Home
Aumentar fuente
Aumentar contraste
Lengua de señas
Volcán Tabor, Ibagué, Tolima
Subduction Geometries in Northwestern South America
Carlos Alberto VARGAS
https://doi.org/10.32685/pub.esp.38.2019.11
ISBN impreso obra completa: 978-958-52959-1-9
ISBN digital obra completa: 978-958-52959-6-4
ISBN impreso Vol. 4: 978-958-52959-5-7
ISBN digital Vol. 4: 978-958-52959-9-5
Citation is suggested as:
Vargas, C.A. 2020. Subduction geometries in northwestern South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 397–422. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.11
Download chapter
Download EndNote reference
Abstract
Using hypocentral solutions and arrival times of first P and S waves recorded by stations of the Red Sismológica Nacional de Colombia (RSNC), as well as GPS, gravity, and magnetic public datasets, I have estimated velocity tomograms, Curie depth points, and the strain field along NW South America to evaluate the subduction process and interactions of the first–order tectonic blocks. A wire model has been estimated supported by three profiles based on gravity forward modeling, earthquake distribution, and b–values to elucidate the subduction behavior of the Caribbean and Nazca Plates under the South America Plate, highlighting at least three subduction scenarios, where in addition to the Caldas lithospheric tear, other minor tears are found in the lithospheric system of this region. Although it is possible a flat subduction along NW Venezuela, it is presented as an alternative hypothesis a steeper subduction, which mechanically is coherent with the structural features observed in this region. The wire model shows how the Caribbean Plate accommodates mechanically to change from flat subduction in the south to steeper subduction in the north, differentially uplifting the Santa Marta and Santander Massifs along a weakness zone that corresponds to the Santa Marta–Bucaramanga Fault System. The absence of a modern volcanic arc in the Eastern Cordillera and/or the serranía de Perijá is a consequence of slow low–angle subduction, which is associated with the compressional regime induced by the Panamá tectonic indenter. In this scenario, I hypothesize the presence of a zone of fluid accumulation (>130 km depth) derived from the dehydration process; these fluids cannot ascend to the surface, which impedes the formation of current active magmatism. However, during the last 9–12 Ma of relevant influence of the Panamá Arc against NW South America, other emplacements of magmatic material might have occurred along this orogenic system. The wire model also shows that the low seismic activity within the Antioquian Batholith is a consequence of its rigidity, promoting the transfer of strain derived from the subduction process from west to east, generating high seismic activity along its borders and suggesting that compositional and elastic properties at depth maintain its coherence as a structural body beyond the upper crust. A similar interpretation is indicated for the southern Eastern Cordillera.
Keywords: local earthquake tomography, Curie point depth, strain field, subduction, Caribbean Plate, Nazca Plate.
Usando soluciones hipocentrales y los tiempos de arribo de las primeras ondas P y S registradas por las estaciones de la Red Sismológica Nacional de Colombia (RSNC), así como bases de datos públicas de GPS, gravimetría y magnetometría, se han estimado tomogramas de anomalías de velocidad sísmica, la profundidad del punto de Curie y el campo de esfuerzos a lo largo del costado noroccidental de Suramérica para evaluar el proceso de subducción y las interacciones de los bloques tectónicos de primer orden. Se ha estimado un modelo soportado por tres perfiles basados en el modelado gravimétrico directo, la distribución de sismos y los valores b para dilucidar el comportamiento de la subducción de las placas del Caribe y de Nazca bajo la Placa de Suramérica. Se destacan al menos tres escenarios de subducción, donde además del desgarre litosférico de Caldas, otros desgarres menores se encuentran en el sistema litosférico de esta región. Aunque es posible una subducción horizontal a lo largo del borde noroccidental de Venezuela, se presenta como hipótesis alternativa una subducción más inclinada que mecánicamente es coherente con los rasgos estructurales observados en esta región. El modelo muestra como la Placa del Caribe se acomoda mecánicamente para cambiar de una subducción plana en el sur a una más inclinada en el norte, elevando diferencialmente los macizos de Santa Marta y Santander a lo largo de una zona de debilidad que corresponde al Sistema de Fallas Santa Marta–Bucaramanga. La ausencia de un arco volcánico moderno en la cordillera Oriental o en la serranía de Perijá es una consecuencia de la subducción lenta de bajo ángulo, que está asociada con el régimen compresional inducido por el empuje tectónico de Panamá. En este escenario se asume la presencia de una zona de acumulación de fluidos (>130 km de profundidad) derivados del proceso de deshidratación; estos fluidos no pueden ascender a la superficie, lo que impide la formación del magmatismo activo en la actualidad. Sin embargo, durante los últimos 9–12 Ma de importante influencia del Arco de Panamá contra Suramérica, otros emplazamientos de material magmático podrían haber ocurrido a lo largo de este sistema orogénico. El modelo también muestra que la baja actividad sísmica en el Batolito de Antioquia es una consecuencia de su rigidez, lo que fomenta la transferencia de deformación derivada de los procesos de subducción de occidente a oriente y genera una alta actividad sísmica a lo largo de sus bordes. Esto sugiere que las propiedades composicionales y elásticas a profundidad mantienen su coherencia como un cuerpo estructural más allá de la corteza superior. Una interpretación similar es indicada para el sur de la cordillera Oriental.
Palabras clave: tomografía sísmica local, profundidad del punto de Curie, campo de esfuerzo, subducción, Placa del Caribe, Placa de Nazca.
Abbreviations
CPD Curie point depth
PFZ Panamá fracture zone
RSNC Red Sismológica Nacional de Colombia
SCDB South Caribbean deformed belt
SMBF Santa Marta–Bucaramanga Fault System
SMM Santa Marta Massif
Amaya, S., Zuluaga, C. & Bernet, M. 2017. New fission–track age constraints on the exhumation of the central Santander Massif: Implications for the tectonic evolution of the northern Andes, Colombia. Lithos, 282–283: 388–402. https://doi.org/10.1016/j.lithos.2017.03.019
Anderson, V.J., Horton, B.K., Saylor, J.E., Mora, A., Tesón, E., Breecker, D.O. & Ketcham, R.A. 2016. Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. Geosphere, 12(4): 1235–1256. https://doi.org/10.1130/GES01294.1
Bernal–Olaya, R., Mann, P. & Vargas, C.A. 2015. Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 247–269. https://doi.org/10.1306/13531939M1083642
Blakely, R.J. 1996. Potential theory in gravity and magnetic applications. Cambridge University Press, 441 p. California, USA. https://doi.org/10.1017/CBO9780511549816
Blanco, J.F., Vargas, C.A. & Monsalve, G. 2017. Lithospheric thickness estimation beneath northwestern South America from an S–wave receiver function analysis. Geochemistry, Geophysics, Geosystems, 18(4): 1376–1387. https://doi.org/10.1002/2016GC006785
Blanco, J.M., Mann, P. & Nguyen, L.C. 2015. Location of the Suture Zone separating the Great Arc of the Caribbean from continental crust of northwestern South America inferred from regional gravity and magnetic data. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean Margin. American Association of Petroleum Geologists, Memoir 108, p. 161–178. https://doi.org/10.1306/13531935M1083641
Cardozo, N. & Allmendinger, R.W. 2009. SSPX: A program to compute strain from displacement/velocity data. Computers & Geosciences, 35(6): 1343–1357. https://doi.org/10.1016/j.cageo.2008.05.008
Carrillo, E., Mora, A., Ketcham, R.A., Amorocho, R., Parra, M., Costantino, D., Robles, W., Avellaneda, W., Carvajal, J.S., Corcione, M.F., Bello, W., Figueroa, J.D., Gómez, J.F., González, J.L., Quandt, D., Reyes, M., Rangel, A.M., Román, I., Pelayo, Y. & Porras, J. 2016. Movement vectors and deformation mechanisms in kinematic restorations: A case study from the Colombian Eastern Cordillera. Interpretation, 4(1): T31–T48. https://doi.org/10.1190/INT-2015-0049.1
Cediel, F., Shaw, R.P. & Cáceres, C. 2003. Tectonic assembly of the northern Andean Block. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 815–848. Tulsa, USA.
Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V. & Prieto, G.A. 2016. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1): 16–27. https://doi.org/10.1002/2015GC006048
Colgan, J.P., Egger, A.E., John, D.A., Cousens, B., Fleck, R.J. & Henry, C.D. 2011. Oligocene and Miocene arc volcanism in northeastern California: Evidence for post–Eocene segmentation of the subducting Farallon Plate. Geosphere: 7(3): 733–755. https://doi.org/10.1130/GES00650.1
Corredor, F. 2003. Seismic strain rates and distributed continental deformation in the northern Andes and three–dimensional seismotectonics of northwestern South America. Tectonophysics, 372(3–4): 147–166. https://doi.org/10.1016/S0040-1951(03)00276-2
Cortés, M. & Angelier, J. 2005. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1–4): 29–58. https://doi.org/10.1016/j.tecto.2005.03.020
Dyment, J., Lesur, V., Hamoudi, M., Choi, Y., Thebault, E. & Catalan, M. 2015. World digital magnetic anomaly map version 2.0. http://www.wdmam.org (consulted in October 2017).
Egbue, O. & Kellogg, J. 2010. Pleistocene to present North Andean “escape". Tectonophysics, 489(1–4): 248–257. https://doi.org/10.1016/j.tecto.2010.04.021
Ekström, G., Nettles, M. & Dziewoński, A.M. 2012. The global CMT project 2004–2010: Centroid–moment tensors for 13 017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201: 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
Frohlich, C. 2006. Deep earthquakes. Cambridge University Press, 574 p. New York.
Frohlich, C., Kadinsky–Cade, K. & Davis, S.D. 1995. A reexamination of the Bucaramanga, Colombia, earthquake nest. Bulletin of the Seismological Society of America, 85(6): 1622–1634.
Gómez, E., Jordan, T.E., Allmendinger, R.W., Hegarty, K., Kelly, S. & Heizler, M. 2003. Controls on architecture of the late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Geological Society of America Bulletin, 115(2): 131–147. https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2
Gutscher, M.A & Westbrook, G.K. 2009. Great earthquakes in slow–subduction, low–taper margins. In: Lallemand, S. & Funiciello, F. (editors), Subduction zone geodynamics, p. 119–133. https://doi.org/10.1007/978-3-540-87974-9
Hasegawa, A. & Nakajima, J. 2017. Seismic imaging of slab metamorphism and genesis of intermediate–depth intraslab earthquakes. Progress in Earth and Planetary Science, 4(12): 1–31. https://doi.org/10.1186/s40645-017-0126-9
Horton, B.K. 2018. Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37(2): 402–429. https://doi.org/10.1002/2017TC004624
Hunt, C.P., Moskowitz, B.M. & Banerjee, S.K. 1995. Magnetic properties of rocks and minerals. In: Ahrens, T.J. (editor), Rock physics & phase relations. A handbook of physical constants 3, p. 189–204. https://doi.org/10.1029/RF003p0189
Ibañez–Mejia, M., Tassinari, C.C.G. & Jaramillo–Mejía, J.M. 2007. U–Pb zircon ages of the “Antioquian Batholith": Geochronological constraints of late Cretaceous magmatism in the central Andes of Colombia. XI Congreso Colombiano de Geología. Abstracts, 11 p. Bucaramanga.
Idárraga–García, J., Kendall, J.M. & Vargas, C.A. 2016. Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9): 3655–3673. https://doi.org/10.1002/2016GC006323
Keppie, D.F. 2014. The analysis of diffuse triple junction zones in plate tectonics and the pirate model of western Caribbean tectonics. SpringerBriefs in Earth Sciences, 75 p. New York. https://doi.org/10.1007/978-1-4614-9616-8
Kerr, A.C. & Tarney, J. 2005. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two late Cretaceous oceanic plateaus. Geology, 33(4): 269–272. https://doi.org/10.1130/G21109.1
Koulakov, I. 2009. LOTOS code for local earthquake tomographic inversion: Benchmarks for testing tomographic algorithms. Bulletin of the Seismological Society of America, 99(1): 194–214. https://doi.org/10.1785/0120080013
Koulakov, I., Gordeev, E.I., Dobretsov, N.L., Vernikovsky, V.A., Senyukov, S., Jakovlev, A. & Jaxybulatov, K. 2013. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time–dependent seismic tomography. Journal of Volcanology and Geothermal Research, 263: 75–91. https://doi.org/10.1016/j.jvolgeores.2012.10.014
Lara, M., Cardona, A., Monsalve, G., Yarce, J., Montes, C., Valencia, V., Weber, M., De la Parra, F., Espitia, D. & López–Martínez, M. 2013. Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America? Journal of South American Earth Sciences, 45: 24–41. https://doi.org/10.1016/j.jsames.2012.12.006
Lay, T. & Wallace, T.C. 1995. Modern global seismology. Academic Press, 517 p.
Lonsdale, P. 2005. Creation of the Cocos and Nazca plates by fission of the Farallon Plate. Tectonophysics, 404(3–4): 237–264. https://doi.org/10.1016/j.tecto.2005.05.011
Mantilla–Figueroa, L.C., Mendoza, H., Bissig, T. & Craig, H. 2011. Nuevas evidencias sobre el magmatismo miocénico en el distrito minero de Vetas–California (Macizo de Santander, cordillera Oriental, Colombia). Boletín de Geología, 33(1): 43–58.
Masy, J., Niu, F., Levander, A., & Schmitz, M. 2015. Lithospheric expression of Cenozoic subduction, Mesozoic rifting and the Precambrian Shield in Venezuela. Earth and Planetary Science Letters, 410: 12–24. http://doi.org/10.1016/j.epsl.2014.08.041
Mazuera–Rico, F. 2018. Estructura litosférica de la Cuenca de Falcón, región nororiental de los Andes de Mérida y Macizo El Baúl, Venezuela, a partir de perfiles sísmicos profundos. Doctoral thesis, Universidad Central de Venezuela. Caracas.
Michael, A.J., Ellsworth, W.L. & Oppenheimer, D.H. 1990. Coseismic stress changes induced by the 1989 Loma Prieta, California earthquake. Geophysical Research Letters, 17(9): 1441–1444. https://doi.org/10.1029/GL017i009p01441
Mora, A., Parra, M., Rodríguez–Forero, G., Blanco, V., Moreno, N.R., Caballero, V., Stockli, D.F., Duddy, I.R. & Ghorbal, B. 2015. What drives orogenic asymmetry in the northern Andes?: A case study from the apex of the northern Andean orocline. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 547–586. https://doi.org/10.1306/13531949M1083652
Mora–Páez, H., Kellogg, J.N. & Freymueller, J.T. 2020. Contributions of space geodesy for geodynamic studies in Colombia: 1988 to 2017. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 479–498. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.14
Mosquera–Machado, S., Lalinde–Pulido, C., Salcedo–Hurtado, E. & Michetti, A.M. 2009. Ground effects of the 18 October 1992, Murindó earthquake (NW Colombia), using the environmental seismic intensity scale (ESI 2007) for the assessment of intensity. In: Reicherter, K., Michetti, A.M. & Silva, P.G. (editors), Palaeoseismology: Historical and prehistorical records of earthquake ground effects for seismic hazard assessment. Geological Society of London, Special Publication 316, p. 123–144. https://doi.org/10.1144/SP316.7
Ojeda, A. & Havskov, J. 2001. Crustal structure and local seismicity in Colombia. Journal of Seismology, 5(4): 575–593. https://doi.org/10.1023/A:1012053206408
Okubo, Y. & Matsunaga, T. 1994. Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity. Journal of Geophysical Research Solid Earth, 99(B11): 22363–22371. https://doi.org/10.1029/94JB01336
Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K. & Tsu, H. 1985. Curie point depths of the island of Kyushu and surrounding areas, Japan. Geophysics, 50(3): 481–494. https://doi.org/10.1190/1.1441926
Ordóñez–Carmona, O., Martins, M. & Ángel, P. 2001. Consideraciones geocronológicas e isotópicas preliminares del magmatismo Cretáceo–Paleoceno en el norte de la cordillera Central. VIII Congreso Colombiano de Geología. Memoirs, 5 p. Manizales.
Ottemöller, L., Voss, P. & Havskov, J. 2016. Seisan–earthquake analysis software for Windows, Solaris, Linux and MacosX, version 10.5: http://seisan.info (consulted in October 2017).
Parra, M., Mora, A., Sobel, E.R., Strecker, M.R. & González, R. 2009. Episodic orogenic front migration in the northern Andes: Constraints from low–temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4): 1–27. https://doi.org/10.1029/2008TC002423
Parra, M., Mora, A., López, C., Rojas, L.E. & Horton, B.K. 2012. Detecting earliest shortening and deformation advance in thrust–belt hinterlands: Example from the Colombian Andes. Geology, 40(2): 175–178. https://doi.org/10.1130/G32519.1
Paulatto, M., Laigle, M., Galve, A., Charvis, P., Sapin, M., Bayrakci, G., Evain, M. & Kopp, H. 2017. Dehydration of subducting slow–spread oceanic lithosphere in the Lesser Antilles. Nature Communications, 8(15980): 1–11. https://doi.org/10.1038/ncomms15980
Pavlis, N.K., Holmes, S.A., Kenyon, S.C. & Factor, J.K. 2012. The development and evaluation of the earth gravitational model 2008 (EGM2008). Journal of Geophysical Research Solid Earth, 117(B4): 1–38. https://doi.org/10.1029/2011JB008916
Pérez, O.J. & Mendoza, J.S. 1998. Sismicidad y tectónica en Venezuela y áreas vecinas. Física de la Tierra, 10: 87–110.
Poli, P., Prieto, G.A., Yu, C.Q., Flórez, M., Agurto–Detzel, H., Mikesell, T.D., Chen, G., Dionicio, V. & Pedraza, P. 2016. Complex rupture of the M6.3 2015 March 10 Bucaramanga earthquake: Evidence of strong weakening process. Geophysical Journal International, 205(2): 988–994. https://doi.org/10.1093/gji/ggw065
Poveda, E., Monsalve, G. & Vargas, C.A. 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4): 2408–2425. https://doi.org/10.1002/2014JB011304
Poveda, E., Julià, J., Schimmel, M. & Pérez–García, N. 2018. Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction–related magmatism in the overriding plate. Journal of Geophysical Research: Solid Earth, 123(2): 1459–1485. https://doi.org/10.1002/2017JB014688
Prieto, G.A., Beroza, G.C., Barrett, S.A., López, G.A. & Flórez, M. 2012. Earthquake nests as natural laboratories for the study of intermediate–depth earthquake mechanics. Tectonophysics, 570–571: 42–56. https://doi.org/10.1016/j.tecto.2012.07.019
Prieto, G.A., Flórez, M., Barrett, S.A., Beroza, G.C., Pedraza, P., Blanco, J.F. & Poveda, E. 2013. Seismic evidence for thermal runaway during intermediate–depth earthquake rupture. Geophysical Research Letters, 40(23): 6064–6068. https://doi.org/10.1002/2013GL058109
Quinteros, C. 2007. Estudio del espesor de la corteza y caracterización de sus posibles discontinuidades en la región noroccidental de Venezuela, a partir del análisis de funciones receptoras. Bachelor thesis, Universidad Central de Venezuela, 195 p. Caracas.
Ramos, V. 2015. Prologue: Caribbean–South American interactions: New data and interpretations. In: Schmitz, M., Audermard, F.A. & Urbani, F. (editors), The northeastern limit of the South American Plate–lithospheric structures from surface to the mantle. Editorial Innovación Tecnológica, p. v–viii. Caracas.
Restrepo–Moreno, S.A., Foster, D.A., Stockli, D.F. & Parra–Sánchez, L.N. 2009. Long–term erosion and exhumation of the “Altiplano Antioqueño", northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and Planetary Science Letters, 278(1–2): 1–12. https://doi.org/10.1016/j.epsl.2008.09.037
Reyes–Harker, A., Ruiz–Valdivieso, C.F., Mora, A., Ramírez–Arias, J.C., Rodríguez, G., de la Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B.K., Saylor, J.E., Silva, A., Valencia, V., Stockli, D.F. & Blanco, V. 2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. American Association of Petroleum Geologists Bulletin, 99(8): 1407–1453. https://doi.org/10.1306/06181411110
Rosenbaum, G. & Mo, W. 2011. Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Research, 19(3): 571–582. https://doi.org/10.1016/j.gr.2010.10.007
Saeid, E., Bakioglu, K.B., Kellogg, J., Leier, A., Martínez, J.A. & Guerrero, E. 2017. Garzón Massif basement tectonics: Structural control on evolution of petroleum systems in upper Magdalena and Putumayo Basins, Colombia. Marine and Petroleum Geology, 88: 381–401. https://doi.org/10.1016/j.marpetgeo.2017.08.035
Salazar, J.M. & Vargas, C.A. 2015. Fractal dimension and seismotectonic deformation rates along an inter–plate setting: Seismic regime along the Caribbean Plate boundary zone. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 271–294. https://doi.org/10.1306/13531940M1083644
Salazar, J.M., Vargas, C.A. & León, H. 2017. Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies. Tectonophysics, 694: 400–413. https://doi.org/10.1016/j.tecto.2016.11.023
Schneider, J.F., Pennington, W.D. & Meyer, R.P. 1987. Microseismicity and focal mechanisms of the intermediate–depth Bucaramanga nest, Colombia. Journal of Geophysical Research: Solid Earth, 92(B13): 13913–13926. https://doi.org/10.1029/JB092iB13p13913
Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H. & Ammon, C.J. 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444: 139–149. https://doi.org/10.1016/j.epsl.2016.03.050
Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J. & Rivera, C. 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5): 787–813. https://doi.org/10.1029/2000TC900004
Trenkamp, R., Kellogg, J.N., Freymueller, J.T. & Mora, H. 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2): 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4
van der Hilst, R.D. & Mann, P. 1994. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, 22(5): 451–454. https://doi.org/10.1130/0091-7613(1994)022<0451:TIOTIO>2.3.CO;2
Vargas, C.A. & Mann, P. 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc–indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025–2046. https://doi.org/10.1785/0120120328
Vargas, C.A. & Torres, R. 2015. Three–dimensional velocity structure of the Galeras Volcano (Colombia) from passive local earthquake tomography. Journal of Volcanology and Geothermal Research, 301: 148–158. https://doi.org/10.1016/j.jvolgeores.2015.05.007
Vargas, C.A., Ugalde, A., Pujades, L.G. & Canas, J.A. 2004. Spatial variation of coda wave attenuation in northwestern Colombia. Geophysical Journal International, 158(2): 609–624. https://doi.org/10.1111/j.1365-246X.2004.02307.x
Vargas, C.A., Idárraga–García, J. & Salazar, J.M. 2015. Curie point depths in northwestern South America and the southwestern Caribbean Sea. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 179–200. https://doi.org/10.1306/13531936M1083642
Veloza, G., Styron, R., Taylor, M. & Mora, A. 2012. Open–source archive of active faults for northwest South America. GSA Today, 22(10): 4–10. https://doi.org/10.1130/GSAT-G156A.1
Villagómez, D., Spikings, R., Mora, A., Guzmán, G., Ojeda, G., Cortés, E. & van der Lelij, R. 2011. Vertical tectonics at a continental crust–oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30(4): 1–18. https://doi.org/10.1029/2010TC002835
Waller II, T.D. & Frost, B.R. 2018. New Evidence for Spreading Ridge, Colombia Basin, Southern Caribbean. American Association of Petroleum Geologists, Hedberg Conference: Geology of Middle America–the Gulf of Mexico, Yucatan, Caribbean, Grenada and Tobago Basins and Their Margins, Abstracts, p. 117. Sigüenza, Spain.
Wiemer, S., McNutt, S.R. & Wyss, M. 1998. Temporal and three–dimensional spatial analysis of the frequency–magnitude distribution near Long Valley caldera, California. Geophysical Journal International, 134(2): 409–421. https://doi.org/10.1046/j.1365-246x.1998.00561.x
Zarifi, Z. 2006. Unusual subduction zones: Case studies in Colombia and Iran. Doctoral thesis, University of Bergen, 78 p. Bergen, Norway.