzer, M.H. 2014. A pelomedusoid turtle from the Paleocene – Eocene of Colombia exhibiting preservation of blood vessels and osteocytes. Journal of Herpetology, 48(4): 461–465. https://doi.org/10.1670/13-046

 

Cadena, E.A., Bloch, J. & Jaramillo, C. 2012a. New bothremydid turtle (Testudines, Pleurodira) from the Paleocene of northeastern Colombia. Journal of Paleontology, 86(4): 688–698. https://doi.org/10.1666/11-128R1.1

 

Cadena, E.A., Bourque, J., Rincón, A., Bloch, J.I., Jaramillo, C. & MacFadden, B. 2012b. New turtles (Chelonia) from the late Eocene through late Miocene of the Panama Canal Basin. Journal of Paleontology, 86(3): 539–557. https://doi.org/10.1666/11-106.1

 

Cadena, E.A., Ksepka, D.T., Jaramillo, C. & Bloch, J.I. 2012c. New pelomedusoid turtles from the late Palaeocene Cerrejón Formation of Colombia and their implications for phylogeny and body size evolution. Journal of Systematic Palaeontology, 10(2): 313–331. https://doi.org/10.1080/14772019.2011.569031

 

Carrillo, J.D., Forasiepi, A., Jaramillo, C. & Sánchez–Villagra, M.R. 2015. Neotropical mammal diversity and the Great American Biotic Interchange: Spatial and temporal variation in South America's fossil record. Frontiers in Genetics, 5(451): 1–12. https://doi.org/10.3389/fgene.2014.00451

 

Carrillo, J.D., Amson, E., Jaramillo, C., Sánchez, R., Quiroz, L., Cuartas, C., Rincón, A.F. & Sánchez–Villagra, M. 2018. The Neogene record of northern South American native ungulates. Smithsonian Contributions to Paleobiology 101, 67 p. Washington D.C. https://doi.org/10.5479/si.1943-6688.101

 

Carvalho, M.R., Herrera, F., Jaramillo, C.A., Wing, S. & Callejas, R. 2011. Paleocene Malvaceae from northern South America and their biogeographical implications. American Journal of Botany, 98(8): 1337–1355. https://doi.org/10.3732/ajb.1000539

 

Carvalho, M.R., Wilf, P., Barrios, H., Windsor, D.M., Currano, E., Labandeira, C. & Jaramillo, C. 2014. Insect leaf–chewing damage tracks herbivore richness in modern and ancient forests. PLOS ONE, 9(5): 1–9. https://doi.org/10.1371/journal.pone.0094950

 

Cernusak, L.A., Winter, K., Martínez, C., Correa, E., Aranda, J., García, M., Jaramillo, C. & Turner, B.L. 2011. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiology, 157: 372–385. https://doi.org/10.1104/pp.111.182436

 

Cernusak, L.A., Winter, K., Dalling, J.W., Holtum, J.A.M., Jaramillo, C., Körner, C., Leakey, A.D.B., Norby, R.J., Poulter, B., Turner, B.L. & Wright, S.J. 2013. Tropical forest responses to increasing atmospheric CO2: Current knowledge and opportunities for future research. Functional Plant Biology, 40(6): 531–551. https://doi.org/10.1071/FP12309

 

Chaisson, W.P. 1995. Planktonic foraminiferal assemblages and paleoceanographic change in the trans–tropical Pacific Ocean: A comparison of west (Leg 130) and east (Leg 138), latest Miocene to Pleistocene. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer–Julson, A. & van Andel, T.H. (editors), Proceedings of the Ocean Drilling Program, Scientific Results 138, p. 555–597. https://doi.org/10.2973/odp.proc.sr.138.129.1995

 

Chaisson, W.P. & Ravelo, A.C. 1997. Changes in upper water–column structure at Site 925, late Miocene – Pleistocene: Planktonic foraminifer assemblage and isotopic evidence. In: Shackleton, N.J., Curry, W.B., Richter, C. & Bralower, T.J. (editors), Proceedings of the Ocean Drilling Program, Scientific Results 154, p. 255–268.

 

Chiang, J.C.H. 2009. The tropics in paleoclimate. Annual Review of Earth and Planetary Sciences, 37: 263–297. https://doi.org/10.1146/annurev.earth.031208.100217

 

Chiang, J.C.H. & Bitz, C.M. 2005. Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dynamics, 25(5): 477–496. https://doi.org/10.1007/s00382-005-0040-5

 

Clyde, W.C. & Gingerich, P.D. 1998. Mammalian community response to the latest Paleocene Thermal Maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology, 26(11): 1011–1014. https://doi.org/10.1130/0091-7613(1998)026<1011:MCRTTL>2.3.CO;2

 

Cody, S., Richardson, J.E., Rull, V., Ellis, C. & Pennington, R.T. 2010. The Great American Biotic Interchange revisited. Ecography, 33(2): 326–332. https://doi.org/10.1111/j.1600-0587.2010.06327.x

 

Connell, J.H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer, P.J. & Gradwell, G.R. (editors), Dynamics of populations. Centre for Agricultural Publication and Documentation, p. 298–312. Wageningen, the Netherlands.

 

Correa, E., Jaramillo, C., Manchester, S. & Gutiérrez, M. 2010. A fruit and leaves of rhamnaceous affinities from the Late Cretaceous (Maastrichtian) of Colombia. American Journal of Botany, 97(1): 71–79. https://doi.org/10.3732/ajb.0900093

 

Cozzuol, M. 2006. The Acre vertebrate fauna: Age, diversity, and geography. Journal of South American Earth Sciences, 21(3): 185–203. https://doi.org/10.1016/j.jsames.2006.03.005

 

Crane, P.R. & Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science, 246(4930): 675–678. https://doi.org/10.1126/science.246.4930.675

 

Crane, P.R. & Lidgard, S. 1990. Angiosperm radiation and patterns of Cretaceous palynological diversity. In: Taylor, P.D. & Larwood, G.P. (editors), Major evolutionary radiations 42, p. 377–407. Oxford.

 

Crifò, C., Currano, E.D., Baresh, A. & Jaramillo, C. 2014. Variations in angiosperm leaf vein density have implications for interpreting life form in the fossil record. Geology, 42(10): 919–922. https://doi.org/10.1130/G35828.1

 

Currano, E.D., Wilf, P., Wing, S.L., Labandeira, C.C., Lovelock, E.C. & Royer, D.L. 2008. Sharply increased insect herbivory during the Paleocene – Eocene Thermal Maximum. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 1960–1964. https://doi.org/10.1073/pnas.0708646105

 

Davis, C., Webb, C.O., Wurdack, K.J., Jaramillo, C. & Donoghue, M.J. 2005. Explosive radiation of Malpighiales supports a mid–Cretaceous origin of modern tropical rain forests. The American Naturalist, 165(3): E36–E65. https://doi.org/10.1086/428296

 

De Boer, B., van de Wal, R.S.W., Bintanja, R., Lourens, L.J. & Tuenter, E. 2010. Cenozoic global ice–volume and temperature simulations with 1–D ice–sheet models forced by benthic δ18O records. Annals of Glaciology, 51(55): 23–33. https://doi.org/10.3189/172756410791392736

 

De Boer, H.J., Lammertsma, E.I., Wagner–Cremer, F., Dilcher, D.L., Wassen, M.J. & Dekker, S.C. 2011. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proceedings of the National Acad emy of Sciences of the United States of America, 108(10): 4041–4046. https://doi.org/10.1073/pnas.1100555108

De la Parra, F. 2009. Palynological changes across the Cretaceous – Tertiary boundary in Colombia, South America. Master thesis, University of Florida, 105 p. Gainesville, USA.

 

De la Parra, F., Jaramillo, C. & Dilcher, D. 2008a. Paleoecological changes of spore producing plants through the Cretaceous – Paleocene boundary in Colombia. Palynology, 32: 258–259.

 

De la Parra, F., Jaramillo, C., Rueda, M. & Dilcher, D. 2008b. Has there been a plant mass extinction in the last 70 million years in the Neotropics? 12th International Palynological Congress. Proceedings, p. 59. Bonn, Germany.

 

Díaz de Gamero, M.L. & Linares, O.J. 1989. Estratigrafía y paleontología de la Formación Urumaco, del Mioceno tardío de Falcón noroccidental. 7th Congreso Geológico Venezolano. Proceedings, 1, p. 419–439. Caracas.

 

Dickens, G.R., O'Neil, J.R., Rea, D.K. & Owen, R.M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography and Paleoclimatology, 10(6): 965–971. https://doi.org/10.1029/95PA02087

 

Dickens, G.R., Bralower, T.J., Thomas, D.J., Thomas, E. & Zachos, J.C. 1998. High–resolution records of the late Paleocene Thermal Maximum and circum–Caribbean volcanism: Is there a causal link?: Comment and reply. Geology, 26(7): 670–671. https://doi.org/10.1130/0091-7613(1998)026<0670:HRROTL>2.3.CO;2

 

Doria, G., Jaramillo, C. & Herrera, F. 2008. Menispermaceae from the Cerrejón Formation, middle to late Paleocene, Colombia. American Journal of Botany, 95(8): 954–973. https://doi.org/10.3732/ajb.2007216

 

Doubinger, J. 1973. Pollen and spores from the Paleocene coal basin of Cerrejon (Guajira Province, Colombia). Comptes Rendus du 96 Congres National des Societes Savantes. Proceedings, 5, p. 253–262. Tolouse, France.

 

Doyle, J.A. 2012. Molecular and fossil evidence on the origin of angiosperms. Annual Review of Earth and Planetary Sciences, 40: 301–326. https://doi.org/10.1146/annurev-earth-042711-105313

 

Doyle, J.A. & Hickey, L.J. 1976. Pollen and leaves from the mid–Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: Beck, C.B. (editor), Origin and early evolution of angiosperms. Columbia University Press, p. 139–206. New York.

 

Doyle, J.A., Biens, P., Doerenkamp, A. & Jardiné, S. 1977. Angiosperm pollen from the pre–Albian Lower Cretaceous of Equatorial Africa. Bulletin des Centres de Recherches Exploration–Production Elf–Aquitaine, 1: 451–473.

 

Doyle, J.A., Hotton, C. & Ward, J. 1990. Early Cretaceous tetrads, zonasulculate pollen, and Winteraceae. I. Taxonomy, morphology, and ultrastructure. American Journal of Botany, 77(12): 1544–1557. https://doi.org/10.1002/j.1537-2197.1990.tb11395.x

 

Edwards, E.J., Osborne, C.P., Strömberg, C.A.E., Smith, S.A., Bond, W.J., Christin, P.A., Cousins, A.B., Duvall, M.R., Fox, D.L., Freckleton, R.P., Ghannoum, O., Hartwell, J., Huang, Y., Janis, C.M., Keeley, J.E., Kellogg, E.A., Knapp, A.K., Leakey, A.D.B., Nelson, D.M., Saarela, J.M., Sage, R.F., Sala, O.E., Salamin, N., Still, C.J. & Tipple, B. 2010. The origins of C4 grasslands: Integrating evolutionary and ecosystem science. Science, 328(5978): 587–591. https://doi.org/10.1126/science.1177216

 

Elmer, K.R., Bonett, R.M., Wake, D.B. & Lougheed, S. 2013. Early Miocene origin and cryptic diversification of South American salamanders. BMC Evolutionary Biology, 13(59): 1–16.

 

Erwin, D.H. 2008. Extinction: How life on earth nearly ended 250 million years ago. Princeton University Press, 320 p. Princeton.

 

Farris, D.W., Jaramillo, C., Bayona, G., Restrepo–Moreno, S.A., Montes, C., Cardona, A., Mora, A., Speakman, R.J., Glascock, M.D. & Valencia, V. 2011. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11): 1007–1010. https://doi.org/10.1130/G32237.1

 

Fedorov, A.V., Brierley, C.M., Lawrence, K.T., Liu, Z., Dekens, P.S. & Ravelo, A.C. 2013. Patterns and mechanisms of early Pliocene warmth. Nature, 496(7443): 43–49. https://doi.org/10.1038/nature12003

 

Feild, T.S., Brodribb, T.J., Iglesias, A., Chatelet, D.S., Baresh, A., Upchurch, G.R., Gómez, B., Mohr, B.A.R., Coiffard, C., Kvaček, J. & Jaramillo, C.A. 2011a. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proceedings of the National Academy of Sciences of the United States of America, 108(20): 8363–8366. https://doi.org/10.1073/pnas.1014456108

 

Feild, T.S., Upchurch, G.R., Chatelet, D.S., Brodribb, T.J., Grubbs, K.C., Samain, M.S. & Wanke, S. 2011b. Fossil evidence for low gas exchange capacities for Early Cretaceous angiosperm leaves. Paleobiology, 37(2): 195–213. https://doi.org/10.1666/10015.1

 

Figueiredo, J., Hoorn, C., van der Ven, P. & Soares, E. 2009. Late Miocene onset of the Amazon River and the Amazon deep–sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37(7): 619–622. https://doi.org/10.1130/G25567A.1

 

Filippelli, G.M. & Flores, J.A. 2009. From the warm Pliocene to the cold Pleistocene: A tale of two oceans. Geology, 37(10): 959–960. https://doi.org/10.1130/focus102009.1

 

Fine, P.V.A. & Ree, R.H. 2006. Evidence for a time–integrated species–area effect on the latitudinal gradient in tree diversity. The American Naturalist, 168(6): 796–804. https://doi.org/10.1086/508635

 

Fine, P.V.A., Ree, R.H. & Burnham, R.J. 2008. Disparity in tree species richness between tropical, temperate and boreal biomes. The geographic area and age hypothesis. In: Carson, W.P. & Schnitzer, S.A. (editors), Tropical forest community ecology. Blackwell Scientific, p. 31–45. London.

 

Flohn, H. 1981. A hemispheric circulation asymmetry during late Tertiary. Geologische Rundschau, 70: 725–736.

 

Forasiepi, A.M., Soibelzon, L.H., Suárez, C., Sánchez, R., Quiroz, L.I., Jaramillo, C. & Sánchez–Villagra, M.R. 2014. Carnivorans at the Great American Biotic Interchange: New discoveries from the northern Neotropics. Naturwissenschaften, 101(11): 965–974. https://doi.org/10.1007/s00114-014-1237-4

 

Frailey, C.D. 1986. Late Miocene and Holocene mammals, exclusive of the Notoungulata, of the Rio Acre region, western Amazonia. Contribution in Sciences, 374: 1–46.

 

Frieling, J., Gebhardt, A., Hubert, M., Adekeye, O.A., Akande, S.O., Reichart, G.J., Middelburg, J.J., Schouten, S. & Sluijs, A. 2017. Extreme warmth and heat–stressed plankton in the tropics during the Paleocene – Eocene Thermal Maximum. Science Advances, 3(3): 1–9. https://doi.org/10.1126/sciadv.1600891

 

Friis, E.M., Crane, P.R., Pedersen, K.R., Stampanoni, M. & Marone, F. 2015. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature, 528: 551–554. https://doi.org/10.1038/nature16441

 

García, C. 1958. Investigación palinológica de la Formación Guaduas del Anticlinal de Guachetá–Lenguazaque–Tausa. Boletín de Geología, (2): 27–31.

 

Garzione, C.N., Molnar, P., Libarkin, J.C. & MacFadden, B.J. 2006. Rapid late Miocene rise of the Bolivian altiplano: Evidence for removal of mantle lithosphere. Earth and Planetary Science Letters, 241(3–4): 543–556. https://doi.org/10.1016/j.epsl.2005.11.026

 

Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P. & Mulch, A. 2008. Rise of the Andes. Science, 320(5881): 1304–1307. https://doi.org/10.1126/science.1148615

 

Garzione, C.N., Auerbach, D.J., Smith, J.J.S., Rosario, J.J., Passey, B.H., Jordan, T.E. & Eiler, J.M. 2014. Clumped isotope evidence for diachronous surface cooling of the altiplano and pulsed surface uplift of the central Andes. Earth and Planetary Science Letters, 393: 173–181. https://doi.org/10.1016/j.epsl.2014.02.029

 

Gaston, K.J. 2000. Global patterns in biodiversity. Nature, 405: 220–227. https://doi.org/10.1038/35012228

 

Gehler, A., Gingerich, P.D. & Pack, A. 2016. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite. Proceedings of the National Academy of Sciences of the United States of America, 113(28): 7739–7744. https://doi.org/10.1073/pnas.1518116113

 

Gentry, A.H. 1982a. Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean Orogeny? Annals of the Missouri Botanical Garden, 69(3): 557–593. https://doi.org/10.2307/2399084

 

Gentry, A.H. 1982b. Patterns of Neotropical plant species diversity. Evolutionary Biology, 15: 1–84. https://doi.org/10.1007/978-1-4615-6968-8_1

 

Ghosh, P., Garzione, C.N. & Eiler, J.M. 2006. Rapid uplift of the altiplano revealed through 13C–18O bonds in paleosol carbonates. Science, 311(5760): 511–515. https://doi.org/10.1126/science.1119365

 

Gillett, J.B. 1962. Pest pressure, an underestimated factor in evolution. Systematics Association Publication, 4: 37–46.

 

Gingerich, P.D. 2006. Environment and evolution through the Paleocene – Eocene Thermal Maximum. Trends in Ecology & Evolution, 21(5): 246–253. https://doi.org/10.1016/j.tree.2006.03.006

 

Gómez–Navarro, C., Jaramillo, C., Herrera, F., Wing, S.L. & Callejas, R. 2009. Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. American Journal of Botany, 96(7): 1300–1312. https://doi.org/10.3732/ajb.0800378

 

González, H., Lemoigne, I. & Martínez, J.O. 1977. Flora de la Formación Valle Alto, Jurásico en la cordillera Central de Colombia. Boletín de Ciencias de la Tierra, 2: 107–122.

 

González–Wevar, C.A., Hüne, M., Segovia, N.I., Nakano, T., Spencer, H.G., Chown, S.L., Saucède, T., Johnstone, G., Mansilla, A. & Poulin, E. 2016. Following the Antarctic Circumpolar Current: Patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean. Journal of Biogeography, 44(4): 861–874. https://doi.org/10.1111/jbi.12908

 

Graham, A. 1988a. Studies in Neotropical paleobotany. VI. The lower Miocene communities of Panama–The Cucaracha Formation. Annals Missouri Botanical Garden, 75(4): 1467–1479.

 

Graham, A. 1988b. Studies in Neotropical paleobotany. V. The lower Miocene communities of Panama–The Culebra Formation. Annals Missouri Botanical Garden, 75(4): 1440–1466.

 

Graham, A. 1991. Studies in Neotropical paleobotany. X. The Pliocene communities of Panama–composition, numerical representations, and paleocommunity paleoenvironmental reconstructions. Annals Missouri Botanical Garden, 78(2): 465–475.

 

Graham, A. 1992. Utilization of the isthmian land bridge during the Cenozoic–paleobotanical evidence for timing, and the selective influence of altitudes and climate. Review of Palaeobotany and Palynology, 72(1–2): 119–128. https://doi.org/10.1016/0034-6667(92)90179-K

 

Graham, A. 1999. Late Cretaceous and Cenozoic history of North American vegetation. Oxford University Press, 350 p. New York.

 

Graham, A., editor. 2010. Late Cretaceous and Cenozoic history of Latin American vegetation and terrestrial environments. Missouri Botanical Garden Press, 618 p. Saint Louis, USA.

 

Graham, A. 2011. The age and diversification of terrestrial new world ecosystems through Cretaceous and Cenozoic time. American Journal of Botany, 98(3): 336–351. https://doi.org/10.3732/ajb.1000353

 

Gübeli, A.A., Hochuli, P. & Wildi, W. 1984. Lower Cretaceous turbiditic sediments from the Rif chain (northern Marocco)–palynology, stratigraphy and palaeogeographic setting. Geologische Rundschau, 73(3): 1081–1114. https://doi.org/10.1007/BF01820889

 

Gutiérrez, N.M. & Jaramillo, C.A. 2007. Maastrichtian paleotemperature and paleoprecipitation from the Guaduas Formation, Colombia. Palynology, 32: 260.

 

Gutjahr, M., Ridgwell, A., Sexton, P.F., Anagnostou, E., Pearson, P.N., Pälike, H., Norris, R.D., Thomas, E. & Foster, G.L. 2017. Very large release of mostly volcanic carbon during the Palaeocene – Eocene Thermal Maximum. Nature, 548: 573–577. https://doi.org/10.1038/nature23646

 

Haffer, J. 1969. Speciation in Amazonian forest birds. Science, 165(3889): 131–137. https://doi.org/10.1126/science.165.3889.131

 

Hambalek, N. 1993. Palinoestratigrafía del Mioceno–Plioceno de la región de Urumaco, Falcón noroccidental. Bachelor thesis, Universidad Central de Venezuela, 168 p. Caracas.

 

Hambalek, N., Rull, V., Digiacomo, E. & Díaz de Gamero, M.L. 1994. Evolución paleoecológica y paleoambiental de la secuencia del Neógeno en el surco de Urumaco: Estudio palinológico y litológico. Boletín de la Sociedad Venezolana de Geología, 19: 7–19.

 

Haq, B.U., Hardenbol, J., Vail, P.R., Stover, L.E., Colin, J.P., Ioannides, N.S., Wright, R.C., Baum, G.R., Gombos–Jr, A.M., Pflum, C.E., Loutit, T.S., du Chêne, R.J., Romine, K.K., Sarg, J.F., Posamentier, H.W. & Morgan, B.E. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea–level change. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., van Wagoner, J., Ross, C.A. & Kendall, C.G. (editors), Sea–level changes: An integrated approach. Society of Economic Paleontologists and Mineralogists, Special Publication 42, p. 71–108. https://doi.org/10.2110/pec.88.01.0071

 

Hastings, A., Bloch, J., Cadena, E. & Jaramillo, C. 2010. A new small short–snouted dyrosaurid (Crocodylomorpha, Mesoeucrocodylia) from the Paleocene of northeastern Colombia. Journal of Vertebrate Paleontology, 30(1): 139–162. https://doi.org/10.1080/02724630903409204

 

Hastings, A., Bloch, J. & Jaramillo, C. 2011. A new longirostrine dyrosaurid (Crocodylomorpha, Mesoeucrocodylia) from the Paleocene of north–eastern Colombia: Biogeographic and behavioural implications for new–world Dyrosauridae. Palaeontology, 54(5): 1095–1116. https://doi.org/10.1111/j.1475-4983.2011.01092.x

 

Hastings, A., Bloch, J., Jaramillo, C., Rincón, A. & MacFadden, B. 2013. Systematics and biogeography of crocodylians from the Miocene of Panama. Journal of Vertebrate Paleontology, 33(2): 239–263. https://doi.org/10.1080/02724634.2012.713814

 

Hastings, A., Bloch, J. & Jaramillo, C. 2014. A new blunt–snouted dyrosaurid, Anthracosuchus balrogus gen. et sp. nov. (Crocodylomorpha, Mesoeucrocodylia), from the Palaeocene of Colombia. Historical Biology: An International Journal of Paleobiology, 27(8): 998–1020. https://doi.org/10.1080/08912963.2014.918968

 

Haug, G. & Tiedemann, R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393: 673–676. https://doi.org/10.1038/31447

 

Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. & Röhl, U. 2001. Southward migration of the intertropical convergence zone through the Holocene. Science, 293(5533): 1304–1308. https://doi.org/10.1126/science.1059725

 

Head, J., Bloch, J., Hasting, A., Bourque, J., Cadena, E., Herrera, F., Polly, P.D. & Jaramillo, C. 2009a. Giant boid snake from the Palaeocene Neotropics reveals hotter past equatorial temperatures. Nature, 457(7230): 715–718. https://doi.org/10.1038/nature07671

 

Head, J., Bloch, J., Hasting, A., Bourque, J., Cadena, E., Herrera, F., Polly, P.D. & Jaramillo, C. 2009b. Head et al. reply. Nature, 460: E4–E5. https://doi.org/10.1038/nature08225

 

Head, J., Rincón, A., Suárez, C., Montes, C. & Jaramillo, C. 2012. Fossil evidence for earliest Neogene American faunal interchange: Boa (Serpentes, Boinae) from the early Miocene of Panama. Journal of Vertebrate Paleontology, 32(6): 1328–1334. https://doi.org/10.1080/02724634.2012.694387

 

Hendy, A.J.W., Jones, D.S., Moreno, F., Zapata, V. & Jaramillo, C. 2015. Neogene molluscs, shallow marine paleoenvironments, and chronostratigraphy of the Guajira Peninsula, Colombia. Swiss Journal of Palaeontology, 134(1): 45–75. https://doi.org/10.1007/s13358-015-0074-1

 

Herendeen, P.S., Friis, E.M., Pedersen, K.R. & Crane, P.R. 2017. Palaeobotanical redux: Revisiting the age of the angiosperms. Nature Plants, 3(17015): 1–8. https://doi.org/10.1038/nplants.2017.15

 

Herngreen, G.F.W. & Dueñas, H. 1990. Dating of the Cretaceous Une Formation, Colombia and the relationship with the Albian – Cenomanian African–South American microfloral province. Review of Palaeobotany and Palynology, 66(3–4): 345–359. https://doi.org/10.1016/0034-6667(90)90046-L

 

Herngreen, G.F.W., Kedves, M., Rovnina, L.V. & Smirnova, S.B. 1996. Cretaceous palynofloral provinces: A review. In: Jansonius, J. & McGregor, D.C. (editors), Palynology: Principles and applications. American Association of Stratigraphic Palynologists Foundation, 3, p. 1157–1188. Dallas.

 

Herrera, F., Jaramillo, C., Dilcher, D., Wing, S.L. & Gómez, C. 2008. Fossil Araceae from a Paleocene Neotropical rainforest in Colombia. American Journal of Botany, 95(12): 1569–1583. https://doi.org/10.3732/ajb.0800172

 

Herrera, F., Manchester, S., Jaramillo, C., MacFadden, B. & da Silva–Caminha, S. 2010. Phytogeographic history and phylogeny of the Humiriaceae. International Journal of Plant Sciences, 171(4): 2004–2017. https://doi.org/10.1086/651229

 

Herrera, F., Manchester, S.R., Hoot, S.B., Wefferling, K., Carvalho, M. & Jaramillo, C. 2011. Phytogeographic implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. American Journal of Botany, 98(12): 1–14. https://doi.org/10.3732/ajb.1000461

 

Herrera, F., Manchester, S., Vélez–Juarbe, J. & Jaramillo, C.A. 2014a. Phytogeographic history of the Humiriaceae (Part 2). International Journal of Plant Science, 175(7): 828–840. https://doi.org/10.1086/676818

 

Herrera, F., Manchester, S.R., Carvalho, M.R., Jaramillo, C. & Wing, S.L. 2014b. Paleocene wind–dispersed fruits and seeds from Colombia and their implications for early Neotropical rainforests. Acta Palaeobotanica, 54(2): 197–229. https://doi.org/10.2478/acpa-2014-0008

 

Herrera, F., Manchester, S.R., Koll, R. & Jaramillo, C. 2014c. Fruits of Oreomunnea (Juglandaceae) in the early Miocene of Panama. In: Stevens, W.D., Montiel, O.M. & Raven, P. (editors), Paleobotany and biogeography: A festschrift for Alan Graham in his 80th year. Missouri Botanical Garden Press, p. 124–133. Saint Louis, USA.

 

Hinojosa, F. & Villagrán, C. 2005. Did South American mixed paleofloras evolve under thermal equability or in the absence of an effective Andean barrier during the Cenozoic? Palaeogeography, Palaeoclimatology, Palaeoecology, 217(1–2): 1–23. https://doi.org/10.1016/j.palaeo.2004.11.013

 

Hooghiemstra, H. & van der Hammen, T. 1998. Neogene and Quaternary development of the Neotropical rain forest: The forest refugia hypothesis, and a literature overview. Earth–Science Reviews, 44(3–4): 147–183. https://doi.org/10.1016/S0012-8252(98)00027-0

 

Hooghiemstra, H., Wijninga, V.M. & Cleef, A.M. 2006. The paleobotanical record of Colombia: Implications for biogeography and biodiversity. Annals of the Missouri Botanical Garden, 93(2): 297–325.

 

Hoorn, C. 1994a. An environmental reconstruction of the palaeo–Amazon River system (middle – late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4): 187–238. https://doi.org/10.1016/0031-0182(94)90074-4

 

Hoorn, C. 1994b. Fluvial palaeoenvironments in the intracratonic Amazonas Basin (early Miocene – early middle Miocene, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 109(1): 1–54. https://doi.org/10.1016/0031-0182(94)90117-1

 

Hoorn, C., Guerrero, J., Sarmiento, G.A. & Lorente, M.A. 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23(3): 237–240. https://doi.org/10.1130/0091-7613(1995)023<0237:ATAACF>2.3.CO;2

 

Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermúdez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sánchez–Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T. & Antonelli, A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006): 927–931. https://doi.org/10.1126/science.1194585

 

Hoorn, C., Bogotá, G.R., Romero–Báez, M., Lammertsma, E.I., Flantua, S.G.A., Dantas, E.L., Dino, R., do Carmo, D.A. & Chemale Jr., F. 2017. The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change, 153: 51–65. https://doi.org/10.1016/j.gloplacha.2017.02.005

 

Hotton, C.L. 2002. Palynology of the Cretaceous – Tertiary boundary in Central Montana: Evidence for extraterrestrial impact as a cause of the terminal Cretaceous extinctions. In: Hartman, J.H., Johnson, K.R. & Nichols, D.J. (editors), The Hell Creek Formation and the Cretaceous – Tertiary boundary in the northern great plains: An integrated continental record of the end of the Cretaceous. Geological Society of America, Special Paper 361, p. 473–502. Boulder, USA. https://doi.org/10.1130/0-8137-2361-2.473

 

Hovan, S. 1995. Late Cenozoic atmospheric circulation intensity and climatic history recorded by eolian deposition in the eastern equatorial Pacific Ocean, Leg 138. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer–Julson, A. & van Andel, T.H. (editors), Proceedings of the Ocean Drilling Program. Scientific Results 138, p. 615–625. https://doi.org/10.2973/odp.proc.sr.138.132.1995

 

Huber, M. 2008. A hotter greenhouse? Science, 321(5887): 353–354. https://doi.org/10.1126/science.1161170

 

Huber, M. 2009. Snakes tell a torrid tale. Nature, 457: 669–671. https://doi.org/10.1038/457669a

 

Huber, M. & Caballero, R. 2011. The early Eocene equable climate problem revisited. Climate of the Past, 7: 603–633. https://doi.org/10.5194/cp-7-603-2011

 

Huber, M. & Sloan, L.C. 1999. Warm climate transitions: A general circulation modeling study of the late Paleocene Thermal Maximum (~56 Ma). Journal of Geophysical Research: Atmospheres, 104(D14): 16633–16655. https://doi.org/10.1029/1999JD900272

 

Huber, M. & Sloan, L.C. 2000. Climatic responses to tropical sea surface temperature changes on a “greenhouse" Earth. Paleoceanography and Paleoclimatology, 15(4): 443–450. https://doi.org/10.1029/1999PA000455

 

Huber, M., Sloan, L.C. & Shellito, C. 2003. Early Paleogene oceans and climate: A fully coupled modeling approach using the NCAR CCSM. In: Wing, S.L., Gingerich, P.D., Schmitz, B. & Thomas, E. (editors), Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America, Special Paper 369, p. 25–47. Boulder, USA. https://doi.org/10.1130/0-8137-2369-8.25

 

Huertas, G. 2003. Flora fósil de Villa de Leyva y sus alrededores (Boyacá, Colombia, Suramérica). Camargo Editores, 151 p. Chía, Colombia.

 

Jablonski, D. 1993. The tropics as a source of evolutionary novelty through geological time. Nature, 364: 142–144. https://doi.org/10.1038/364142a0

 

Jacobs, B., Kingston, J. & Jacobs, L. 1999. The origin of grass–dominated ecosystems. Annals of the Missouri Botanical Garden, 86(2): 590–643. https://doi.org/10.2307/2666186

 

Jacques, F.M., Wang, W., Ortiz, R., Li, H.L., Zhou, Z.K. & Chen, Z. 2011. Integrating fossils in a molecular–based phylogeny and testing them as calibration points for divergence time estimates in Menispermaceae. Journal of Systematics and Evolution, 49(1): 25–49. https://doi.org/10.1111/j.1759-6831.2010.00105.x

 

Janzen, D.H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist, 104(940): 501–528. https://doi.org/10.1086/282687

 

Jaramillo, C. 2002. Response of tropical vegetation to Paleogene warming. Paleobiology, 28(2): 222–243. https://doi.org/10.1666/0094-8373(2002)028<0222:ROTVTP>2.0.CO;2

 

Jaramillo, C. 2018. Evolution of the Isthmus of Panama: Biological, paleoceanographic, and paleoclimatological implications. In: Hoorn, C., Perrigo, A. & Antonelli, A. (editors), Mountains, climate and biodiversity. Wiley–Blackwell, p. 323–338. Chichester, UK.

 

Jaramillo, C. & Cárdenas, A. 2013. Global warming and Neotropical rainforests: A historical perspective. Annual Review of Earth and Planetary Sciences, 41: 741–766. https://doi.org/10.1146/annurev-earth-042711-105403

 

Jaramillo, C. & Dilcher, D.L. 2000. Microfloral diversity patterns of the late Paleocene – Eocene interval in Colombia, northern South America. Geology, 28(9): 815–818. https://doi.org/10.1130/0091-7613(2000)28<815:MDPOTL>2.0.CO;2

 

Jaramillo, C. & Dilcher, D.L. 2001. Middle Paleogene palynology of central Colombia, South America: A study of pollen and spores from tropical latitudes. Palaeontographica Abteilung B, 258(4–6): 87–213.

 

Jaramillo, C., Rueda, M. & Mora, G. 2006. Cenozoic plant diversity in the Neotropics. Science, 311(5769): 1893–1896. https://doi.org/10.1126/science.1121380

 

Jaramillo, C., Bayona, G., Pardo–Trujillo, A., Rueda, M., Torres, V., Harrington, G. & Mora, G. 2007. The palynology of the Cerrejón Formation (upper Paleocene) of northern Colombia. Palynology, 31(1): 153–189. https://doi.org/10.1080/01916122.2007.9989641

 

Jaramillo, C., Hoorn, C., Silva, S., Leite, F., Herrera, F., Quiroz, L., Dino, R. & Antonioli, L. 2010a. The origin of the modern Amazon rainforest: Implications of the palynological and palaeobotanical record. In: Hoorn, C. & Wesselingh, F.P. (editors), Amazonia: Landscape and species evolution: A look into the past. Wiley–Blackwell, John Wiley & Sons Ltd., Publication, p. 317–334. Chichester, UK. https://doi.org/10.1002/9781444306408.ch19

 

Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal–Ortiz, H., Pratt, L.M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodríguez, G., Rueda, M., De la Parra, F., Morón, S., Green, W., Bayona, G., Montes, C., Quintero, O., Ramírez, R., Mora, A., Schouten, S., Bermúdez, H., Navarrete, R.E., Parra, F., Alvarán, M., Osorno, J., Crowley, J.L., Valencia, V. & Vervoort, J. 2010b. Effects of rapid global warming at the Paleocene – Eocene boundary on Neotropical vegetation. Science, 330(6006): 957–961. https://doi.org/10.1126/science.1193833

 

Jaramillo, C., Cadena, E. & Herrera, F. 2014a. Diversidad fósil en el valle de Cerrejón. In: Báez, L. & Trujillo, F. (editors), Biodiversidad en Cerrejón. Carbones de Cerrejón, Fundación Omacha, Fondo para la Acción Ambiental y la Niñez. p. 39–55. Bogotá.

 

Jaramillo, C., Moreno, E., Ramirez, V., da Silva, S., de la Barrera, A., de la Barrera, A., Sánchez, C., Morón, S., Herrera, F., Escobar, J., Koll, R., Manchester, S.R. & Hoyos, N. 2014b. Palynological record of the last 20 million years in Panama. In: Stevens, W.D., Montiel, O.M. & Raven, P.H. (editors), Paleobotany and biogeography: A Festschrift for Alan Graham in his 80th year. Missouri Botanical Garden Press, p. 134–251. Saint Louis, USA.

 

Jaramillo, C., Moreno, F., Hendy, F., Sánchez–Villagra, M. & Marty, D. 2015. Preface: La Guajira, Colombia: A new window into the Cenozoic Neotropical biodiversity and the Great American Biotic Interchange. Swiss Journal of Palaeontology, 134: 1–4. https://doi.org/10.1007/s13358-015-0075-0

 

Jaramillo, C., Montes, C., Cardona, A., Silvestro, D., Antonelli, A. & Bacon, C.D. 2017a. Comment (1) on “Formation of the Isthmus of Panama" by O'Dea et al. Science Advances, 3(6): 1–8. https://doi.org/10.1126/sciadv.1602321

 

Jaramillo, C., Romero, I., D'Apolito, C., Bayona, G., Duarte, E., Louwye, S., Escobar, J., Luque, J., Carrillo–Briceno, J., Zapata, V., Mora, A., Schouten, S., Zavada, M., Harrington, G., Ortiz, J. & Wesselingh, F. 2017b. Miocene flooding events of western Amazonia. Science Advances, 3(5): 1–11. https://doi.org/10.1126/sciadv.1601693

 

Jud, N.A., Nelson, C.W. & Herrera, F. 2016. Fruits and wood of Parinari from the early Miocene of Panama and the fossil record of Chrysobalanaceae. American Journal of Botany, 103(2): 277–289. https://doi.org/10.3732/ajb.1500425

 

Kar, N., Garzione, C.N., Jaramillo, C., Shanahan, T., Carlotto, V., Pullen, A., Moreno, F., Anderson, V., Moreno, E. & Eiler, J. 2016. Rapid regional surface uplift of the northern Altiplano Plateau revealed by multiproxy paleoclimate reconstruction. Earth and Planetary Science Letters, 447: 33–47. https://doi.org/10.1016/j.epsl.2016.04.025

 

Kay, R.F., Madden, R.H., Cifelli, R.L. & Flynn, J.J., editors. 1997. Vertebrate paleontology in the Neotropics: The Miocene fauna of La Venta, Colombia. Smithsonian Institution Press, 608 p. Washington, D.C.

 

Keigwin, L.D. 1982. Isotopic paleoceanography of the Caribbean and East Pacific: Role of Panama uplift in late Neogene time. Science, 217(4557): 350–353. https://doi.org/10.1126/science.217.4557.350

 

Kemp, E.M. 1968. Probable angiosperm pollen from the British Barremian to Albian strata. Palaeontology, 11(3): 421–434.

 

Kennett, J.P. & Stott, L.D. 1991. Abrupt deep–sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature, 353: 225–229. https://doi.org/10.1038/353225a0

 

Krause, G.H., Winter, K., Krause, B., Jahns, P., García, M., Aranda, J. & Virgo, A. 2010. High–temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Functional Plant Biology, 37(9): 890–900. https://doi.org/10.1071/FP10034

 

Kreft, H. & Jetz, W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 104(14): 5925–5930. https://doi.org/10.1073/pnas.0608361104

 

Lammertsma, E.I., Boer, H.J., Dekker, S.C., Dilcher, D.L., Lotter, A.F. & Wagner–Cremer, F. 2011. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences of the United States of America, 108(10): 4035–4040. https://doi.org/10.1073/pnas.1100371108

 

Latrubesse, E.M., Cozzuol, M., da Silva–Caminha, S.A., Rigsby, C.A., Absy, M.L. & Jaramillo, C. 2010. The late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth–Science Reviews, 99(3–4): 99–124. https://doi.org/10.1016/j.earscirev.2010.02.005

 

Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D. & Zhang, Z. 2012. Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current. Paleoceanography and Paleoclimatology, 27(4): 1–9. https://doi.org/10.1029/2012PA002345

 

Lehmann, C.E., Archibald, S.A., Hoffmann, W.A. & Bond, W.J. 2011. Deciphering the distribution of the savanna biome. New Phytologist, 191(1): 197–209. https://doi.org/10.1111/j.1469-8137.2011.03689.x

 

Leigh, E.G., Davidar, P., Dick, C., Puyravaud, J., Terborgh, J., ter Steege, H. & Wright, S. 2004. Why do some tropical forests have so many species of trees? Biotropica, 36(4): 447–473. https://doi.org/10.1111/j.1744-7429.2004.tb00342.x

 

Leigh, E.G., O'Dea, A. & Vermeij, G.J. 2013. Historical biogeography of the Isthmus of Panama. Biological Reviews, 89(1): 148–172. https://doi.org/10.1111/brv.12048

 

Leighton, L.R. 2005. The latitudinal diversity gradient through deep time: Testing the ''age of the tropics'' hypothesis using Carboniferous productidine brachiopods. Evolutionary Ecology, 19(6): 563–581. https://doi.org/10.1007/s10682-005-1021-1

 

Leite, R.N., Kolokotronis, S.O., Almeida, F.C., Werneck, F., Rogers, D.S. & Weksler, M. 2014. In the wake of invasion: Tracing the historical biogeography of the South American cricetid radiation (Rodentia, Sigmodontinae). PLOS ONE, 9(6): 1–12. https://doi.org/10.1371/journal.pone.0100687

 

Lemoigne, Y. 1984. Données nouvelles sur la paléoflore de Colombie. Geobios, 17(6): 667–690. https://doi.org/10.1016/S0016-6995(84)80115-1

 

Lerdau, M.T. & Throop, H.L. 1999. Isoprene emission and photosynthesis in a tropical forest canopy: Implications for model development. Ecological Applications, 9(4): 1109–1117. https://doi.org/10.1890/1051-0761(1999)009[1109:IEAPIA]2.0.CO;2

 

Lewis, S.L., Malhi, Y. & Phillips, O.L. 2004. Fingerprinting the impacts of global change on tropical forests. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 359(1443): 437–462. https://doi.org/10.1098/rstb.2003.1432

 

Linares, O. 2004. Bioestratigrafía de la fauna de mamíferos de las formaciones Socorro, Urumaco y Codore (Mioceno medio–Plioceno temprano, de la región de Urumaco, Falcón, Venezuela. Paleobiología Neotropical, 1: 1–26.

 

Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, B.T., Brinkhuis, H., Shah, S.R., Leckie, R.M. & Pearson, A. 2009. Global cooling during the Eocene – Oligocene climate transition. Science, 323(5918): 1187–1190. https://doi.org/10.1126/science.1166368

 

Lloyd, J. & Farquhar, G.D. 1994. 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia, 99(3–4): 201–215. https://doi.org/10.1007/BF00627732

 

Lloyd, J. & Farquhar, G.D. 2008. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 363(1498): 1811–1817. https://doi.org/10.1098/rstb.2007.0032

 

Lupia, R., Lidgard, S. & Crane, P.R. 1999. Comparing palynological abundance and diversity: Implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25(3): 305–340. https://doi.org/10.1017/S009483730002131X

 

Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K. & Stocker, T.F. 2008. High–resolution carbon dioxide concentration record 650 000–800 000 years before present. Nature, 453: 379–382. https://doi.org/10.1038/nature06949

 

MacFadden, B.J. 2006a. Extinct mammalian biodiversity of the ancient New World tropics. Trends in Ecology & Evolution, 21(3): 157–165. https://doi.org/10.1016/j.tree.2005.12.003

 

MacFadden, B.J. 2006b. North American Miocene land mammals from Panama. Journal of Vertebrate Paleontology, 26(3): 720–734. https://doi.org/10.1671/0272-4634(2006)26[720:NAMLMF]2.0.CO;2

 

MacFadden, B.J. 2009. Three–toed browsing horse Anchiterium (Echidae) from the Miocene of Panama. Journal of Paleontology, 83(3): 489–492.

 

MacFadden, B.J. & Higgins, P. 2004. Ancient ecology of 15–million–year–old browsing mammals within C3 plant communities from Panama. Oecologia, 140(1): 169–182. https://doi.org/10.1007/s00442-004-1571-x

 

 

MacFadden, B.J., Kirby, M.X., Rincon, A., Montes, C., Moron, S., Strong, N. & Jaramillo, C. 2010. Extinct peccary “Cynorca" Occidentale (Tayassuidae, Tayassuinae) from the Miocene of Panama and correlations to North America. Journal of Paleontology, 84(2): 288–298. https://doi.org/10.1666/09-064R.1

 

MacFadden, B.J., Foster, D.A., Rincón, A.F., Morgan, G.S. & Jaramillo, C. 2012. The New World tropics as a cradle of biodiversity during the early Miocene: Calibration of the centenario fauna from Panama. Geological Society of America Abstracts with Programs, 44, p. 163.

 

Magallón, S. & Castillo, A. 2009. Angiosperm diversification through time. American Journal of Botany, 96(1): 349–365. https://doi.org/10.3732/ajb.0800060

 

Magallón, S., Crane, P.R. & Herendeen, P.S. 1999. Phylogenetic pattern, diversity, and diversification of eudicots. Annals of the Missouri Botanical Garden, 86(2): 297–372.

 

Martínez, C., Carvalho, M., Madriñan, S. & Jaramillo, C.A. 2015. A Late Cretaceous Piper (Piperaceae) from Colombia and diversification patterns for the genus. American Journal of Botany, 102(2): 273–289. https://doi.org/10.3732/ajb.1400427

 

Martínez, J.I. 2009. La historia cenozoica del fenómeno de El Niño. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 33(129): 491–512.

 

McInerney, F.A. & Wing, S.L. 2011. The Paleocene – Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39: 489–516. https://doi.org/10.1146/annurev-earth-040610-133431

 

Mejía–Velásquez, P.J. 2007. Floral composition of a Lower Cretaceous paleotropical ecosystem inferred from quantitative palynology. Master thesis, University of Florida, 85 p. Gainesville, USA.

 

Mejía–Velásquez, P., Dilcher, D., Jaramillo, C., Fortini, L. & Manchester, R.S. 2012. Palynological composition of a Lower Cretaceous South American tropical sequence: Climatic implications and diversity comparisons with other latitudes. American Journal of Botany, 99(11): 1819–1827. https://doi.org/10.3732/ajb.1200135

 

Mikolajewicz, U., Maier–Reimer, E., Crowley, T.J. & Kim, K.Y. 1993. Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography and Paleoclimatology, 8(4): 409–426. https://doi.org/10.1029/93PA00893

 

Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie–Blick, N. & Pekar, S.F. 2005. The Phanerozoic record of global sea–level change. Science, 310(5752): 1293–1298. https://doi.org/10.1126/science.1116412

 

Molnar, P. 2008. Closing of the Central American Seaway and the ice age: A critical review. Paleoceanography and Paleoclimatology, 23(2): 1–15. https://doi.org/10.1029/2007PA001574

 

Molnar, P. 2017. Comment (2) on “Formation of the Isthmus of Panama" by O'Dea et al. Science Advances, 3(6): 1–4. https://doi.org/10.1126/sciadv.1602320

 

Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T.F., Raynaud, D. & Barnola, J.M. 2001. Atmospheric CO2 concentrations over the last glacial termination. Science, 291(5501): 112–114. https://doi.org/10.1126/science.291.5501.112

 

Montes, C., Bayona, G., Cardona, A., Buchs, D.M., Silva, C.A., Morón, S., Hoyos, N., Ramírez, D.A., Jaramillo, C. & Valencia, V. 2012a. Arc–continent collision and orocline formation: Closing of the Central American Seaway. Journal of Geophysical Research: Solid Earth, 117(B4): 25 p. https://doi.org/10.1029/2011JB008959

 

Montes, C., Cardona, A., McFadden, R.R., Morón, S., Silva, C.A., Restrepo–Moreno, S., Ramírez, D., Hoyos, N., Wilson, J., Farris, D.W., Bayona, G., Jaramillo, C., Valencia, V., Bryan, J. & Flores, J.A. 2012b. Evidence for middle Eocene and younger land emergence in Central Panama: Implications for isthmus closure. Geological Society of America Bulletin, 124(5–6): 780–799. https://doi.org/10.1130/B30528.1

 

Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez–Ángel, L.C., Rodríguez–Parra, L.A., Ramírez, V. & Niño, H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348(6231): 226–229. https://doi.org/10.1126/science.aaa2815

 

Moore, M.J., Soltis, P.S., Bell, C.D., Burleigh, J.G. & Soltis, D.E. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences of the United States of America, 107(10): 4623–4628. https://doi.org/10.1073/pnas.0907801107

 

Moreno–Bernal, J.W., Head, J. & Jaramillo, C. 2016. Fossil crocodilians from the high Guajira Peninsula of Colombia: Neogene faunal change in northernmost South America. Journal of Vertebrate Paleontology, 36(3): 1–17. https://doi.org/10.1080/02724634.2016.1110586

 

Moreno, J.F., Hendy, A.J.W., Quiroz, L., Hoyos, N., Jones, D.S., Zapata, V., Zapata, S., Ballen, G.A., Cadena, E., Cárdenas, A.L., Carrillo–Briceño, J.D., Carrillo, J.D., Delgado–Sierra, D., Escobar, J., Martínez, J.I., Martínez, C., Montes, C., Moreno, J., Pérez, N., Sánchez, R., Suárez, C., Vallejo–Pareja, M.C. & Jaramillo, C. 2015. Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia. Swiss Journal of Palaeontology, 134(1): 5–43. https://doi.org/10.1007/s13358-015-0071-4

 

Morgan, M.E., Kingston, J.D. & Marino, B.D. 1994. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature, 367: 162–165. https://doi.org/10.1038/367162a0

 

Moritz, C., Patton, J.L., Schneider, C.J. & Smith, T.B. 2000. Diversification of rainforest faunas: An integrated molecular approach. Annual Review of Ecology and Systematics, 31: 533–563. https://doi.org/10.1146/annurev.ecolsys.31.1.533

 

Muller–Landau, H.C. 2010. The tolerance–fecundity trade–off and the maintenance of diversity in seed size. Proceedings of the National Academy of Sciences of the United States of America, 107(9): 4242–4247. https://doi.org/10.1073/pnas.0911637107

 

Near, T.J., Dornburg, A., Kuhn, K.L., Eastman, J.T., Pennington, J.N., Patarnello, T., Zane, L., Fernández, D.A. & Jones, C.D. 2012. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proceedings of the National Academy of Sciences of the United States of America, 109(9): 3434–3439. https://doi.org/10.1073/pnas.1115169109

 

Nichols, D.J. & Johnson, K.G. 2008. Plants and the K–T boundary. Cambridge University Press, 292 p. Cambridge, UK. https://doi.org/10.1093/aob/mcp052

 

Niu, S., Wu, M., Han, Y., Xia, J., Li, L. & Wan, S. 2008. Water–mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177(1): 209–219. https://doi.org/10.1111/j.1469-8137.2007.02237.x

 

O'Dea, A., Lessios, H.A., Coates, A.H., Eytan, R., Restrepo–Moreno, S., Cione, A.L., Collins, L.S., De Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque–Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard–Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello–Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J. & Jackson, J.B. 2016. Formation of the Isthmus of Panama. Science Advances, 2(8): 1–11. https://doi.org/10.1126/sciadv.1600883

 

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. & Kassem, K.R. 2001. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51(11): 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

 

Ornelas, J.F., González, C., Espinosa de los Monteros, A., Rodríguez–Gómez, F. & García–Feria, L.M. 2013. In and out of Mesoamerica: Temporal divergence of Amazilia hummingbirds pre–dates the orthodox account of the completion of the Isthmus of Panama. Journal of Biogeography, 41(1): 168–181. https://doi.org/10.1111/jbi.12184

 

Pagani, M., Liu, Z.H., LaRiviere, J. & Ravelo, A.C. 2010. High Earth–system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geoscience, 3: 27–30. https://doi.org/10.1038/ngeo724

 

Pardo–Trujillo, A. 2004. Paleocene – Eocene palynology and palynofacies from northeastern Colombia and western Venezuela. Doctoral thesis, Université de Liège, 103 p. Liège, Belgium.

 

Pardo–Trujillo, A. & Jaramillo, C. 2002. New palynostratigraphical data of NW South America Paleocene – Eocene of the Middle Magdalena Valley, Colombia. International Journal of Tropical Geology, Geography and Ecology, 26(1): 1–10.

 

Pardo–Trujillo, A., Jaramillo, C. & Oboh–Ikuenobe, F. 2003. Paleogene palynostratigraphy of the eastern Middle Magdalena Valley, Colombia. Palynology, 27(1): 155–178. https://doi.org/10.1080/01916122.2003.9989585

 

Peppe, D.J., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S., Leight, E., Enikolopov, G., Fernández–Burgos, M., Herrera, F., Adams, J.M., Correa, E., Currano, E.D., Erickson, J.M., Hinojosa, L.F., Hoganson, J.W., Iglesias, A., Jaramillo, C.A., Johnson, K.R., Jordan, G.J., Kraft, N.J.B., Lovelock, E.C., Lusk, C.H., Niinemets, U., Peñuelas, J., Rapson, G., Wing, S.L. & Wright, I.J. 2011. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytologist, 190(3): 724–739. https://doi.org/10.1111/j.1469-8137.2010.03615.x

 

Pérez–Consuegra, N., Cuervo–Gómez, A., Martínez, C., Montes, C., Herrera, F., Madriñán, S. & Jaramillo, C. 2017. Paleogene Salvinia (Salviniaceae) from Colombia and their paleobiogeographic implications. Review of Palaeobotany and Palynology, 246: 85–108. https://doi.org/10.1016/j.revpalbo.2017.06.003

 

Pérez–Consuegra, N., Parra, M., Jaramillo, C., Silvestro, D., Echeverri, S., Montes, C., Jaramillo, J.M. & Escobar, J. 2018. Provenance analysis of the Pliocene Ware Formation in the Guajira Peninsula, northern Colombia: Paleodrainage implications. Journal of South American Earth Sciences, 81: 66–77. https://doi.org/10.1016/j.jsames.2017.11.002

 

Pérez, M., Vallejo–Pareja, M.C., Carrillo, J.D. & Jaramillo, C. 2017. A new Pliocene capybara (Rodentia, Caviidae) from northern South America (Guajira, Colombia), and its implications for the Great American Biotic Interchange. Journal of Mammalian Evolution, 24(1): 111–125. https://doi.org/10.1007/s10914-016-9356-7

 

Pimiento, C., Griffin, J.N., Clements, C.F., Silvestro, D., Varela, S., Uhen, M. & Jaramillo, C. 2017. The Pliocene marine megafauna extinction and its impact on functional diversity. Nature Ecology & Evolution, 1: 1100–1106. https://doi.org/10.1038/s41559-017-0223-6

 

Pinto–Sánchez, N., Ibáñez, R., Madriñán, S., Sanjur, O., Bermingham, E. & Crawford, A.J. 2012. The Great American Biotic Interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Molecular Phylogenetics and Evolution, 62(3): 954–972. https://doi.org/10.1016/j.ympev.2011.11.022

 

Pons, D. 1988. Le Mesozoique de Colombie: Macroflores et microflores, Paris, Editions du Centre National de la Recherche Scientifique: Diffusion Presses du CNRS, Cahiers de paleontologie. Travaux de paliontologie est–africaine, 168 p.

 

Poveda, G., Waylen, P.R. & Pulwarty, R.S. 2006. Annual and inter–annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1): 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031

 

Quiroz, L.I. & Jaramillo, C. 2010. Stratigraphy and sedimentary environments of Miocene shallow to marginal marine deposits in the Urumaco Trough, Falcon Basin, western Venezuela. In: Sánchez–Villagra, M., Aguilera, O. & Carlini, A.A. (editors), Urumaco and Venezuelan paleontology: The fossil record of the northern Neotropics. Indiana University Press, p. 153–172. Bloomington, USA.

 

Ramírez, S.R., Gravendeel, B., Singer, R.B., Marshall, C.R. & Pierce, N.E. 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature, 448: 1042–1045. https://doi.org/10.1038/nature06039

 

Rangel, A., Moldowan, J.M., Nino, C., Parra, P. & Giraldo, B.N. 2002. Umir Formation: Organic geochemical and stratigraphic assessment as cosource for Middle Magdalena Basin oil, Colombia. American Association of Petroleum Geologists Bulletin, 86(12): 2069–2087. https://doi.org/10.1306/61EEDE04-173E-11D7-8645000102C1865D

 

Ravelo, A.C., Dekens, P.S. & McCarthy, M. 2006. Evidence for El Niño–like conditions during the Pliocene. Geological Society of America Today, 16(3): 4–11. https://doi.org/10.1130/1052-5173(2006)016<4:EFENLC>2.0.CO;2

 

Ricklefs, R.E. & Renner, S.S. 2012. Global correlations in tropical tree species richness and abundance reject neutrality. Science, 335(6067): 464–467. https://doi.org/10.1126/science.1215182

 

Rincon, A., Bloch, J.I., Suárez, C., MacFadden, B.J. & Jaramillo, C. 2012. New floridatragulines (Mammalia, Camelidae) from the early Miocene Las Cascadas Formation, Panama. Journal of Vertebrate Paleontology, 32(2): 456–475. https://doi.org/10.1080/02724634.2012.635736

 

Rincon, A., Bloch, J.I., MacFadden, B.J. & Jaramillo, C. 2013. First Central American record of Anthracotheriidae (Mammalia, Bothriodontinae) from the early Miocene of Panama. Journal of Vertebrate Paleontology, 33(2): 421–433. https://doi.org/10.1080/02724634.2013.722573

 

Rincón–Martínez, D., Lamy, F., Contreras, S., Leduc, G., Bard, E., Saukel, C., Blanz, T., Mackensen, A. & Tiedemann, R. 2010. More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and the intertropical convergence zone in the eastern tropical Pacific. Paleoceanography and Paleoclimatology, 25(2): 1–15. https://doi.org/10.1029/2009PA001868

 

Rodríguez–Reyes, O., Falcon–Lang, H.J., Gasson, P., Collinson, M.E. & Jaramillo, C. 2014. Fossil woods (Malvaceae) from the lower Miocene (early to mid–Burdigalian) part of the Cucaracha Formation of Panama (Central America) and their biogeographic implications. Review of Palaeobotany and Palynology, 209: 11–34. https://doi.org/10.1016/j.revpalbo.2014.05.006

 

Rodríguez–Reyes, O., Gasson, P., Falcon–Lang, H.J. & Collinson, M.E. 2017a. Fossil legume woods of the Prioria–clade (subfamily Detarioideae) from the lower Miocene (early to mid– Burdigalian) part of the Cucaracha Formation of Panama (Central America) and their systematic and palaeoecological implications. Review of Palaeobotany and Palynology, 246: 44–61. https://doi.org/10.1016/j.revpalbo.2017.06.005

 

Rodríguez–Reyes, O., Gasson, P., Thornton, C.V., Falcon–Lang, H.J. & Jud, N.A. 2017b. Panascleroticoxylon crystallosa gen. et sp. nov.: A new Miocene malpiguialean tree from Panama. IAWA Journal, 38(4): 437–455. https://doi.org/10.1163/22941932-20170178

 

Rosenzweig, M.L. 1995. Species diversity in space and time. Cambridge University Press, 460 p. Cambridge. Roubik, D.W. & Camargo, J.M.F. 2011. The Panama microplate, island studies and relictual species of Melipona (Melikerria) (Hymenoptera: Apidae: Meliponini). Systematic Entomology, 37(1): 189–199. https://doi.org/10.1111/j.1365-3113.2011.00587.x

 

Royer, D. 2006. CO2–forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta, 70(23): 5665–5675. https://doi.org/10.1016/j.gca.2005.11.031

 

Royer, D. 2010. Fossil soils constrain ancient climate sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 107(2): 517–518. https://doi.org/10.1073/pnas.0913188107

 

Royer, D. 2016. Climate sensitivity in the geologic past. Annual Review of Earth and Planetary Sciences, 44: 277–293. https://doi.org/10.1146/annurev-earth-100815-024150

 

Royer, D., Pagani, M. & Beerling, D.J. 2011. Geologic constraints on Earth system sensitivity to CO2 during the Cretaceous and early Paleogene. Earth System Dynamic Discussions, 2: 211–240. https://doi.org/10.5194/esdd-2-211-2011

 

Royer, D. Pagani, M. & Beerling, D.J. 2012. Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic. Geobiology, 10(4): 298–310. https://doi.org/10.1111/j.1472-4669.2012.00320.x

 

Sacek, V. 2014. Drainage reversal of the Amazon River due to the coupling of surface and lithospheric processes. Earth and Planetary Science Letters, 401: 301–312. https://doi.org/10.1016/j.epsl.2014.06.022

 

Sage, R.F., Wedin, D.A. & Li, M. 1999. The biogeography of C4 photosynthesis: Patterns and controlling factors. In: Sage, R.F. & Monson, R.K. (editors), C4 plant biology. Academic Press, p. 313–373. San Diego, USA.

 

Sánchez–Villagra, M. 2006. Vertebrate fossils from the Neogene of Falcón state, Venezuela: Contributions on Neotropical palaeontology. Journal of Systematic Palaeontology, 4(3): 211. https://doi.org/10.1017/S1477201906001842

 

Sánchez–Villagra, M. & Aguilera, O. 2006. Neogene vertebrates from Urumaco, Falcón state, Venezuela: Diversity and significance. Journal of Systematic Palaeontology, 4(3): 213–220. https://doi.org/10.1017/S1477201906001829

 

Sánchez–Villagra, M., Aguilera, O. & Horovitz, I. 2003. The anatomy of the world's largest extinct rodent. Science, 301(5640): 1708–1710. https://doi.org/10.1126/science.1089332

 

Sarmiento, G. 1992. Palinología de la Formación Guaduas–estratigrafía y sistemática. Boletín Geológico, 32(1–3): 45–126.

 

Scheyer, T.M., Aguilera, O.A., Delfino, M., Fortier, D.C., Carlini, A.A., Sánchez, R., Carrillo–Briceño, J.D., Quiroz, L. & Sánchez–Villagra, M.R. 2013. Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. Nature Communications, 4(1907): 1–9. https://doi.org/10.1038/ncomms2940

 

Schuettpelz, E. & Pryer, K.M. 2009. Evidence for a Cenozoic radiation of ferns in an angiosperm–dominated canopy. Proceedings of the National Academy of Sciences of the United States of America, 106(27): 11200–11205. https://doi.org/10.1073/pnas.0811136106

 

Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales–Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kiessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo–Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia–Fucugauchi, J., Vajda, V., Whalen, M.T. & Willumsen, P.S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous – Paleogene boundary. Science, 327(5970): 1214–1218. https://doi.org/10.1126/science.1177265

 

Schultz, T.R. & Brady, S.G. 2008. Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 105(14): 5435–5440. https://doi.org/10.1073/pnas.0711024105

 

Sepulchre, P., Sloan, L.C., Snyder, M. & Fiechter, J. 2009. Impacts of Andean uplift on the Humboldt Current system: A climate model sensitivity study. Paleoceanography and Paleoclimatology, 24(4): 1–11. https://doi.org/10.1029/2008PA001668

 

Sepulchre, P., Sloan, L.C. & Fluteau, F. 2010. Modelling the response of Amazonian climate to the uplift of the Andean mountain range. In: Hoorn, C. & Wesselingh, F.P. (editors), Amazonia: Landscape and species evolution: A look into the past. Wiley–Blackwell, John Wiley & Sons Ltd., Publication, p. 211–222. Chichester, UK.

 

Sepulchre, P., Arsouze, T., Donnadieu, Y., Dutay, J.C., Jaramillo, C., Le Bras, J., Martin, E., Montes, C. & Waite, A.J. 2014. Consequences of shoaling of the Central American Seaway determined from modeling Nd isotopes. Paleoceanography and Paleoclimatology, 29(3): 176–189. https://doi.org/10.1002/2013PA002501

 

Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T.H., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. & Chandler, M. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth–Science Reviews, 113(3–4): 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002

 

Shackleton, N.J., Backman, J., Zimmerman, H., Kent, D.V., Hall, M.A., Roberts, D.G., Schnitker, D., Baldauf, J.G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J.B., Kaltenback, A.J., Krumsiek, K.A.O., Morton, A.C., Murray, J.W. & Westberg–Smith, J. 1984. Oxygen isotope calibration of the onset of ice–rafting and history of glaciation in the North Atlantic region. Nature, 307: 620–623. https://doi.org/10.1038/307620a0

 

Shellito, C.J., Sloan, L.C. & Huber, M. 2003. Climate model sensitivity to atmospheric CO2 levels in the early – middle Paleogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(1): 113–123. https://doi.org/10.1016/S0031-0182(02)00718-6

 

Shephard, G.E., Müller, R.D., Liu, L. & Gurnis, M. 2010. Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nature Geoscience, 3: 870–875. https://doi.org/10.1038/ngeo1017

 

Siegenthaler, U., Stocker, T.F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.M., Fischer, H., Masson–Delmotte, V. & Jouzel, J. 2005. Stable carbon cycle–climate relationship during the late Pleistocene. Science, 310(5752): 1313–1317. https://doi.org/10.1126/science.1120130

 

Simpson, G.G. 1983. Splendid isolation: The curious history of South American mammals. Yale University Press, 275 p. New Haven, USA.

 

Slaughter, B.H. 1981. A new genus of geomyoid rodent from the Miocene of Texas and Panama. Journal of Vertebrate Paleontology, 1(1): 111–115. https://doi.org/10.1080/02724634.1981.10011884

 

Sloan, L.C. & Barron, E.J. 1992. A comparison of Eocene climate model results to quantified paleoclimatic interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology, 93(3–4): 183–202. https://doi.org/10.1016/0031-0182(92)90096-N

 

Sloan, L.C. & Morrill, C. 1998. Orbital forcing and Eocene continental temperatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1–2): 21–35. https://doi.org/10.1016/S0031-0182(98)00091-1

 

Sloan, L.C. & Rea, D.K. 1996. Atmospheric carbon dioxide and early Eocene climate: A general circulation modeling sensitive study. Palaeogeography, Palaeoclimatology, Palaeoecology, 119(3–4): 275–292. https://doi.org/10.1016/0031-0182(95)00012-7

 

Sloan, L.C. & Thomas, E. 1998. Global climate of the late Paleocene epoch: Modeling the circumstances associated with a climatic “event". In: Aubry, M.P., Lucas, S.G. & Berggren, W.A. (editors), Late Paleocene – early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, p. 138–157. New York.

 

Sloan, L.C., Walker, J.C. & Moore Jr., T.C. 1995. Possible role of oceanic heat transport in early Eocene climate. Paleoceanography and Paleoclimatology, 10(2): 347–356. https://doi.org/10.1029/94PA02928

 

Slot, M. & Winter, K. 2017. Photosynthetic acclimation to warming in tropical forest tree seedlings. Journal of Experimental Botany, 68(9): 2275–2284. https://doi.org/10.1093/jxb/erx071

 

Smith, B.T., Amei, A. & Klicka, J. 2012. Evaluating the role of contracting and expanding rainforest in initiating cycles of speciation across the Isthmus of Panama. Proceedings of Royal Society of London Series B: Biological Sciences, 279(1742): 3520–3526. https://doi.org/10.1098/rspb.2012.0706

 

Sole de Porta, N. 1971. Algunos géneros nuevos de polen procedentes de la Formación Guaduas (Maastrichtiense–Paleoceno) de Colombia. Studia Geologica, 2: 133–143.

 

Stoskopf, N. 1981. Understanding crop production: Upper Saddle River, Reston, Virginia. Reston Publishing Company, Inc. 433 p.

 

Stull, G.W., Herrera, F., Manchester, S., Jaramillo, C. & Tiffney, B.H. 2012. Fruits of an “Old World" tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America. Systematic Botany, 37(3): 784–794. https://doi.org/10.1600/036364412X648724

 

Suárez, C., Forasiepi, A.M., Goin, F.J. & Jaramillo, C. 2016. Insights into the Neotropics prior to the Great American Biotic Interchange: New evidence of mammalian predators from the Miocene of northern Colombia. Journal of Vertebrate Paleontology, 36(1): p. 1–10. https://doi.org/10.1080/02724634.2015.1029581

 

Sucerquia, P. & Jaramillo, C. 2008. Lower Cretaceous floras from central Colombia. Palynology, 32: 271–272.

 

Sun, G. & Dilcher, D. 2002. Early angiosperms from the Lower Cretaceous of Jixi, eastern Heilongjiang, China. Review of Palaeobotany and Palynology, 121(2): 91–112. https://doi.org/10.1016/S0034-6667(02)00083-0

 

Sun, G., Ji, Q., Dilcher, D.L., Zheng, S., Nixon, K.C. & Wang, X. 2002. Archaefructaceae, a new basal angiosperm family. Science, 296(5569): 899–904. https://doi.org/10.1126/science.1069439

 

Sun, G., Dilcher, D., Wang, H. & Chen, Z. 2011. A eudicot from the Early Cretaceous of China. Nature, 471: 625–628. https://doi.org/10.1038/nature09811

 

Tewksbury, J.J., Huey, R.B. & Deutsch, C.A. 2008. Putting the heat on tropical animals. Science, 320(5881): 1296–1297. https://doi.org/10.1126/science.1159328

 

Thomas, E. & Shackleton, N.J. 1996. The Paleocene – Eocene benthic foraminiferal extinction and stable isotope anomalies. In: Knox, R., Corfield, R.M. & Dunay, R.E. (editors), Correlations of the early Paleogene in Northwest Europe: An overview. Geological Society of London, Special Publication 101, p. 401–441. https://doi.org/10.1144/GSL.SP.1996.101.01.20

 

Thomas, W.W. 1999. Conservation and monographic research on the flora of tropical America. Biodiversity & Conservation, 8(8): 1007–1015. https://doi.org/10.1023/A:1008857429787

 

Toivonen, T., Mäki, S. & Kalliola, R. 2007. The riverscape of western Amazonia—A quantitative approach to the fluvial biogeography of the region. Journal of Biogeography, 34(8): 1374–1387. https://doi.org/10.1111/j.1365-2699.2007.01741.x

 

Tripati, A., Roberts, C. & Eagle, R. 2009. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science, 326(5958): 1394–1397. https://doi.org/10.1126/science.1178296

 

Ufnar, D.F., González, L.A., Ludvigson, G.A., Brenner, R.L. & Witzke, B.J. 2002. The mid–Cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 188(1–2): 51–71. https://doi.org/10.1016/S0031-0182(02)00530-8

 

Ufnar, D.F., González, L.A., Ludvigson, G.A., Brenner, R.L. & Witzke, B.J. 2004. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming. Geology, 32(12): 1049–1052. https://doi.org/10.1130/G20828.1

 

Ufnar, D.F., Ludvigson, G.A., González, L.A. & Gröcke, D.R. 2008. Precipitation rates and atmospheric heat transport during the Cenomanian greenhouse warming in North America: Estimates from a stable isotope mass–balance model. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(1–2): 28–38. https://doi.org/10.1016/j.palaeo.2008.03.033

 

Uno, K.T., Cerling, T.E., Harris, J.M., Kunimatsu, Y., Leakey, M.G., Nakatsukasa, M. & Nakaya, H. 2011. Late Miocene to Pliocene carbon isotope record of differential diet change among east African herbivores. Proceedings of the National Academy of Sciences of the United States of America, 108(16): 6509–6514. https://doi.org/10.1073/pnas.1018435108

 

van der Hammen, T. 1958. Estratigrafía del terciario y Maastrichtiano continentales y tectogénesis de los Andes colombianos. Boletín Geológico, 6(1–3): 67–128.

 

van der Hammen, T. 1989. History of the montane forests of the northern Andes. Plant Systematics and Evolution, 162(1–4): 109–114.

 

van der Hammen, T. 1995. Plioceno y Cuaternario del altiplano de Bogotá y alrededores. Análisis Geográficos, 24: 1–142.

 

van der Hammen, T. 2003. Neógeno y Cuaternario del altiplano de Bogotá y alrededores. Análisis Geográficos, 26: 101–120.

 

van der Hammen, T. & Hooghiemstra, H. 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews, 19(8): 725–742. https://doi.org/10.1016/S0277-3791(99)00024-4

 

van der Hammen, T., Werner, J.H. & van Dommelen, H. 1973. Palynological record of the upheaval of the northern Andes: A study of the Pliocene and lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its high–Andean biota.

Review of Palaeobotany and Palynology, 16(1–2): 1–122. https://doi.org/10.1016/0034-6667(73)90031-6

 

Wallis, G.P., Waters, J.M., Upton, P. & Craw, D. 2016. Transverse alpine speciation driven by glaciation. Trends in Ecology & Evolution, 31(12): 916–926. https://doi.org/10.1016/j.tree.2016.08.009

 

Wang, H., Moore, M.J., Soltis, P.S., Bell, C.D., Brockington, S.F., Alexandre, R., Davis, C.C., Latvis, M., Manchester, S. & Soltis, D.E. 2009. Rosid radiation and the rapid rise of angiosperm– dominated forests. Proceedings of the National Academy of Sciences of the United States of America, 106(10): 3853–3858. https://doi.org/10.1073/pnas.0813376106

 

van Waveren, I.M., van Konijnenburg–van Cittert, J.H.A., van der Burgh, J. & Dilcher, D.L. 2002. Macrofloral remains from the Lower Cretaceous of the Leiva region (Colombia). Scripta Geologica, 123: 1–39.

 

Webb, S.D. 1976. Mammalian faunal dynamics of the Great American Interchange. Paleobiology, 2(3): 220–234. https://doi.org/10.1017/S0094837300004802

 

Webb, S.D. 1978. A history of savanna vertebrates in the New World. Part II: South America and the great interchange. Annual Review of Ecology and Systematics, 9: 393–426. https://doi.org/10.1146/annurev.es.09.110178.002141

 

Webb, S.D. 1994. Successful in spite of themselves. Natural History, 4: 50–53.

 

Webb, S.D. 1995. Biological implications of the middle Miocene Amazon seaway. Science, 269(5222): 361–362. https://doi.org/10.1126/science.269.5222.361

 

Webb, S.D. 2006. The Great American Biotic Interchange: Patterns and processes. Annals of the Missouri Botanical Garden, 93(2): 245–257. https://doi.org/10.3417/0026-6493(2006)93[245:TGABIP]2.0.CO;2

 

Westerhold, T., Röhl, U., McCarren, H.K. & Zachos, J.C. 2009. Latest on the absolute age of the Paleocene – Eocene Thermal Maximum (PETM): New insights from exact stratigraphic position of key ash layers +19 and –17. Earth and Planetary Science Letters, 287(3–4): 412–419. https://doi.org/10.1016/j.epsl.2009.08.027

 

Whitmore, F.C. & Stewart, R.H. 1965. Miocene mammals and Central American seaways: Fauna of the Canal zone indicates separation of Central and South America during most of the Tertiary. Science, 148(3667): 180–185. https://doi.org/10.1126/science.148.3667.180

 

Wijmstra, T.A. & van der Hammen, T. 1966. Palynological data on the history of tropical savannas in northern South America. Leidse Geologische Mededelingen, 38(1): 71–90.

 

Wijninga, V.M. 1996. Paleobotany and palynology of Neogene sediments from the High Plain of Bogota (Colombia). Evolution of the Andean flora from a paleoecological perspective. Doctoral thesis, University of Amsterdam, 370 p. Amsterdam, the Netherlands.

 

Wikström, N., Savolainen, V. & Chase, M.W. 2001. Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society London B: Biological Sciences, 268(1482): 2211–2220. https://doi.org/10.1098/rspb.2001.1782

 

Williams, J.H. 2008. Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. Proceedings of the National Academy of Sciences of the United States of America, 105(32): 11259–11263. https://doi.org/10.1073/pnas.0800036105

 

Wing, S.L. & Boucher, L. 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annual Review of Earth and Planetary Sciences, 26: 379–421. https://doi.org/10.1146/annurev.earth.26.1.379

 

Wing, S.L., Hickey, L.J. & Swisher, C.C. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature, 363: 342–344. https://doi.org/10.1038/363342a0

 

Wing, S.L., Harrington, G.J., Smith, F., Bloch, J.I., Boyer, D.M. & Freeman, K.H. 2005. Transient floral change and rapid global warming at the Paleocene – Eocene boundary. Science, 310(5750): 993–996. https://doi.org/10.1126/science.1116913

 

Wing, S.L., Herrera, F., Jaramillo, C., Gómez–Navarro, C., Wilf, P. & Labandeira, C.C. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(44): 18627–18632. https://doi.org/10.1073/pnas.0905130106

 

Woodburne, M.O. 2010. The Great American Biotic Interchange: Dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution, 17(4): 245–264. https://doi.org/10.1007/s10914-010-9144-8

 

Wright, S., Keeling, J. & Gillman, L. 2006. The road from Santa Rosalia: A faster tempo of evolution in tropical climates. Proceedings of the National Academy of Sciences of the United States of America, 103(20): 7718–7722. https://doi.org/10.1073/pnas.0510383103

 

Wright, J.S., Fu, R., Worden, J.R., Chakraborty, S., Clinton, N.E., Risi, C., Sun, Y. & Yin, L. 2017. Rainforest–initiated wet season onset over the southern Amazon. Proceedings of the National Academy of Sciences of the United States of America, 114(32): 8481–8486. https://doi.org/10.1073/pnas.1621516114

 

Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693. https://doi.org/10.1126/science.1059412

 

Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A., Bralower, T.J. & Premoli–Silva, I. 2003. A transient rise in tropical sea surface temperature during the Paleocene – Eocene Thermal Maximum. Science, 302(5650): 1551–1554. https://doi.org/10.1126/science.1090110


Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: radicacioncorrespondencia@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer