Home
Aumentar fuente
Aumentar contraste
Lengua de señas
Volcán Tabor, Ibagué, Tolima
Interplate Coupling along the Nazca Subduction Zone on the Pacific Coast of Colombia Deduced from GeoRED GPS Observation Data
Takeshi SAGIYA and Héctor MORA–PÁEZ
https://doi.org/10.32685/pub.esp.38.2019.15
ISBN impreso obra completa: 978-958-52959-1-9
ISBN digital obra completa: 978-958-52959-6-4
ISBN impreso Vol. 4: 978-958-52959-5-7
ISBN digital Vol. 4: 978-958-52959-9-5
Citation is suggested as:
Sagiya, T. & Mora–Páez, H. 2020. Interplate coupling along the Nazca subduction zone on the Pacific coast of Colombia deduced from GeoRED GPS observation data. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 499–513. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.15
Download chapter
Download EndNote reference
Abstract
The Nazca Plate subducts beneath Colombia and Ecuador along the Pacific coast where large megathrust events repeatedly occur. Distribution of interplate coupling on the subducting plate interface based on precise geodetic data is important to evaluate future seismic potential of the megathrust. We analyze recent continuous GPS data in Colombia and Ecuador to estimate interplate coupling in the Nazca subduction zone. To calculate the interplate coupling ratio, in addition to the MORVEL plate velocities, three different Euler poles for the North Andean Block are tested but just two of them yielded similar results and are considered appropriate for discussing the Pacific coastal area. The estimated coupling distribution shows four main locked patches. The middle two locked patches correspond to recent large earthquakes in this area in 1942, 1958, and 2016. The southernmost locked patch may be related to slow slip events. The northern locked patch has a smaller coupling ratio of less than 0.5, which may be related to the large earthquake in 1979. However, because of the sparsity of the GPS network, detailed interpretation is not possible. If we assume that the seismic moment accumulation rate is correctly estimated, the recurrence interval for a 1979–type earthquake is estimated to be ca. 124 years. More GPS data, including seafloor GPS/acoustic sensors, will greatly improve the current estimates of interplate coupling.
Keywords: interplate coupling, Nazca Plate, GPS, North Andean Block.
La Placa de Nazca subduce por debajo de Colombia y Ecuador a lo largo de la costa del Pacífico donde repetidamente ocurren grandes eventos sísmicos. La distribución del acoplamiento interplaca en la interfaz de la placa subducente basada en datos geodésicos precisos es importante para evaluar el futuro potencial sísmico de un evento. Analizamos datos continuos recientes de GPS en Colombia y Ecuador para estimar el acoplamiento de placas en la zona de subducción de Nazca. Para calcular la relación del acoplamiento entre placas, además de las velocidades de placa MORVEL, se probaron tres polos de Euler diferentes para el bloque norte de los Andes, pero dos de ellos arrojaron resultados similares y se consideran apropiados para analizar el área costera del Pacífico. La distribución estimada de acoplamiento muestra cuatro parches principales bloqueados. Los dos parches bloqueados en el medio corresponden a los grandes sismos recientes en esta área de 1942, 1958 y 2016. El parche bloqueado más al sur puede estar relacionado con eventos de deslizamiento lento. El parche bloqueado al norte tiene una relación de menor acoplamiento, menos de 0,5, que puede estar relacionada con el gran sismo de 1979. Sin embargo, debido a la escasa red de GPS, no es posible realizar una interpretación detallada. Si asumimos que la tasa de acumulación de momento sísmico es estimada correctamente, el intervalo de recurrencia para un sismo tipo 1979 es estimado en ca. 124 años. Más datos GPS, incluyendo sensores acústicos/ GPS del piso marino, mejorarán en gran medida las estimaciones actuales del acoplamiento interplaca.
Palabras clave: acoplamiento interplaca, Placa de Nazca, GPS, bloque norte de los Andes.
ABIC Akaike's Bayesian Information Criterion
GeoRED Geodesia: Red de Estudios de Deformación
GPS Global Positioning System
MORVEL Mid–Ocean Ridge Velocity
Akaike, H. 1980. Likelihood and the Bayes procedure. Trabajos de Estadística y de Investigación Operativa, 31(1): 143–166. https://doi.org/10.1007/BF02888350
Bird, P. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1–52. https://doi.org/10.1029/2001GC000252
Chlieh, M., Mothes, P.A., Nocquet, J.M., Jarrin, P., Charvis, P., Cisneros, D., Font, Y., Collot, J.Y., Villegas–Lanza, J.C., Rolandone, F., Vallée, M., Regnier, M., Segovia, M., Martin, X. & Yepes, H. 2014. Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth and Planetary Science Letters, 400: 292–301. https://doi.org/10.1016/j.epsl.2014.05.027
Cox, M.G. 1972. The numerical evaluation of B–splines. IMA Journal of Applied Mathematics, 10(2): 134–149. https://doi.org/10.1093/imamat/10.2.134
de Boor, C. 1972. On calculating with B–splines. Journal of Approximation Theory, 6(1): 50–62. https://doi.org/10.1016/0021-9045(72)90080-9
DeMets, C., Gordon, R.G. & Argus, D.F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1): 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
Feng, L., Newman, A.V., Protti, M., González, V., Jiang, Y. & Dixon, T.H. 2012. Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: Interseismic megathrust coupling. Journal of Geophysical Research: Solid Earth, 117(B6): 1–23. https://doi.org/10.1029/2012JB009230
Fujita, M., Ishikawa, T., Mochizuki, M., Sato, M., Toyama, S., Katayama, M., Kawai, K., Matsumoto, Y., Yabuki, T., Asada, A. & Colombo, O.L. 2006. GPS/Acoustic seafloor geodetic observation: Method of data analysis and its application. Earth, Planets and Space, 58(3): 265–275. https://doi.org/10.1186/BF03351923
Gagnon, K., Chadwell, C.D. & Norabuena, E. 2005. Measuring the onset of locking in the Peru–Chile Trench with GPS and acoustic measurements. Nature, 434: 205–208. https://doi.org/10.1038/nature03412
Hayes, G.P., Wald, D.J. & Johnson, R.L. 2012. Slab1.0: A three–dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117(B1): 1–15. https://doi.org/10.1029/2011JB008524
Ito, T., Yoshioka, S. & Miyazaki, S. 1999. Interplate coupling in southwest Japan deduced from inversion analysis of GPS data. Physics of the Earth and Planetary Interiors, 115(1): 17–34. https://doi.org/10.1016/S0031-9201(99)00063-1
Kanamori, H. & McNally, K. 1982. Variable rupture mode of the subduction zone along the Ecuador–Colombia coast. Bulletin of the Seismological Society of America, 72(4): 1241–1253.
Mora–Páez, H., Peláez–Gaviria, J.R., Diederix, H., Bohórquez–Orozco, O., Cardona–Piedrahita, L., Corchuelo–Cuervo, Y., Ramírez–Cadena, J. & Díaz–Mila, F. 2018. Space geodesy infrastructure in Colombia for geodynamics research. Seismological Research Letters, 89(2A): 446–451. https://doi.org/10.1785/0220170185
Mora–Páez, H., Kellogg, J., Freymueller, J.T., Mencin, D., Fernandes R.M.S., Diederix, H., LaFemina, P., Cardona–Piedrahita, L., Lizarazo, S., Peláez–Gaviria, J.R., Díaz–Mila, F., Bohórquez–Orozco, O., Giraldo–Londoño, L. & Corchuelo–Cuervo, Y. 2019. Crustal deformation in the northern Andes–A new GPS velocity field. Journal of South American Earth Sciences, 89: 76–91. https://doi.org/10.1016/j.jsames.2018.11.002
Moreno, M., Rosenau, M. & Oncken, O. 2010. 2010 Maule earthquake slip correlates with pre–seismic locking of Andean subduction zone. Nature, 467: 198–202. https://doi.org/10.1038/nature09349
Nishimura, T., Hirasawa, T., Miyazaki, S., Sagiya, T., Tada, T., Miura, S. & Tanaka, K. 2004. Temporal change of interplate coupling in northeastern Japan during 1995–2002 estimated from continuous GPS observations. Geophysical Journal International, 157(2): 901–916. https://doi.org/10.1111/j.1365-246X.2004.02159.x
Nocquet, J.M., Villegas–Lanza, J.C., Chlieh, M., Mothes, P.A., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., Martin, X., Font, Y., Vallée, R.M., Tran, T., Beauval, C., Maguiña–Mendoza, J.M., Martínez, W., Tavera, H. & Yepes, H. 2014. Motion of continental slivers and creeping subduction in the northern Andes. Nature Geoscience, 7: 287–291. https://doi.org/10.1038/ngeo2099
Ohta, Y., Freymueller, J.T., Hreinsdóttir, S. & Suito, H. 2006. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth and Planetary Science Letters, 247(1–2): 108–116. https://doi.org/10.1016/j.epsl.2006.05.013
Okada, Y. 1992. Internal deformation due to shear and tensile faults in a half–space. Bulletin of the Seismological Society of America, 82(2): 1018–1040.
Protti, M., González, V., Newman, A.V., Dixon, T.H., Schwartz, S.Y., Marshall, J.S., Feng, L., Walter, J.I., Malservisi, R. & Owen, S.E. 2014. Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nature Geoscience, 7: 117–121. https://doi.org/10.1038/ngeo2038
Sagiya, T. 1999. Interplate coupling in the Tokai district, central Japan, deduced from continuous GPS data. Geophysical Research Letters, 26(15): 2315–2318. https://doi. org/10.1029/1999GL900511
Sagiya, T. 2004. Interplate coupling in the Kanto District, central Japan, and the Boso Peninsula silent earthquake in May 1996. Pure and Applied Geophysics, 161(11–12): 2327–2342. https://doi.org/10.1007/s00024-004-2566-6
Savage, J.C. 1983. A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6): 4984–4996. https://doi.org/10.1029/JB088iB06p04984
Savage, J.C. & Prescott, W.H. 1978. Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research: Solid Earth, 83(B7): 3369–3376. https://doi.org/10.1029/JB083iB07p03369
Spiess, F.N., Chadwell, C.D., Hildebrand, J.A., Young, L.E., Purcell Jr., G.H. & Dragert, H. 1998. Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies. Physics of the Earth and Planetary Interiors, 108(2): 101–112. https://doi.org/10.1016/S0031-9201(98)00089-2
Symithe, S., Calais, E., de Chabalier, J.B., Robertson, R. & Higgins, M. 2015. Current block motions and strain accumulation on active faults in the Caribbean. Journal of Geophysical Research: Solid Earth, 120(5): 3748–3774. https://doi.org/10.1002/2014JB011779
Vallée, M., Nocquet, J.M., Battaglia, J., Font, Y., Segovia, M., Régnier, M., Mothes, P., Jarrin, P., Cisneros, D., Vaca, S., Yepes, H., Martin, X., Béthoux, N. & Chlieh, M. 2013. Intense interface seismicity triggered by a shallow slow slip event in the Central–Ecuador subduction zone. Journal of Geophysical Research: Solid Earth, 118(6): 2965–2981. https://doi.org/10.1002/jgrb.50216
Yabuki, T. & Matsu'ura, M. 1992. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophysical Journal International, 109(2): 363–375. https://doi.org/10.1111/j.1365-246X.1992.tb00102.x
Yokota, Y., Koketsu, K., Fujii, Y., Satake, K., Sakai, S., Shinohara, M. & Kanazawa, T. 2011. Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophysical Research Letters, 38(7): 1–5. https://doi.org/10.1029/2011GL050098
Yoshimoto, M., Kumagai, H., Acero, W., Ponce, G., Vásconez, F., Arrais, S., Ruiz, M., Alvarado, A., Pedraza–García, P., Dionicio, V., Chamorro, O., Maeda, Y. & Nakano M. 2017. Depth–dependent rupture mode along the Ecuador–Colombia subduction zone. Geophysical Research Letters, 44(5): 2203–2210. https://doi.org/10.1002/2016GL071929
Yoshioka, S., Yabuki, T., Sagiya, T., Tada, T. & Matsu'ura, M. 1993. Interplate coupling and relative plate motion in the Tokai district, central Japan, deduced from geodetic data inversion using ABIC. Geophysical Journal International, 113(3): 607–621. https://doi.org/10.1111/j.1365-246X.1993.tb04655.x