Aldrich, L.T., Herzog, L.F., Doak, J.B. & Davis, G.L. 1953. Variations in strontium isotope abundances in minerals part I: Mass spectrometry analysis of mineral sources of strontium. Eos, Transactions American Geophysical Union, 34(3): 457–460. https://doi.org/10.1029/TR034i003p00457
Almeida, M.E., Macambira, M.J.B., Santos, J.O.S., do Nascimento, R.S.C. & Paquette, J.L. 2013. Evolução crustal do noroeste do Cráton Amazônico, Amazonas, Brasil, baseada em dados de campo, geoquímicos e geocronológicos. 13° Simpósio de Geologia da Amazônia, Anais, p. 201–204. Belém, Brazil.
Barrera, J.I. 1988. Contribución al conocimiento y petrografía del Complejo Migmatítico de Mitú y su correlación en las localidades de Araracuara y alrededores. Bachelor thesis, Universidad Nacional de Colombia, 123 p. Bogotá.
Barrios, F.J. 1983. Caracterização geocronológica da região amazônica da Venezuela. Master thesis, Universidade de São Paulo, 123 p. Sao Paulo, Brasil. https://doi.org/10.11606/D.44.1983.tde-15072015-155335
Barrios, F., Rivas, D., Cordani, U. & Kawashita, K. 1985. Geocronología del territorio federal Amazonas. I Simposium Amazónico, Memoirs, Boletín de Geología, Publicación Especial 10: 22–31. Puerto Ayacucho, Venezuela.
Barrios, F., Cordani, U.G. & Kawashita, K. 1986. Caracterización geocronologica del territorio federal Amazonas, Venezuela. VI Congreso Geológico Venezolano, Memoirs III, p. 1432–1480. Caracas, Venezuela.
Bettencourt, J.S., Leite, Jr., W.B., Ruiz, A.S., Matos, R., Payolla, B.L. & Tosdal, R.M. 2010. The Rondonian–San Ignacio Province in the SW Amazonian Craton: An overview. Journal of South American Earth Sciences, 29(1): 28–46. http://doi.org/10.1016/j.jsames.2009.08.006
Bispo–Santos, F., D'Agrella–Filho, M.S., Trindade, R.I.F., Janikian, L. & Reis, N.J. 2014a. Was there SAMBA in Columbia? Paleomagnetic evidence from 1790 Ma Avanavero mafic sills, northern Amazonian Craton. Precambrian Research, 244: 139–155. http://doi.org/10.1016/j.precamres.2013.11.002
Bispo–Santos, F., D'Agrella–Filho, M.S., Janikian, L., Reis, N.J., Trindade, R.I.F. & Reis, M.A.A.A. 2014b. Towards Columbia: Paleomagnetism of 1980–1960 Ma Surumu volcanic rocks, northern Amazonian Craton. Precambrian Research, 244: 123–138. http://doi.org/10.1016/j.precamres.2013.08.005
Bonilla–Pérez, A., Frantz, J.C., Charão–Marques, J., Cramer, T., Franco–Victoria, J.A., Mulocher, E. & Amaya–Perea, Z. 2013. Petrografía, geoquímica y geocronología del Granito de Parguaza en Colombia. Boletín de Geología, 35(2): 83–104.
Botev, Z.I., Grotowski, J.F. & Kroese, D.P. 2010. Kernel density estimation via diffusion. The Annals of Statistics, 38(5): 2916–2957. http://doi.org/10.1214/10-AOS799
Bouvier, A., Vervoort, J.D. & Patchett, P.J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2): 48–57. http://doi.org/10.1016/j.epsl.2008.06.010
Carneiro, M.C.R., Nascimento, R.S.C., Almeida, M.E., Salazar, C.A., da Trindade, I.R., de Oliveira–Rodrigues, V. & Passos, M.S. 2017. The Cauaburi magmatic arc: Litho–stratigraphic review and evolution of the Imeri Domain, Rio Negro Province, Amazonian Craton. Journal of South American Earth Sciences, 77: 310–326. http://doi.org/10.1016/j.jsames.2017.06.001
Cawood, P.A. & Pisarevsky, S.A. 2017. Laurentia–Baltica–Amazonia relations during Rodinia assembly. Precambrian Research, 292: 386–397. http://doi.org/10.1016/j.precamres.2017.01.031
Celada, C.M., Garzón, M., Gómez, E., Khurama, S., López, J.A., Mora, M., Navas, O., Pérez, R., Vargas, O. & Westerhof, A.B. 2006. Potencial de recursos minerales en el oriente colombiano: Compilación y análisis de la información geológica disponible (fase 0). Servicio Geológico Colombiano, unpublished report, 165 p. Bogotá.
Chamberlain, K.R., Schmitt, A.K., Swapp, S.M., Harrison, T.M., Swoboda–Colberg, N., Bleeker, W., Peterson, T.D., Jefferson, C.W. & Khudoley, A.K. 2010. In situ U–Pb SIMS (IN–SIMS) micro–baddeleyite dating of mafic rocks: Method with examples. Precambrian Research, 183(3): 379–387. http://doi.org/10.1016/j.precamres.2010.05.004
Cordani, U.G. & Teixeira, W. 2007. Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher Jr, R.D., Carlson, M.P., McBride, J.H. & Martínez–Catalá, J.R. (editors), 4–D Framework of continental crust. Geological Society of America, Memoir 200, p. 297–320. https://doi.org/10.1130/2007.1200(14)
Cordani, U.G., Tassinari, C.C.G., Teixeira, W., Basei, M.A.S. & Kawashita, K. 1979. Evolução tectônica da Amazônia com base nos dados geocronológicos. II Congreso Geológico Chileno, Memoirs 4, p. 137–148. Arica, Chile.
Cordani, U.G., Teixeira, W., D'agrella–Filho, M.S. & Trindade, R.I. 2009. The position of the Amazonian Craton in supercontinents. Gondwana Research, 15(3–4): 396–407. http://doi.org/10.1016/j.gr.2008.12.005
Cordani, U.G., Ramos, V.A., Fraga, L.M., Delgado, I., de Souza, K.G., Gomes, F.E.M., Schobbenhaus, C. & Cegarra, M. 2016a. Tectonic map of South America, 2nd edition. Scale 1:5 000 000. Commission for the Geological Map of the World.
Cordani, U.G., Sato, K., Sproessner, W. & Fernandes, F.S. 2016b. U–Pb zircon ages of rocks from the Amazonas territory of Colombia and their bearing on the tectonic history of the NW sector of the Amazonian Craton. Brazilian Journal of Geology, 46(1): 5–35. http://doi.org/10.1590/2317-4889201620150012
D'Agrella–Filho, M.S., Trindade, R.I.F., Queiroz, M.V.B., Meira, V.T., Janikian, L., Ruiz, A.S. & Bispo–Santos, F. 2016. Reassessment of Aguapeí, Salto do Céu, paleomagnetic pole, Amazonian Craton and implications for Proterozoic supercontinents. Precambrian Research, 272: 1–17. http://doi.org/10.1016/j.precamres.2015.10.021
DePaolo, D.J., Linn, A.M. & Schubert, G. 1991. The continental crustal age distribution: Methods of determining mantle separation ages from Sm–Nd isotopic data and application to the southwestern United States. Journal of Geophysical Research: Solid Earth, 96(B2): 2071–2088. https://doi.org/10.1029/90JB02219
Ernst, R.E., Bleeker, W., Soderlund, U. & Kerr, A.C. 2013. Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174: 1–14. http://doi.org/10.1016/j.lithos.2013.02.017
Evans, D.A.D. 2013. Reconstructing pre–Pangean supercontinents. Geological Society of America Bulletin, 125(11–12): 1735–1751. http://doi.org/10.1130/B30950.1
Fernandes, P.E.C.A., Pinheiro, S. da S., de Montalvão, R.M.G., Issler, R.S., Abreu, A.S. & Tassinari, C.C.G. 1976. Geologia. In: Divisão de publicação (editor), Projeto RADAMBRASIL. Levantamento de recursos naturais: Folha SA. 19 Içá, 11, p. 17–123. Rio de Janeiro, Brazil.
Fuck, R.A., Brito–Neves, B.B. & Schobbenhaus, C. 2008. Rodinia descendants in South America. Precambrian Research, 160(1–2): 108–126. http://doi.org/10.1016/j.precamres.2007.04.018
Galvis, J., Huguett, A. & Ruge, P. 1979. Geología de la Amazonia colombiana. Boletín Geológico, 22(3): 3–86.
Gaudette, H.E. & Olszewski Jr., W.J. 1985. Geochronology of the basement rocks, Amazonas territory, Venezuela and the tectonic evolution of the western Guiana Shield. Geologie en Mijnbouw, 64(2): 131–143.
Gaudette, H.E., Mendoza, V., Hurley, P.M. & Fairbairn, H.W. 1978. Geology and age of the Parguaza rapakivi granite, Venezuela. Geological Society of America Bulletin, 89(9): 1335–1340. https://doi.org/10.1130/0016-7606(1978)89<1335:GAAOTP>2.0.CO;2
Gibbs, A.K. 1987. Proterozoic volcanic rocks of the northern Guiana Shield, South America. In: Pharaoh, T.C., Beckinsale, R.D. & Rickard, D. (editors), Geochemistry and mineralization of Proterozoic volcanic suites. Geological Society of London, Special Publication 33, p. 275–288. London. https://doi.org/10.1144/GSL.SP.1987.033.01.19
Gibbs, A.K. & Barron, C.N. 1993. Geology of the Guiana Shield. Claredon Press, 245 p. New York, USA.
Gómez, J., Montes, N.E., Almanza, M.F., Alcárcel, F.A., Madrid, C.A. & Diederix, H. 2017. Geological map of Colombia 2015. Episodes, 40(3): 201–212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023
Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S. & Storey, C.D. 2010. The generation and evolution of the continental crust. Journal of the Geological Society, 167(2): 229–248. http://doi.org/10.1144/0016-76492009-072
Herzog, L.F. 1952. Natural variations in strontium isotope abundances in minerals: A possible geologic age method. Doctoral thesis, Massachusetts Institute of Technology, 122 p. Cambridge, USA.
Holland, M.E., Karlstrom, K.E., Gehrels, G.E., Shufeldt, O.P., Begg, G., Griffin, W. & Belousova, E. 2018. The Paleoproterozoic Vishnu Basin in southwestern Laurentia: Implications for supercontinent reconstructions, crustal growth, and the origin of the Mojave crustal province. Precambrian Research, 308: 1–17. https://doi.org/10.1016/j.precamres.2018.02.001
Horton, B.K., Saylor, J.E., Nie, J., Mora, A., Parra, M., Reyes–Harker, A. & Stockli, D.F. 2010. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U–Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10): 1423–1442. http://doi.org/10.1130/B30118.1
Ibañez–Mejia, M. 2014. Timing and rates of Precambrian crustal genesis and deformation in northern South America. Doctoral thesis, University of Arizona, 334 p. Tucson, USA.
Ibañez–Mejia, M. 2020. The Putumayo Orogen of Amazonia: A synthesis. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 101–131. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.06
Ibañez–Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E. & Mora, A.R. 2011. The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research, 191(1–2): 58–77. https://doi.org/10.1016/j.precamres.2011.09.005
Ibañez–Mejia, M., Gehrels, G.E., Ruiz, J., Vervoort, J.D., Eddy, M.E. & Li, C. 2014. Small–volume baddeleyite (ZrO2) U–Pb geochronology and Lu–Hf isotope geochemistry by LA–ICP–MS. Techniques and applications. Chemical Geology, 384: 149–167. http://doi.org/10.1016/j.chemgeo.2014.07.011
Ibañez–Mejia, M., Pullen, A., Arenstein, J., Gehrels, G.E., Valley, J., Ducea, M.N., Mora, A.R., Pecha, M. & Ruiz, J. 2015. Unraveling crustal growth and reworking processes in complex zircons from orogenic lower–crust: The Proterozoic Putumayo Orogen of Amazonia. Precambrian Research, 267: 285–310. http://doi.org/10.1016/j.precamres.2015.06.014
Iizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y. & Suzuki, K. 2017. What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 274–275: 304–327. http://doi.org/10.1016/j.lithos.2017.01.006
Johansson, A. 2009. Baltica, Amazonia and the SAMBA connection–1000 million years of neighborhood during the Proterozoic? Precambrian Research, 175(1–4): 221–234. http://doi.org/10.1016/j.precamres.2009.09.011
Kemp, A.I.S., Hawkesworth, C.J., Collins, W.J., Gray, C.M., Blevin, P.L. & Edinburgh Ion Microprobe Facility. 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia. Earth and Planetary Science Letters, 284(3–4): 455–466. http://doi.org/10.1016/j.epsl.2009.05.011
Kronenberg, S. & Reeves, C.V. 2011. Vaupés and Amazonas Basins. In: Cediel, F. (editor), Petroleum geology of Colombia: Geology and hydrocarbon potential, 15. Agencia Nacional de Hidrocarburos and Universidad EAFIT, 103 p. Medellín.
Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., de Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P. Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break–up history of Rodinia: A synthesis. Precambrian Research, 160(1–2): 179–210. http://doi.org/10.1016/j.precamres.2007.04.021
Lugmair, G. W. & Marti, K. 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349–357. http://doi.org/10.1016/0012-821X(78)90021-3
Mora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L.I., Reyes, G. & Strecker, M. 2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: A reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21(1): 111–137. https://doi.org/10.1111/j.1365-2117.2008.00367.x
Nier, A.O. 1940. A Mass spectrometer for routine isotope abundance measurements. Review of Scientific Instruments, 11(7): 212–216. http://doi.org/10.1063/1.1751688
Nier, A.O. 1947. A mass spectrometer for isotope and gas analysis. Review of Scientific Instruments, 18(6): 398–411. http://doi.org/10.1063/1.1740961
Pinheiro, S.S., Fernandes, P.E.C.A., Pereira, E.R., Vasconcelos, E.G., Pinto, A.C., de Montalvão, R.M.G., Issler, R.S., Dall'Agnol, R., Teixeira, W. & Fernandes, C.A.C. 1976. Geologia. In: Divisão de publicação. (editor), Projeto RADAMBRASIL. Levantamento de recursos naturais: Folha NA. 19 Pico da Neblina, 11, p. 19–137. Rio de Janeiro, Brazil.
Pinson Jr, W.H., Hurley, P.M., Mencher, E. & Fairbairn, H.W. 1962. K–Ar and Rb–Sr ages of biotites from Colombia, South America. Geological Society of America Bulletin, 73(7): 907–910. https://doi.org/10.1130/0016-7606(1962)73[907:KARAOB]2.0.CO;2
Pisarevsky, S.A., Elming, S.A., Pesonen, L.J. & Li, Z.X. 2014. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Research, 244: 207–225. http://doi.org/10.1016/j.precamres.2013.05.014
Plank, T. & Langmuir, C.H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3–4): 325–394. http://doi.org/10.1016/S0009-2541(97)00150-2
Priem, H., Andriessen, P., Boelrijk, N., De Booder, H., Hebeda, E., Huguett, A., Verdumen, E. & Verschure, R. 1982. Geochronology of the Precambrian in the Amazonas region of southeastern Colombia (western Guiana Shield). Geologie en Mijnbouw, 61(3): 229–242.
Pullen, A., Ibañez–Mejia, M., Gehrels, G.E., Ibañez–Mejia, J.C. & Pecha, M. 2014. What happens when n=1000? Creating large–n geochronological datasets with LA–ICP–MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29(6): 971–980. https://doi.org/10.1039/C4JA00024B
Reis, N.J., de Faria, M.S.G., Fraga, L.M. & Haddad, R.C. 2000. Orosirian calc–alkaline volcanism and the Orocaima event in the northern Amazonian Craton, eastern Roraima state, Brazil. Revista Brasileira de Geociencias, 30(3): 380–383.
Reis, N.J., Teixeira, W., Hamilton, M.A., Bispo–Santos, F., Almeida, M.E. & D'Agrella–Filho, M.S. 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U–Pb ID–TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos, 174: 175–195. http://doi.org/10.1016/j.lithos.2012.10.014
Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., McNaughton, N.J. & Fletcher, I.R. 2000. A new understanding of the provinces of the Amazon Craton based on integration of field mapping and U–Pb and Sm–Nd geochronology. Gondwana Research, 3(4): 453–488. https://doi.org/10.1016/S1342-937X(05)70755-3
Santos, J.O.S., Potter, P.E., Reis, N.J., Hartmann, L.A., Fletcher, I.R. & McNaughton, N.J. 2003. Age, source, and regional stratigraphy of the Roraima Supergroup and Roraima–like outliers in northern South America based on U–Pb geochronology. Geological Society of America Bulletin, 115(3): 331–348. https://doi.org/10.1130/0016-7606(2003)115<0331:ASARSO>2.0.CO;2
Santos, J.O.S., Rizzotto, G.J., Potter, P.E., McNaughton, N.J., Matos, R.S., Hartmann, L.A., Cheemale, F. & Quadros, M.E.S. 2008. Age and autochthonous evolution of the Sunsás Orogen in west Amazon Craton based on mapping and U–Pb geochronology. Precambrian Research, 165(3–4): 120–152. http://doi.org/10.1016/j.precamres.2008.06.009
Schmitt, A.K., Chamberlain, K.R., Swapp, S.M. & Harrison, T.M. 2010. In situ U–Pb dating of micro–baddeleyite by secondary ion mass spectrometry. Chemical Geology, 269(3–4): 386–395. http://doi.org/10.1016/j.chemgeo.2009.10.013
Shrock, R.R. 1977. Geology at MIT 1865–1965, 1: The faculty and supporting staff. The MIT press, 1102 p. Cambridge, USA.
Söderlund, U., Patchett, P.J., Vervoort, J. & Isachsen, C.E. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3–4): 311–324. http://doi.org/10.1016/S0012-821X(04)00012-3
Söderlund, U., Hofmann, A., Klausen, M.B., Olsson, J.R., Ernst, R.E. & Persson, P.O. 2010. Towards a complete magmatic barcode for the Zimbabwe Craton: Baddeleyite U–Pb dating of regional dolerite dyke swarms and sill complexes. Precambrian Research, 183(3): 388–398. http://doi.org/10.1016/j.precamres.2009.11.001
Tassinari, C.C.G. & Macambira, M.J.B. 1999. Geochronological provinces of the Amazonian Craton. Episodes, 22(3): 174–182.
Tassinari, C.C.G., Cordani, U.G., Nutman, A.P., van Schmus, W.R., Bettencourt, J.S. & Taylor, P.N. 1996. Geochronological systematics on basement rocks from the Rio Negro–Juruena Province, Amazonian Craton, and tectonic implications. International Geology Review, 38(2): 161–175. https://doi.org/10.1080/00206819709465329
Teixeira, W., Tassinari, C.C.G. & Mondin, M. 2002. Características isotópicas (Nd e Sr) do plutonismo intrusivo no extremo NW do Cráton Amazônico, Venezuela, e implicações para a evolução Paleoproterozóica. Revista do Instituto de Geociências da Universidade de Sao Paulo, 2(1): 131–141. https://doi.org/10.5327/S1519-874X2002000100011
Teixeira, W., Hamilton, M.A., Lima, G.A., Ruiz, A.S., Matos, R. & Ernst, R.E. 2015. Precise ID–TIMS U–Pb baddeleyite ages (1110–1112 Ma) for the Rincón del Tigre–Huanchaca Large Igneous Province (LIP) of the Amazonian Craton: Implications for the Rodinia supercontinent. Precambrian Research, 265: 273–285. http://doi.org/10.1016/j.precamres.2014.07.006
Teixeira, W., Reis, N.J., Bettencourt, J.S., Klein, E.L. & Oliveira, D.C. 2019. Intraplate Proterozoic magmatism in the Amazonian Craton reviewed: Geochronology, crustal tectonics and global barcode matches. In: Srivastava, R.K., Ernst, R.E. & Peng, P. (editors), Dyke swarms of the world: A modern perspective. Springer Geology, p. 111–154. Singapore. https://doi.org/10.1007/978-981-13-1666-1_4
Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K. & Wei, C.S. 2005. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150: 561–580. https://doi.org/10.1007/s00410-005-0025-8
Vasquez, M., Altenberger, U., Romer, R.L., Sudo, M. & Moreno–Murillo, J.M. 2010. Magmatic evolution of the Andean Eastern Cordillera of Colombia during the Cretaceous: Influence of previous tectonic processes. Journal of South American Earth Sciences, 29(2): 171–186. http://doi.org/10.1016/j.jsames.2009.02.003
Veras, R.da S., Nascimento, R.S.C., Almeida, M.E., Paquette, J.L. & Carneiro, M.C.R. 2018. Paleoproterozoic basement of Içana Domain, Rio Negro Province, northwestern Amazonian Craton: Geology, geochemistry and geochronology (U–Pb and Sm–Nd). Journal of South American Earth Sciences, 86: 384–409. http://doi.org/10.1016/j.jsames.2018.07.003
Vervoort, J.D. & Kemp, A.I.S. 2016. Clarifying the zircon Hf isotope record of crust–mantle evolution. Chemical Geology, 425: 65–75. http://doi.org/10.1016/j.chemgeo.2016.01.023
Vervoort, J.D., Kemp, A.I.S., Fisher, C.M. & Bauer, A.M. 2017. Growth of Earth's earliest crust: The perspective from the depleted mantle. Goldschmidt2017 Conference, Abstracts, 1 p. Paris, France.