Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv3ch17
Seleccione su búsqueda
miig

​​​​​​Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño

 Volume 3 Chapter 17

Chapter 17

Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia: Implications for the Tectonic Evolution of the Northern Andes in Northwestern South America   

Sergio AMAYA–FERREIRA, Carlos Augusto ZULUAGA, and Matthias BERNET

https://doi.org/10.32685/pub.esp.37.2019.17


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 3: 978-958-52959-4-0

ISBN digital Vol. 3: 978-958-53131-0-1​


Citation is suggested as: 

Amaya–Ferreira, S., Zuluaga, C.A. & Bernet, M. 2020. Different levels of exhumation across the Bucaramanga Fault in the Cepitá area of the southwestern Santander Massif, Colombia: Implications for the tectonic evolution of the northern Andes in northwestern South America. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 491–507. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.16


Download chapter  ​​​

Download EndNote reference​​​​​



Abstract 

Apatite and zircon fission–track data from crystalline rocks collected along an east–to–west elevational profile across the Bucaramanga strike–slip fault in the Cepitá area and thermal history modeling show the four–stage thermal history of the southwestern Santander Massif of the northern Andes in Colombia. A 60 my phase of burial heating from the Late Jurassic to the Late Cretaceous was followed by three cooling phases beginning in approximately 65–60 Ma, which were related to regional tectonic events. The Late Cretaceous – early Paleocene accretion of an island arc and interactions of the Caribbean Plate with the northwestern South America plate first triggered the surface uplift and erosional exhumation of the Santander Massif. During the late Oligocene – early Miocene, the collision of the Panamá–Chocó Block with northwestern South America caused an acceleration in the cooling and exhumation of the Santander Massif and differential surface uplift to the east and west of the Bucaramanga Fault in the Cepitá area. The present–day topography of the Santander Massif probably formed at that time. Locally recorded late Miocene cooling may be related to movement on the secondary fault pattern in the study area or minor magmatic activity.

 

Keywords: exhumation, fission–track analysis, Santander Massif, Bucaramanga Fault, thermal modeling.



Resumen 

Datos de huellas de fisión en apatito y zircón de rocas cristalinas colectadas a lo largo de un perfil de elevación este–oeste a través de la Falla de Bucaramanga, falla de rumbo, en el área de Cepitá y el modelamiento de la historia termal muestran una historia termal en cuatro etapas para el suroeste del Macizo de Santander de los Andes del norte en Colombia. A los 60 millones de años, una fase de calentamiento por enterramiento desde el Jurásico Tardío al Cretácico Tardío fue seguida por tres fases de enfriamiento que comenzaron aproximadamente a los 65–60 Ma, y están relacionadas con eventos tectónicos regionales. En el Cretácico Tardío–Paleoceno temprano, la acreción de un arco de islas y las interacciones de la Placa del Caribe con el noroccidente de la Placa de Suramérica desencadenaron el primer levantamiento de superficie y la exhumación erosiva del Macizo de Santander. Durante el final del Oligoceno y el Mioceno temprano, la colisión del Bloque Panamá–Chocó con el noroeste de Suramérica provocó la aceleración del enfriamiento y de la exhumación del Macizo de Santander y la elevación diferencial de la superficie al este y al oeste de la Falla de Bucaramanga en el área de Cepitá. Probablemente, la topografía actual del Macizo de Santander se formó en ese momento. El enfriamiento del Mioceno tardío registrado localmente puede estar relacionado con el movimiento en el patrón de falla secundaria en el área de estudio o con la actividad magmática menor.

 

Palabras clave: exhumación, análisis de huellas de fisión, Macizo de Santander, Falla de Bucaramanga, modelamiento termal.

​ 


Abbreviations 

AFT                                          Apatite fission track

PAZ                                          Partial annealing zone

ZFT                                         Zircon fission track



References 


Amaya, S., Zuluaga, C. & Bernet, M. 2017. New fission–track age constraints on the exhumation of the central Santander Massif: Implications for the tectonic evolution of the northern Andes, Colombia. Lithos, 282–283: 388–402. https://doi.org/10.1016/j.lithos.2017.03.019

 

Ayala–Calvo, R.C., Bayona, G., Ojeda–Marulanda, C., Cardona, A., Valencia, V., Padrón, C.E., Yoris, F., Mesa–Salamanca, J. & García, A. 2009. Estratigrafía y procedencia de las unidades comprendidas entre el Campaniano y el Paleógeno en la Subcuenca de Cesar: Aportes a la evolución tectónica del área. Geología Colombiana, (34): 3–33.

 

Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V., Mahecha, H., Lamus, F., Montenegro, O., Jiménez, G., Mesa, A. & Valencia, V. 2013. Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; Response to Caribbean–South American convergence in early Palaeogene time. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 285–314. https://doi.org/10.1144/SP377.5

 

Bermúdez, M.A., Kohn, B.P., van der Beek, P.A., Bernet, M., O'Sullivan, P.B. & Shagam, R. 2010. Spatial and temporal patterns of exhumation across the Venezuelan Andes: Implications for Cenozoic Caribbean geodynamics. Tectonics, 29(5): 1–21. https://doi.org/10.1029/2009TC002635

 

Bermúdez, M.A., van der Beek, P. & Bernet, M. 2011. Asynchronous Miocene – Pliocene exhumation of the central Venezuelan Andes. Geology, 39(2): 139–142. https://doi.org/10.1130/G31582.1

 

Bermúdez, M.A., van der Beek, P. & Bernet, M. 2013. Strong tectonic and weak climatic control on exhumation rates in the Venezuelan Andes. Lithosphere, 5(1): 3–16. https://doi.org/10.1130/L212.1

 

Bermúdez, M.A., Hoorn, C., Bernet, M., Carrillo, E., van der Beek, P.A., Garver, J.I., Mora, J.L. & Mehrkian, K. 2017. The detrital record of late–Miocene to Pliocene surface uplift and exhumation of the Venezuelan Andes in the Maracaibo and Barinas Foreland Basins. Basin Research, 29(S1): 370–395. https://doi.org/10.1111/bre.12154

 

Bernet, M. 2009. A field–based estimate of the zircon fission–track closure temperature. Chemical Geology, 259(3–4): 181–189. https://doi.org/10.1016/j.chemgeo.2008.10.043

 

Bernet, M., Urueña, C., Amaya, S. & Peña, M.L. 2016. New thermo and geochronological constraints on the Pliocene – Pleistocene eruption history of the Paipa–Iza Volcanic Complex, Eastern Cordillera, Colombia. Journal of Volcanology and Geothermal Research, 327(15): 299–309. https://doi.org/10.1016/j.jvolgeores.2016.08.013

 

Boschman, L.M., van Hinsbergen, D.J.J., Torsvik, T.H., Spakman, W. & Pindell, J.L. 2014. Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth–Science Reviews, 138: 102–136. https://doi.org/10.1016/j.earscirev.2014.08.007

 

Brandon, M.T. 1992. Decomposition of fission–track grain–age distributions. American Journal of Science, 292(8): 535–564. https://doi.org/10.2475/ajs.292.8.535

 

Brandon, M.T. 2002. Decomposition of mixed grain age distributions using BINOMFIT. On Track, 24: 13–19.

 

Brandon, M.T., Roden–Tice, M.K. & Garver, J.I. 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, Northwest Washington State. Geological Society of America Bulletin, 110(8): 985–1009. https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2

 

Braun, J., Simon–Labric, T., Murray, K.E. & Reiners, P.W. 2014. Topographic relief driven by variations in surface rock density. Nature Geoscience, 7: 534–540. https://doi.org/10.1038/ngeo2171

 

Burtner, R.L., Nigrini, A. & Donelick, R.A. 1994. Thermochronology of Lower Cretaceous source rocks in the Idaho–Wyoming Thrust Belt. American Association of Petroleum Geologists Bulletin, 78(10): 1613–1636.

 

Caballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L.E., López, C., Sánchez, N., Horton, B.K., Stockli, D.F. & Duddy, I. 2013. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo Syncline, Middle Magdalena Valley, Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 315–342. London. https://doi.org/10.1144/SP377.12

 

Colletta, B., Roure, F., de Toni, B., Loureiro, D., Passalacqua, H. & Gou, Y. 1997. Tectonic inheritance, crustal architecture, and contrasting structural styles in the Venezuela Andes. Tectonics, 16(5): 777–794. https://doi.org/10.1029/97TC01659

 

Colmenares, L. & Zoback, M.D. 2003. Stress field and seismotectonics of northern South America. Geology, 31(8): 721–724. https:// doi.org/10.1130/G19409.1

 

Donelick, R.A., O'Sullivan, P.B. & Ketcham, R.A. 2005. Apatite fission–track analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49–94. https://doi.org/10.2138/rmg.2005.58.3

 

Ehlers, T.A., Chaudhri, T., Kumar, S., Fuller, C.W., Willett, S.D., Ketcham, R.A., Brandon, M.T., Belton, D.X., Kohn, B.P., Gleadow, A.J.W., Dunai, T.J. & Fu, F.Q. 2005. Computational tools for low–temperature thermochronometer interpretation. Reviews in Mineralogy and Geochemistry, 58(1): 589–622. https://doi.org/10.2138/rmg.2005.58.22

 

Farris, D.W., Jaramillo, C., Bayona, G., Restrepo–Moreno, S.A., Montes, C., Cardona, A., Mora, A., Speakman, R.J., Glascock, M.D. & Valencia, V. 2011. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11): 1007–1010. https://doi.org/10.1130/G32237.1

 

Galbraith, R.F. 2005. Statistics for fission tracks analysis. Chapman & Hall/CRC, 240 p. Boca Ratón, Costa Rica.

 

Galbraith, R.F. & Laslett, G.M. 1993. Statistical models for mixed fission track ages. Nuclear tracks and radiation measurements, 21(4): 459–470. https://doi.org/10.1016/1359-0189(93)90185-C

 

Gallagher, K., 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2): 1–16. https://doi.org/10.1029/2011JB008825

 

Garver, J.I., Reiners, P.W., Walker, L.J., Ramage, J.M. & Perry, S.E. 2005. Implications for timing of Andean uplift from thermal resetting of radiation–damaged zircon in the Cordillera Huayhuash, northern Peru. The Journal of Geology, 113(2): 117–138.

 

Goldsmith, R., Marvin, R.F. & Mehnert, H.H. 1971. Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. U. S. Geological Survey, Professional Paper, 750–D: D44–D49.

 

Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R. & Laslett, G.M. 1985. Fission–track annealing in apatite: Track length measurements and the form of the Arrhenius plot. Nuclear Tracks and Radiation Measurements, 10(3): 323–328. https://doi.org/10.1016/0735-245X(85)90121-8

 

Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermúdez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sánchez–Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T. & Antonelli, A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006): 927–931. https://doi.org/10.1126/science.1194585

 

Jaillard, E., Hérail, G., Monfret, T., Díaz–Martínez, E., Baby, P., Lavenu, A. & Dumont, J.F. 2000. Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northernmost Chile. In: Cordani, U.G., Milani, E.J., Thomaz–Filho, A. & Campos, D.A. (editors), Tectonic evolution of South America, p. 481–559. Rio de Janeiro.

 

Kohn, B.P., Shagam, R., Banks, P.O. & Burkley, L.A. 1984. Mesozoic–Pleistocene fission–track ages on rocks of the Venezuelan Andes and their tectonic implications. In: Bonini, W.E., Hargraves, R.B. & Shagam, R. (editors), The Caribbean–South American Plate boundary and regional tectonics, Geological Society of America, Memoir 162, p. 365–384. https://doi.org/10.1130/MEM162-p365

 

Mann, P., Escalona, A. & Castillo, M.V. 2006. Regional geologic and tectonic setting of the Maracaibo supergiant Basin, western Venezuela. American Association of Petroleum Geologists Bulletin, 90(4): 445–477. https://doi.org/10.1306/10110505031

 

Mantilla–Figueroa, L.C., Bissig, T., Valencia, V. & Hart, C.J.R. 2013. The magmatic history of the Vetas–California mining district, Santander Massif, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 45: 235–249. https://doi.org/10.1016/j.jsames.2013.03.006

 

Mapes, B.E., Warner, T.T., Xu, M. & Negri, A.J. 2003. Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Monthly Weather Review, 131(5): 799–812. https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2

 

Mora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L.I., Reyes, G. & Strecker, M.R. 2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: A reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21(1): 111–137. https://doi.org/10.1111/j.1365-2117.2008.00367.x

 

Mora, A., Casallas, W., Ketcham, R.A., Gómez, D., Parra, M., Namson, J., Stockli, D.F., Almendral, A., Robles, W. & Ghorbal, B. 2015. Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. American Association of Petroleum Geologists Bulletin, 99(8): 1575–1598. https://doi.org/10.1306/04281411108

 

O'Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo–Moreno, S., Cione, A.L., Collins, L.S., de Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M.P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque–Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard–Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello–Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J. & Jackson, J.B.C. 2016. Formation of Isthmus of Panama. Science Advances, 2(8): 1–11. https://doi.org/10.1126/sciadv.1600883

 

Parra, M., Mora, A., López, C., Rojas, L.E. & Horton, B.K. 2012. Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology, 40(2): 175–178. https://doi.org/10.1130/G32519.1

 

Restrepo–Moreno, S.A., Foster, D.A., Stockli, D.F. & Parra–Sánchez, L.N. 2009. Long–term erosion and exhumation of the “Altiplano Antioqueño", northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and Planetary Science Letters, 278(1–2): 1–12. https://doi.org/10.1016/j.epsl.2008.09.037

 

Sánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A. & Stockli, D.F. 2012. Kinematic evolution of Andean fold–thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley Basin, Colombia. Tectonics, 31(3): 24 p. https://doi.org/10.1029/2011TC003089

 

Sarmiento–Rojas, L.F., van Wess, J.D. & Cloetingh, S. 2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4): 383–411. https://doi.org/10.1016/j.jsames.2006.07.003

 

Shagam, R., Khon, B.P., Banks, P.O., Dasch, L.E., Vargas, R., Rodríguez, G.I. & Pimentel, N. 1984. Tectonic implications of Cretaceous – Pliocene fission–track ages from rocks of the circum–Maracaibo Basin region of western Venezuela and eastern Colombia. In: Bonini, W.E., Hargraves, R.B. & Shagam, R. (editors), The Caribbean–South American Plate boundary and regional tectonics. Geological Society of America, Memoir 162, p. 385–412. https://doi.org/10.1130/MEM162-p385

 

Spikings, R., Cochrane, R., Villagómez, D., van der Lelij, R., Vallejo, C., Winkler, W. & Beate, B. 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1): 95–139. https://doi.org/10.1016/j.gr.2014.06.004

 

Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J. & Rivera, C. 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5): 787–813. https://doi.org/10.1029/2000TC900004

 

Urueña, C.L. 2014. Metamorfismo, exhumación y termocronología del Neis de Bucaramanga. (Macizo de Santander, Colombia). Master thesis, Universidad Nacional de Colombia, 191 p. Bogotá.

 

van der Lelij, R., Spikings, R.A. & Mora, A. 2016. Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos, 248–251: 220–239. https://doi.org/10.1016/j.lithos.2016.01.006

 

Vargas, C.A. & Mann, P. 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc–indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025–2046. https://doi.org/10.1785/0120120328

 

Velandia, F. 2017. Cinemática de las fallas mayores del Macizo de Santander–énfasis en el modelo estructural y temporalidad al sur de la Falla de Bucaramanga, Colombia. Doctoral thesis, Universidad Nacional de Colombia, 222 p. Bogotá.

 

Villagómez, D., Spikings, R., Mora, A., Guzmán, G., Ojeda, G., Cortés, E. & van der Lelij, R. 2011. Vertical tectonics at a continental crust–oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30(4): 1–18. https://doi.org/10.1029/2010TC002835

 

Villamil, T. 1999. Campanian – Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1–4): 239–275. https://doi.org/10.1016/S0031-0182(99)00075-9

 

Villamizar, N. 2017. Historia de exhumación del bloque este de la Falla de Bucaramanga usando termocronología de baja temperatura, Santander, Colombia. Master thesis, Universidad Nacional de Colombia, 112 p. Bogotá.

 

Willett, S.D. & Brandon, M.T. 2013. Some analytical methods for converting thermochronometric age to erosion rate. Geochemistry, Geophysics, Geosystems, 14(1): 209–222. https://doi.org/10.1029/2012GC004279

 

Zuluaga, C.A. & López, J.A. 2018. Ordovician orogeny and Jurassic low–lying orogen in the Santander Massif, northern Andes (Colombia). In: Cediel, F. & Shaw, R.P. (editors), Geology and tectonics of northwestern South America: The Pacific–Caribbean–Andean junction. Series: Frontiers in Earth Sciences. p. 195–250. Springer. https://doi.org/10.1007/978-3-319-76132-9_4


Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: relacionciudadana@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer