Home
Aumentar fuente
Aumentar contraste
Lengua de señas
Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño
Structural Styles of the Eastern Cordillera of Colombia
Andreas KAMMER, Alejandro PIRAQUIVE, Cristhian GÓMEZ, Andrés MORA, and Antonio VELÁSQUEZ
https://doi.org/10.32685/pub.esp.37.2019.06
ISBN impreso obra completa: 978-958-52959-1-9
ISBN digital obra completa: 978-958-52959-6-4
ISBN impreso Vol. 3: 978-958-52959-4-0
ISBN digital Vol. 3: 978-958-53131-0-1
Citation is suggested as:
Kammer, A., Piraquive, A., Gómez, C., Mora, A., & Velásquez, A. 2020. Structural styles of the Eastern Cordillera of Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 143–183. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.06
Download chapter
Download EndNote reference
Abstract
The Eastern Cordillera of Colombia is bracketed between the moderately west–dipping flank of the Central Cordillera on its western side and the little disturbed to gently bent Guiana Shield on its eastern side. Unlike other Andean foreland–oriented belts, it is completely disconnected from the main Andean trunk system. Transverse shortening of 4 mm/y records a considerable displacement transfer to the upper plate; this is twice the long–term rate of 2.2 mm/y, which is the average for a shortening of 65 km over a period of 30 Ma and suggests an increased recent shortening phase. We differentiate three structural domains. The southern domain records significant shortening by penetrative strain at lower structural levels and folding at higher structural levels, which supports the idea of partitioning into pure–shear deformation within the pre–Cretaceous basement and into buckling in the Upper Cretaceous to Paleogene units. Similar constellations of a relatively weak crustal welt enclosed between domains with backstop characteristics have been examined in analogue and numerical experiments (“vise model"). A northern intermediate domain is characterized by large–scale, basement–cored antiforms, whose formation may be ascribed to the partial reactivation of Late Triassic normal faults. The northernmost domain comprises the Cocuy Syntaxis, which constitutes an antiformal lobe with significant topographic relief. It is affected by secondary folds with a down–slope vergence. These changes in structural style record increased support by the subducting slab, according to the spatial coincidence of the outer slab hinge and the highest topographic relief within this northern Andean flat slab segment.
To examine a possible cause for a rheological break between deformable cordilleran crust sandwiched between relatively rigid and strong surrounding basement blocks, we review the Cretaceous back–arc setting. Tectonic subsidence and sedimentation patterns suggest its division into a forebulge and flanking basins that may be ascribed to the framework of an impinging mantle plume. Temporal constraints further suggest that forebulge evolution may have been triggered by an initial foundering of the slab at the onset of a Cretaceous subduction cycle. In such a small–scale convection system, downwelling mantle flow between the back–arc region and the stable shield may maintain a relatively well–defined rheological limit over long periods. This situation complies with the model of an edge–driven convective flow.
Rheological contrasts between the back–arc basin and the shield persisted into the Cenozoic and contributed to a protracted evolution of the Andean cordilleran mountain fronts. The eastern mountain front accumulated structural relief of more than 10 000 m during an initial Oligocene to late Miocene shortening phase. Fold growth incited by the buttressing of the strong foreland block of the shield can be tested by the tri–shear model, in which propagation of faulting is halted, and displacement is consumed by fold amplification. During a Pliocene stress reorganization, this Miocene mountain front was breached by a shallowly dipping thrust, which gave rise to a more foreland–oriented deformation front. During this outward–stepped faulting, proximal foreland sequences became involved in a wedge–top position and were exhumed at the thrust tip along emergent ramps. These second–cycle erosion products were widely dispersed into the Llanos Basin and were incorporated into modern fluvial terraces.
Keywords: back–arc basin, fault reactivation, gravitational collapse, Eastern Cordillera of Colombia.
Oriental de Colombia está encajada entre el flanco inclinado ligeramente al oeste de la cordillera Central, al costado occidental, y el Escudo de Guayana levemente flexionado, al costado oriental. A diferencia de otros cinturones andinos de antepaís, esta cadena montañosa está completamente desconectada del sistema principal andino. El acortamiento transversal de 4 mm/año registra una transferencia considerable de desplazamiento a la placa superior; este es el doble de una tasa de 2,2 mm/año, que es el promedio para un acortamiento de 65 km durante un intervalo de tiempo de 30 Ma y sugiere una acelerada fase de acortamiento reciente. En este trabajo diferenciamos tres dominios estructurales. El dominio meridional registra un acortamiento significativo por deformación penetrativa a niveles estructurales inferiores y plegamiento a niveles estructurales superiores, lo que respalda la idea de diferenciar entre deformación por cizalla pura en el basamento precretácico y entre un plegamiento por acortamiento horizontal en las unidades del Cretácico Superior al Paleógeno. Constelaciones similares de un entorno cortical relativamente débil contenido entre dominios con características de contrafuerte han sido examinadas en experimentos análogos y numéricos (vise model). Un dominio intermedio más septentrional se caracteriza por antiformes a gran escala, que involucran el basamento en su núcleo y cuya formación está predispuesta por la reactivación parcial de fallas normales del Triásico Tardío. El dominio más septentrional comprende la Sintaxis de Cocuy, un lóbulo antiformal de un mayor relieve topográfico. Esta se ve afectada por pliegues secundarios con una vergencia en dirección de la pendiente. Estos cambios en estilo estructural registran un aumento en el soporte de la losa subducida, como puede concluirse a partir de la coincidencia espacial entre bisagra externa de la losa en subducción y el relieve topográfico descomunal en este segmento de losa plana del norte andino.
Con el fin de examinar una posible causa para la existencia de un cinturón altamente deformable y encajado entre bloques circundantes de basamento relativamente rígidos y fuertes, examinamos la configuración de la cuenca de retroarco del Cretácico. Los patrones de subsidencia tectónica y sedimentación sugieren la existencia de una región axial dominada por un abombamiento amplio o forebulge, que se delimita por cuencas marginales y cuyo origen se atribuye al impacto de una pluma mantélica. Las limitaciones temporales sugieren, además, que la evolución del abombamiento puede haber sido desencadenada por un hundimiento inicial de la losa al inicio de un ciclo de subducción cretácico. En un sistema de convección a tan pequeña escala, el flujo del manto descendente entre la región de retroarco y el escudo estable puede mantener un límite reológico relativamente bien definido durante largos períodos de tiempo. Esta situación cumple con el modelo de un flujo convectivo de tipo edge–driven.
Contrastes reológicos entre la cuenca de retroarco y el escudo perduraron hasta el Cenozoico y contribuyeron a una evolución prolongada de los frentes cordilleranos andinos. Un antiforme del frente montañoso oriental acumuló un relieve estructural de más de 10 000 m durante una fase de acortamiento inicial entre el Oligoceno y el Mioceno tardío. El crecimiento de este pliegue fue inducido por el efecto de contrafuerte del bloque de antepaís del escudo. Este proceso puede ser probado por el modelo tri–shear, en el cual se detiene la propagación de falla y se consume el desplazamiento por la amplificación de este frente montañoso. Durante una reorganización del campo de esfuerzos en el Plioceno, este frente montañoso fue afectado por una falla fuera de secuencia con un buzamiento moderado, que dio lugar a un frente de deformación orientado más hacía el antepaís. En este fallamiento, las secuencias proximales de antepaís se involucraron en una posición de tipo supracuña o wedge–top y se exhumaron a lo largo de una falla emergente, que forma la base de un manto corrido. Estos productos de erosión de segundo ciclo se dispersaron ampliamente en la Cuenca de los Llanos, incorporándose a las terrazas fluviales modernas.
Palabras clave: cuenca de retroarco, reactivación de falla, colapso gravitacional, cordillera Oriental de Colombia.
EC Eastern Cordillera
LREE Light rare earth element
Acosta, J., Velandia, F., Osorio, J., Lonergan, L. & Mora, H. 2007. Strike–slip deformation within the Colombian Andes. In: Ries, A.C., Butler, R.W.H. & Graham, R.H. (editors), Deformation of the continental crust: The legacy of Mike Coward. Geological Society of London, Special Publication 272, p. 303–319. London. https://doi.org/10.1144/GSL.SP.2007.272.01.16
Allmendinger, R.W. 1998. Inverse and forward numerical modeling of trishear fault–propagation folds. Tectonics, 17(4): 640–656. https://doi.org/10.1029/98TC01907
Allmendinger, R.W., Zapata, T.R., Manceda, R. & Dzelalija, F. 2004. Trishear kinematic modeling of structures, with examples from the Neuquén Basin, Argentina. In: McClay, K.R. (editor), Thrust tectonics and hydrocarbon systems. American Association of Petroleum Geologists, Memoir 82, p. 356–371.
Anderson, T.A. 1972. Paleogene nonmarine Gualanday Group, Neiva Basin, Colombia, and regional development of the Colombian Andes. American Association of Petroleum Geologists Bulletin, 83(8): 2423–2438. https://doi.org/10.1130/0016-7606(1972)83[2423:PNGGNB]2.0.CO;2
Audemard, F.A., Ollarves, R., Bechtold, M., Diaz, G., Beck, C., Carrillo, E., Pantosti, D. & Diederix, H. 2008. Trench investigation on the main strand of the Boconó Fault in its central section, at Mesa del Caballo, Mérida Andes, Venezuela. Tectonophysics, 459(1–4): 38–53. https://doi.org/10.1016/j.tecto.2007.08.020
Bayona, G., Montenegro, O.C., Cardona, A., Jaramillo, C., Lamus, F., Morón, S.E., Quiroz, L., Ruiz, M.C., Valencia, V., Parra, M. & Stockli, D.F. 2010. Estratigrafía, procedencia, subsidencia y exhumación de las unidades paleógenas en el Sinclinal de Usme, sur de la zona axial de la cordilla Oriental. Geología Colombiana, (35): 5–35.
Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V., Mahecha, H., Lamus, F., Montenegro, O., Jiménez, G., Mesa, A. & Valencia, V. 2013. Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin: Response to Caribbean–South American convergence in early Paleogene time. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 285–314. https://doi.org/10.1144/SP377.5
Beck, M.E., Rojas, C. & Cembrano, J. 1993. On the nature of buttressing in margin–parallel strike–slip fault systems. Geology, 21(8): 755–758. https://doi.org/10.1130/0091-7613(1993)021<0755:OTNOBI>2.3.CO;2
Branquet, Y., Cheilletz, A., Cobbold, P.R., Baby, P., Laumonier, B. & Giuliani, G. 2002. Andean deformation and rift inversion, eastern edge of Cordillera Oriental (Guateque–Medina area), Colombia. Journal of South American Earth Sciences, 15(4): 391–407. https://doi.org/10.1016/S0895-9811(02)00063-9
Bürgl, H. 1960. El Jurásico e infracretáceo del río Batá, Boyacá. Boletín Geológico, 6(1–3): 169–211.
Bürgl, H. 1967. The orogenesis in the Andean system of Colombia. Tectonophysics, 4(4–6): 429–443. https://doi.org/10.1016/0040-1951(67)90009-1
Bustamante, A., Juliani, C., Essene, E.J., Hall, C.M. & Hyppolito, T. 2012. Geochemical constraints on blueschist– and amphibolite facies rocks of the Central Cordillera of Colombia: The Andean Barragán region. International Geology Review, 54(9): 1013–1030. https://doi.org/10.1080/00206814.2011.594226
Caballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L.E., Lopez, C., Sánchez, N., Horton, B.K., Stockli, D. & Duddy, I. 2013. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo Syncline, Middle Magdalena Valley, Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 315–342. https://doi.org/10.1144/SP377.12
Campbell, C.J. & Bürgl, H. 1965. Section through the Eastern Cordillera of Colombia, South America. Geological Society of America Bulletin, 76(5): 567–590. https://doi.org/10.1130/0016-7606(1965)76[567:STTECO]2.0.CO;2
Chamberlin, R.T. 1910. The Appalachian folds of central Pennsylvania. The Journal of Geology, 18(3): 228–251. https://doi.org/10.1086/621722
Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V. & Prieto, G.A. 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1): 16–27. https://doi.org/10.1002/2015GC006048
Colletta, B., Hebrard, F., Letouzey, J., Werner, P. & Rudkiewicz, J.L. 1990. Tectonic style and crustal structure of the Eastern Cordillera, Colombia from a balanced cross section. In: Letouzey, J. (editor), Petroleum and tectonics in mobile belts. Editions Technip, p. 81–100. Paris.
Cooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martinez, J., Naar, J., Peñas, R., Pulham, A.J. & Taborda, A. 1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10): 1421–1443.
Cortés, M., Colletta, B. & Angelier, J. 2006. Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. Journal of South American Earth Sciences, 21(4): 437–465. https://doi.org/10.1016/j.jsames.2006.07.004
Corti, G., van Wijk, J., Cloetingh, S. & Morley, C.K. 2007. Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system. Tectonics, 26(6): 1–13. https://doi.org/10.1029/2006TC002086
Cruden, A.R., Nasseri, M.H.B. & Pysklywec, R. 2006. Surface topography and internal strain variation in wide hot orogens from three–dimensional analogue and two–dimensional numerical vice models. In: Buiter, S.J.H. & Schreurs, G. (editors), Analogue and numerical modelling of crustal–scale processes. Geological Society of London, Special Publication 253, p. 79–104. http://dx.doi.org/10.1144/GSL.SP.2006.253.01.04
Currie, C.A., Wang, K., Hyndman, R.D. & He, J. 2004. The thermal effects of steady–state slab–driven mantle flow above a subducting plate: The Cascadia subduction zone and backarc. Earth and Planetary Science Letters, 223(1–2): 35–48. https://doi.org/10.1016/j.epsl.2004.04.020
Dalrymple, R.W. & Choi, K. 2007. Morphologic and facies trends through the fluvial–marine transition in tide–dominated depositional systems: A schematic framework for environmental and sequence–stratigraphic interpretation. Earth Science Reviews, 81(3–4): 135–174. https://doi.org/10.1016/j.earscirev.2006.10.002
DeCelles, P.G. & DeCelles, P.C. 2001. Rates of shortening, propagation, underthrusting, and flexural wave migration in continental orogenic systems. Geology, 29(2): 135–138. https://doi.org/10.1130/0091-7613(2001)029<0135:ROSPUA>2.0.CO;2
Dengo, C.A. & Covey, M.C. 1993. Structure of the Eastern Cordillera of Colombia: Implications for trap styles and regional tectonics. American Association of Petroleum Geologists Bulletin, 77(8): 1315–1337. https://doi.org/10.1306/BDFF8E7A-1718-11D7-8645000102C1865D
De Porta, J. 1974. Léxique Stratigraphique International. Amérique Latine, Colombie: (deuxième partie) Tertiaire et Quaternaire. Centre National de la Recherche Scientifique 5, fascicule 4 b, 626 p. Paris.
Dimaté, C., Rivera, L.A., Taboada, A., Delouis, B., Osorio, A., Jiménez, E., Fuenzalida, A., Cisternas, A. & Gómez, I. 2003. The 19 January 1995 Tauramena (Colombia) earthquake: Geometry and stress regime. Tectonophysics, 363(3–4): 159–180. https://doi.org/10.1016/S0040-1951(02)00670-4
Dixon, J.M., 1975. Finite strain and progressive deformation in models of diapiric structures. Tectonophysics, 28 (1–2): 89–124. https://doi.org/10.1016/0040-1951(75)90060-8
Dorado–Galindo, J. 1992. Contribución al conocimiento de la estratigrafía de la Formación Brechas de Buenavista (límite Jurásico–Cretácico). Región noroeste de Villavicencio, Meta. Geología Colombiana, (17): 7–39.
Dueñas, H. & Césari, S.N. 2005. Systematic study of Early Carboniferous palynological assemblages from the Llanos Orientales Basin, Colombia. Revista del Museo Argentino de Ciencias Naturales, 7(2): 139–152. https://doi.org/10.22179/REVMACN.7.331
Durán, J.P., Vargas, C.A. & Briceño, L.A. 2002. Análisis espacial y temporal de Q–Coda en el piedemonte llanero (Colombia). Earth Sciences Research Journal, (6): 33–39.
Ebinger, C.J. 1989. Tectonic development of the western branch of the East African Rift system. Geological Society of America Bulletin, 101(7): 885–903. https://doi.org/10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2
Egbue, O. & Kellogg, J. 2010. Pleistocene to present north Andean “escape". Tectonophysics, 489(1–4): 248–257. https://doi. org/10.1016/j.tecto.2010.04.021
Einsele, G. 1992. Sedimentary basins: Evolution, facies and sediment budget. Springer–Verlag, 628 p. Berlin. https://doi.org/10.1007/978-3-662-04029-4
Ellis, S., Beaumont, C., Jamieson, R.A. & Quinlan, G. 1998. Continental collision including a weak zone: The vise model and its application to the Newfoundland Appalachians. Canadian Journal of Earth Sciences, 35(11): 1323–1346. https://doi.org/10.1139/e97-100
Epard, J.L. & Groshong, R.H. 1993. Excess area and depth to detachment. American Association of Petroleum Geologists Bulletin, 77(8): 1291–1302.
Epard, J.L. & Groshong Jr., R.H. 1995. Kinematic model of detachment folding including limb rotation, fixed hinges and layer–parallel strain. Tectonophysics, 247(1–4): 85–103. https://doi.org/10.1016/0040-1951(94)00266-C
Etayo–Serna, F., De Porta, N.S., De Porta, J. & Gaona, T. 2003. The Batá Formation of Colombia is truly Cretaceous, not Jurassic. Journal of South American Earth Sciences, 16(3): 113–117. https://doi.org/10.1016/S0895-9811(03)00048-8
Fabre, A. 1983. La subsidencia de la cuenca del Cocuy (cordillera Oriental de Colombia) durante el Cretáceo y el terciario. Primera parte: Estudio cuantitativo de la subsidencia. Geología Norandina, (8): 22–27.
Fabre, A. & Delaloye, M. 1983. Intrusiones básicas cretácicas en las sedimentitas de la parte central de la cordillera Oriental. Geología Norandina, (6): 19–28.
Faccenna, C., Becker, T.W., Lallemand, S., Lagabrielle, Y., Funiciello, F. & Piromallo, C. 2010. Subduction–triggered magmatic pulses: A new class of plumes? Earth and Planetary Science Letters, 299(1–2): 54–68. https://doi.org/10.1016/j.epsl.2010.08.012
Flament, N., Gurnis, M. & Müller, R.D., 2013. A review of observations and models of dynamic topography. Lithosphere 5(2): 189–210. https://dx.doi.org/10.1130/L245.1
Feininger, T., Barrero, D. & Castro, N. 1972. Geología de parte de los departamentos de Antioquia y Caldas–subzona II–B. Boletín Geológico, 20(2): 1–173.
Feo–Codecido, G., Smith, F.D., Aboud, N. & de Di Giacomo, E. 1984. Basement and Paleozoic rocks of the Venezuelan Llanos basins. In: Bonini, W.E., Hargraves, R.B. & Shagam, R. (editors), The Caribbean–South American Plate boundary and regional tectonics. Geological Society of America, Memoir 162, p. 175–187. https://doi.org/10.1130/MEM162-p175
Gephart, J.W. 1994. Topography and subduction geometry in the central Andes: Clues to the mechanics of a noncollisional orogeny. Journal of Geophysical Research: Solid Earth, 99(B6): 12279–12288. https://doi.org/10.1029/94JB00129
Gómez, E., Jordan, T., Allmendinger, R.W., Hegarty, K., Kelly, S. & Heizler, M. 2003. Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Geological Society of America Bulletin, 115(2): 131–147. https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2
Gómez, E., Jordan, T.E., Allmendinger, R.W., Hegarty, K. & Kelley, S. 2005a. Syntectonic Cenozoic sedimentation in the northern Middle Magdalena Valley Basin of Colombia and implications for exhumation of the northern Andes. Geological Society of America Bulletin, 117(5–6): 547–569. https://doi.org/10.1130/B25454.1
Gómez, E., Jordan, T.E., Allmendinger, R.W. & Cardozo, N. 2005b. Development of the Colombian Foreland–Basin system as a consequence of diachronous exhumation of the northern Andes. Geological Society of America Bulletin, 117(9–10): 1272–1292. https://doi.org/10.1130/B25456.1
Guerrero, J. 2002. A proposal on the classification of systems tracts: Application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian. Geología Colombiana, (27): 27–49.
Haas, O. 1960. Lower Cretaceous ammonites from Colombia, South America. American Museum Novitates, (2005), 62 p. New York.
Hardebol, N.J., Pysklywec, R.N. & Stephenson, R. 2012. Small–scale convection at a continental back–arc to craton transition: Application to the southern Canadian Cordillera. Journal of Geophysical Research: Solid Earth, 117(B1): 1–18. https://doi.org/10.1029/2011JB008431
Harrison, J.V. & Falcon, N.L. 1934. Collapse structures. Geological Magazine, 71(12): 529–539. https://doi.org/10.1017/S0016756800095005
Haughton, P., Davis, C., McCaffrey, W. & Barker, S. 2009. Hybrid sediment gravity flow deposits–classification, origin and significance. Marine and Petroleum Geology, 26(10): 1900–1918. https://doi.org/10.1016/j.marpetgeo.2009.02.012
Hooghiemstra, H., Wijninga, V.M. & Cleef, A.M. 2006. The paleobotanical record of Colombia: Implications for biogeography and biodiversity. Annals of the Missouri Botanical Garden, 93(2): 297–325. https://doi.org/10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2
Hyndman, R.D. 2010. The consequences of Canadian Cordillera thermal regime in recent tectonics and elevation: A review. Canadian Journal of Earth Sciences, 47(5): 621–632. https://doi.org/10.1139/E10-016
Hyndman, R.D. & Currie, C.A. 2011. Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts. Geology, 39(8): 783–786. https://doi.org/10.1130/G31998.1
Idárraga–García, J., Kendall, J.M. & Vargas, C.A. 2016. Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9): 3655–3673. https://doi.org/10.1002/2016GC006323
Jiménez, L., Mora, A., Casallas, W., Silva, A., Tesón, E., Támara, J., Namson, J., Higuera–Diaz, I.C., Lasso, A. & Stockli, D. 2013. Segmentation and growth of foothill thrust–belts adjacent to inverted grabens: The case of the Colombian Llanos Foothills. In: Nemčok, M., Mora, A.R. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 189–220. https://doi.org/10.1144/SP377.11
Julivert, M. 1962. La estratigrafía de la Formación Guadalupe y las estructuras por gravedad en la serranía de Chía (Sabana de Bogotá). Boletín de Geología, (11): 5–21.
Julivert, M. 1963. Los rasgos tectónicos de la región de la Sabana de Bogotá y los mecanismos de formación de las estructuras. Boletín de Geología, (13–14): 5–104.
Julivert, M. 1970. Cover and basement tectonics in the cordillera Oriental of Colombia, South America, and a comparison with some other folded chains. Geological Society of America Bulletin, 81(12): 3623–3646. https://doi.org/10.1130/0016-7606(1970)81[3623:CABTIT]2.0.CO;2
Kammer, A. 1996. Estructuras y deformaciones del borde oriental del Macizo de Floresta. Geología Colombiana, (21): 65–80.
Kammer, A. 1997. Los pliegues del Sinclinal de Tunja: Análisis estructural y modelamiento geométrico. Geología Colombiana, (22): 3–25.
Kammer, A. 2003. La Formación Tilatá en los alrededores de Chocontá: Marco tectónico y ambientes deposicionales. In: van der Hammen, T. (editor), Neógeno y Cuaternario del altiplano de Bogotá y alrededores II, zona norte y aspectos generales. Instituto Geográfico Agustín Codazzi, Análisis Geográficos 26, p. 69–100. Bogotá.
Kammer, A. & Mora, A. 1999. Structural style and amount of shortening of the folded Bogota segment, Eastern Cordillera of Colombia. Zentralblatt für Geologie und Paläontologie, Teil I(7–8), p. 823–838. Bayreuth, Germany.
Kammer, A. & Piraquive–Bermúdez, A. 2013. Evidencias sedimentológicas y estructurales para un origen paleógeno de la Falla de Chusma, Valle Superior del Magdalena, borde occidental de la sub–cuenca de Neiva. Geología Colombiana, (38): 43–64.
Kammer, A. & Sánchez, J. 2006. Early Jurassic rift structures associated with the Soapaga and Boyacá Faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21(4): 412–422. https://doi.org/10.1016/j.jsames.2006.07.006
Kammer, A., Tamara, J., Beltrán., A. & Robles, W. 2007. Pliegues sobrepuestos en el Anticlinal de Buenavista, piedemonte llanero. Boletín de Geología, 29(2): 85–93.
King, S.D. & Anderson, D.L. 1998. Edge–driven convection. Earth and Planetary Science Letters, 160(3–4): 289–296. https://doi.org/10.1016/S0012-821X(98)00089-2
King, S.D. & Ritsema, J. 2000. African hot spot volcanism: Small–scale convection in the upper mantle beneath cratons. Science, 290(5494): 1137–1140. https://doi.org/10.1126/science.290.5494.1137
López, C., Briceño, A. & Buitrago, J. 1991. Edad y origen de los diapiros de sal de la Sabana de Bogotá. IV Simposio Bolivariano Exploración Petrolera en las Cuencas Subandinas. Trabajo 19, 40 p. Bogotá.
Lyon–Caen, H. & Molnar, P. 1985. Gravity anomalies, flexure of the Indian Plate, and the structure, support and evolution of the Himalaya and Ganga Basin. Tectonics, 4(6): 513–538. https://doi.org/10.1029/TC004i006p00513
Martínez, J.A. 2006. Structural evolution of the Llanos Foothills, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 21(4): 510–520. https://doi.org/10.1016/j.jsames.2006.07.010
McLaughlin Jr., D.H. 1972. Evaporite deposits of Bogotá area, Cordillera Oriental, Colombia. American Association of Petroleum Geologists Bulletin, 56(11): 2240–2259.
Mora, A., Parra, M., Strecker, M.R., Kammer, A., Dimaté, C. & Rodríguez, F. 2006. Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25(2): 1–19. https://doi.org/10.1029/2005TC001854
Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V. & Vallejo–Jaramillo, J. 2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120(7–8): 930–949. https://doi.org/10.1130/B26186.1
Mora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L.I., Reyes, G. & Strecker, M. 2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: A reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21(1): 111–137. https://doi.org/10.1111/j.1365-2117.2008.00367.x
Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., Garcia, D. & Stockli, D.F. 2010a. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. American Association of Petroleum Geologists Bulletin, 94(10): 1543–1580. https://doi.org/10.1306/01051009111
Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Zeilinger, G., Jaramillo, C., Ferreira Da Silva, S. & Blanco, M. 2010b. The eastern foothills of the Eastern Cordillera of Colombia: An example of multiple factors controlling structural styles and active tectonics. Geological Society of America Bulletin, 112(11–12): 1846–1864. https://doi.org/10.1130/B30033.1
Mora, A., Reyes–Harker, A., Rodríguez, G., Tesón, E., Ramírez–Arias, J.C., Parra, M., Caballero, V., Mora, J.P., Quintero, I., Valencia, V., Ibañez–Mejia, M., Horton, B.K. & Stockli, D.F. 2013. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 411–442. https://doi.org/10.1144/SP377.6
Mora, A., Parra, M., Rodríguez–Forero, G., Blanco, V., Moreno, N., Caballero, V., Stockli, D.F., Duddy, I. & Ghorbal, B. 2015. What drives orogenic asymmetry in the northern Andes? A case study from the apex of the northern Andean orocline. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 547–586. https://doi.org/10.1306/13531949M1083652
Morales, L.G. 1958. General geology and oil occurrences of Middle Magdalena Valley, Colombia, South America. In: Weeks, L.G. (editor), Habitat of oil. American Association of Petroleum Geologists, Special Publications SP18, p. 641–695. Tulsa, USA.
Mora–Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona–Piedrahita, L., Peláez–Gaviria, J.R. & Corchuelo–Cuervo, Y. 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophysical Research Letters, 43(16): 8407–8416. https://doi.org/10.1002/2016GL069795
Moreno–Murillo, J.M. 1991. Provenance of the Lower Cretaceous sedimentary sequences, central part, Eastern Cordillera, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 18(69): 159–173.
Moreno–Murillo, J.M. & Concha–Perdomo, A.E. 1993. Nuevas manifestaciones ígneas básicas en el flanco occidental de la cordillera Oriental, Colombia. Geología Colombiana, (18): 143–150.
Moucha, R., Forte, A.M., Mitrovica, J.X., Rowley, D.B., Quéré, S., Simmons, N.A. & Grand, S.P. 2008. Dynamic topography and long–term sea–level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271(1–4): 101–108. https://doi.org/10.1016/j.epsl.2008.03.056
Nivia, Á., Marriner, G.F., Kerr, A.C. & Tarney, J. 2006. The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 423–436. https://doi.org/10.1016/j.jsames.2006.07.002
Ochoa, D., Hoorn, C., Jaramillo, C., Bayona, G., Parra, M. & De la Parra, F. 2012. The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: Evidence from three palynological records. Journal of South American Earth Sciences, 39: 157–169. https://doi.org/10.1016/j.jsames.2012.04.010
Parra, M., Mora, A., Jaramillo, C., Strecker, M.R., Sobel, E.R., Quiroz, L., Rueda, M. & Torres, V. 2009a. Orogenic wedge advance in the northern Andes: Evidence from the Oligocene – Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 121(5–6): 780–800. https://doi.org/10.1130/B26257.1
Parra, M., Mora, A., Sobel, E.R., Strecker, M.R. & González, R. 2009b. Episodic orogenic–front migration in the northern Andes: Constraints from low–temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4): 27 p. https://doi.org/10.1029/2008TC002423
Pennington, W.D. 1981. Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11): 10753–10770. https://doi.org/10.1029/JB086iB11p10753
Pimpirev, C.T., Patarroyo, P. & Sarmiento, G. 1992. Stratigraphy and facies analysis of the Caqueza Group: A sequence of Lower Cretaceous turbidites in the cordillera Oriental of the Colombian Andes. Journal of South American Earth Sciences, 5(3–4): 297–308. https://doi.org/10.1016/0895-9811(92)90027-V
Pindell, J.L. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 1–55. https://doi.org/10.1144/SP328.1
Poblet, J. & McClay, K. 1996. Geometry and kinematics of single–layer detachment folds. American Association of Petroleum Geologists Bulletin, 80(7): 1085–1109. https://doi.org/10.1306/64ED8CA0-1724-11D7-8645000102C1865D
Polanía, H. & Rodríguez, G. 1978. Posibles turbiditas del Cretáceo Inferior (Miembro Socotá) en el área de Anapoima (Cundinamarca). Geología Colombiana, (10): 87–113.
Poveda, E., Monsalve, G. & Vargas, C.A. 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4): 2408–2425. https://doi.org/10.1002/2014JB011304
Price, N.J. 1975. Rates of deformation. Journal of the Geological Society, 131(6): 553–575. https://doi.org/10.1144/gsjgs.131.6.0553
Prince, P. 2015. Eastern Cordillera, Colombia, northern Andes. TheGeoModels. Active tectonics and geomorphology lab, department of geosciences, Virginia Tech. Virginia, USA. https://www.youtube.com/watch?v=ruauej-br2c (consulted in September 2015).
Ramón, J. C., & Rosero, A. 2006. Multiphase structural evolution of the western margin of the Girardot subbasin, Upper Magdalena Valley, Colombia. Journal of South American Earth Sciences, 21(4): 493–509. https://doi.org/10.1016/j.jsames.2006.07.012
Rey, P., Vanderhaeghe, O. & Teyssier, C. 2001. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 342(3–4): 435–449. https://doi.org/10.1016/S0040-1951(01)00174-3
Riel, N., Jaillard, E., Martelat, J.E., Guillot, S. & Braun, J. 2018. Permian – Triassic Tethyan realm reorganization: Implications for the outward Pangea margin. Journal of South American Earth Sciences, 81: 78–86. https://doi.org/10.1016/j.jsames.2017.11.007
Roeder, D. & Chamberlain, R.L. 1995. Eastern Cordillera of Colombia: Jurassic–Neogene crustal evolution. In: Tankard, A.J., Suárez–Soruco, R. & Welsink, H.J. (editors), Petroleum basins of South America. American Association of Petroleum Geologists, Memoir 62, p. 633–645. Tulsa, USA.
Rowan, M.G. & Linares, R. 2000. Fold–evolution matrices and axial–surface analysis of fault–bend folds: Application to the Medina Anticline, Eastern Cordillera, Colombia. American Association of Petroleum Geologists Bulletin, 84(6): 741–764. https://doi.org/10.1306/A96733E2-1738-11D7-8645000102C1865D
Russo, R.M. & Silver, P.G. 1994. Trench–parallel flow beneath the Nazca Plate from seismic anisotropy. Science, 263(5150): 1105–1111. https://doi.org/10.1126/science.263.5150.1105
Sánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A. & Stockli, D.F. 2012. Kinematic evolution of Andean fold–thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley Basin, Colombia. Tectonics, 31(3): 1–24. https://doi.org/10.1029/2011TC003089
Sarmiento–Rojas, L.F. 2001. Mesozoic rifting and Cenozoic basin inversion history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Doctoral thesis, Vrije Universiteit, 295 p. Amsterdam, the Netherlands.
Sarmiento–Rojas, L.F., van Wess, J.D. & Cloetingh, S. 2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4): 383–411. https://doi.org/10.1016/j.jsames.2006.07.003
Saylor, J.E., Horton, B.K., Nie, J., Corredor, J. & Mora, A. 2011. Evaluating foreland basin partitioning in the northern Andes using Cenozoic fill of the Floresta Basin, Eastern Cordillera, Colombia. Basin Research, 23(4): 377–402. https://doi.org/10.1111/j.1365-2117.2010.00493.x
Saylor, J.E., Horton, B., Stockli, D.F., Mora, A. & Corredor, J. 2012. Structural and thermochronological evidence for Paleogene basement–involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39: 202–215. https://doi.org/10.1016/j.jsames.2012.04.009
Schmalholz, S.M., Podladchikov, Y.Y. & Burg, J.P. 2002. Control of folding by gravity and matrix thickness: Implications for large–scale folding. Journal of Geophysical Research: Solid Earth, 107(B1): ETG 1–1–ETG 1–16. https://doi.org/10.1029/2001JB000355
Sokoutis, D. & Willingshofer, E. 2011. Decoupling during continental collision and intra–plate deformation. Earth and Planetary Science Letters, 305(3–4): 435–444. https://doi.org/10.1016/j.epsl.2011.03.028
Spikings, R., Cochrane, R., Villagómez, D., van der Lelij, R., Vallejo, C., Winkler, W. & Beate, B. 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1): 95–139. https://doi.org/10.1016/j.gr.2014.06.004
Stibane, F.R. 1967. Paläogeographie und Tektogenese der kolumbianischen Anden. Geologische Rundschau, 56(1): 629–642. https://doi.org/10.1007/BF01848746
Suárez, M. A., 1996, Facies analysis of the Upper Eocene La Paz Formation, and regional evaluation of post–middle Eocene stratigraphy, northern Middle Magdalena Valley Basin, Colombia. Master thesis, University of Colorado, 88 p. Boulder, USA.
Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J. & Rivera, C. 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5): 787–813. https://doi.org/10.1029/2000TC900004
Talling, P.J., Masson, D.G., Sumner, E.J. & Malgesini, G. 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7): 1937–2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x
Teixell, A., Ruiz, J.C., Teson, E. & Mora, A. 2015. The structure of an inverted back–arc rift: Insights from a transect across the Eastern Cordillera of Colombia near Bogota. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 499–515. https://doi.org/10.1306/13531947M1083650
Terraza, R., Montoya, D., Reyes, G., Moreno, G. & Fúquen, J. 2008. Geología del cinturón esmeraldífero oriental, planchas 210, 228 y 229. Ingeominas, Internal report 2877, 129 p. Bogotá.
Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibañez–Mejia, M. & Valencia, V. 2013. Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 257–283. London. https://doi.org/10.1144/SP377.10
Thomas, R.G., Smith, D.G., Wood, J.M., Visser, J., Calverley–Range, E.A. & Koster, E.H. 1987. Inclined heterolithic stratification–terminology, description, interpretation and significance. Sedimentary Geology, 53(1–2): 123–179. https://doi.org/10.1016/S0037-0738(87)80006-4
Torres, V., Vandenberghe, J. & Hooghiemstra, H. 2005. An environmental reconstruction of the sediment infill of the Bogotá Basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2): 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005
Trenkamp, R., Kellogg, J.N., Freymueller, J.T. & Mora, H. 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2): 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4
Ujueta, G. 1992. Lineamientos río Ariari, Bogotá y Gachalá en los departamentos de Cundinamarca y Meta, Colombia. Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 18(70): 345–358.
van der Hammen, T., Werner, J.H. & van Dommelen, H. 1973. Palynological record of the upheaval of the northern Andes: A study of the Pliocene and lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its high–Andean biota. Review of Palaeobotany and Palynology, 16(1–2): 1–122. https://doi.org/10.1016/0034-6667(73)90031-6
van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. & Mora, A. 2016. Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31: 271–294. https://doi.org/10.1016/j.gr.2015.01.011
van Houten, F.B. & Travis, R.B. 1968. Cenozoic deposits, Upper Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 52(4): 675–702.
Vargas, C.A. & Mann, P. 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama arc–indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025–2046. https://doi.org/10.1785/0120120328
Vásquez, M., Altenberger, U., Romer, R.L., Sudo, M. & Moreno–Murillo, J.M. 2010. Magmatic evolution of the Andean Eastern Cordillera of Colombia during the Cretaceous: Influence of previous tectonic processes. Journal of South American Earth Sciences, 29(2): 171–186. https://doi.org/10.1016/j.jsames.2009.02.003
Velandia, F. & Bermúdez, M.A. 2018. The transpressive southern termination of the Bucaramanga Fault (Colombia): Insights from geological mapping, stress tensors, and fractal analysis. Journal of Structural Geology, 115: 190–207. https://doi.org/10.1016/j.jsg.2018.07.020
Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003
Villamil, T. 1999. Campanian – Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1–4): 239–275. https://doi.org/10.1016/S0031-0182(99)00075-9
Vollmer, F.W. 2015. EllipseFit 3.2.1. Strain Analysis Software. http://www.frederickvollmer.com/ellipsefit/ (consulted in December 2017).
Warsitzka, M., Kley, J. & Kukowski, N. 2013. Salt diapirism driven by differential loading–Some insights from analogue modelling. Tectonophysics, 591: 83–97. https://doi.org/10.1016/j.tecto.2011.11.018
Wernicke, B. & Axen, G.J. 1988. On the role of isostasy in the evolution of normal fault systems. Geology, 16(9): 848–851. https://doi.org/10.1130/0091-7613(1988)016<0848:OTROII>2.3.CO;2
Zehnder, A.T. & Allmendinger, R.W. 2000. Velocity field for the trishear model. Journal of Structural Geology, 22(8): 1009–1014. https://doi.org/10.1016/S0191-8141(00)00037-7