Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv4ch12
Seleccione su búsqueda
miig

​​​Volcán Tabor, Ibagué, Tolima

 Volume 4 Chapter 12

Chapter 12

The Algeciras Fault System of the Upper Magdalena Valley, Huila Department   

Hans DIEDERIX, Olga Patricia BOHÓRQUEZ, Héctor MORA–PÁEZ, Juan Ramón PELÁEZ , Leonardo CARDONA, Yuli CORCHUELO, Jair RAMÍREZ, and Fredy DÍAZ–MILA

https://doi.org/10.32685/pub.esp.38.2019.12 


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 4: 978-958-52959-5-7

ISBN digital Vol. 4: 978-958-52959-9-5


Citation is suggested as: 

Diederix, H., Bohórquez, O.P., Mora–Páez, H., Peláez, J.R., Cardona, L., Corchuelo, Y., Ramírez, J. & Díaz–Mila, F. 2020. The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 423–452. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.12


Download chapter  ​     

Download EndNote reference​ 



Abstract 


The Algeciras Fault System, of predominant dextral strike–slip displacement, is part of the major interplate transform fault system, known in Ecuador, Colombia, and Venezuela as the Eastern Frontal Fault System. This unique transform deformation belt connects the Nazca Plate in the Gulf of Guayaquil in Ecuador with the Caribbean Plate along the coast of Venezuela. Its dextral strike–slip displacement along the eastern boundary of the North Andean Block facilitates tectonic escape of this microplate in a NNE direction. The Algeciras Fault System constitutes the southern half of this transform belt in Colombia, the northern half runs along the foothills of the Eastern Cordillera and is known as the Guaicáramo Thrust Fault System that connects to the Boconó Fault in Venezuela. This relation underlines the significance of the Algeciras Fault System as the major active fault system in continental Colombia that plays a fundamental role in the geodynamics of the northern Andes. So far, the study of this fault system has established a notable degree of fault activity which has been corroborated by data of historic seismicity and velocity vector data of satellite geodesy obtained in recent years by the Grupo de Investigación en Geodesia Satelital of Servicio Geológico Colombiano. The presence of a series of pull–apart basins and the occurrence of monogenetic alkali basaltic volcanism within the realm of the Algeciras Fault System point to transtensional stress regimes that could possibly relate to mantle processes. Knowledge of this fault system has also important implications for seismic hazards that affect considerable parts of the country and pose a particular threat to the capital city. This chapter narrates the history of the actual state of knowledge that reflects the initial stage of a more profound study of the active tectonics of this great and important fault system.

 

Keywords: Algeciras Fault System, North Andean Block, pull–apart basin, transform deformation belt, tectonic escape.



Resumen 


El Sistema de Fallas de Algeciras, que presenta predominante desplazamiento dextral, hace parte de un sistema interplaca mayor de fallas transformantes, conocido en Ecuador, Colombia y Venezuela como el Sistema de Fallas del Frente Oriental. Este cinturón de deformación transformante conecta la Placa de Nazca en el golfo de Guayaquil en Ecuador con la Placa del Caribe a lo largo de la costa de Venezuela. Su desplazamiento dextral a lo largo del límite oriental del bloque norte de los Andes facilita el escape tectónico de esta microplaca en dirección NNE. El Sistema de Fallas de Algeciras constituye la mitad sur de este cinturón transformante en Colombia, la mitad norte corre a lo largo de las estribaciones de la cordillera Oriental y es conocido como el Sistema de Fallas de Guaicáramo que se conecta con la Falla de Boconó en Venezuela. Esta relación subraya la importancia del Sistema de Fallas de Algeciras como el principal sistema de fallas activas en la parte continental de Colombia que juega un papel fundamental en la geodinámica del norte de los Andes. Hasta el momento, el estudio de este sistema de fallas ha establecido un alto grado de actividad que ha sido corroborado por datos de sismicidad histórica y datos de vector de velocidad de geodesia satelital obtenidos recientemente por el Grupo de Investigación en Geodesia Satelital del Servicio Geológico Colombiano. La presencia de una serie de cuencas de tracción y la ocurrencia de volcanismo monogenético basáltico alcalino en el Sistema de Fallas de Algeciras apuntan a regímenes de esfuerzo transtensional que podrían estar relacionados con procesos mantélicos. El conocimiento de este sistema de fallas también tiene importantes implicaciones para la amenaza sísmica que afecta considerables partes del país y supone una amenaza para la ciudad capital. Este capítulo narra la historia del estado actual de conocimiento que refleja la etapa inicial de un estudio más profundo de la actividad tectónica de este importante sistema de fallas.

 

Palabras clave: Sistema de Fallas de Algeciras, bloque norte de los Andes, cuenca de tracción, cinturón de deformación transformante, escape tectónico.



Abbreviations 


AFS                                           Algeciras Fault System

ALOS                                     PALSAR              Satellite radar system

CASA                                      Central and South America GPS Project

DEM                                         Digital elevation models

GeoRED                           Grupo de Trabajo Investigaciones Geodésicas Espaciales

GPS                                           Global Position System

GNSS                                     Global Navigation Satellite System

JAXA                                        Japan Aerospace Exploration Agency

NAB                                          North Andean Block

NASA                                    National Aeronautics and Space Administration

RSNC                                     Red Sismológica Nacional de Colombia

SGC                                         Servicio Geológico Colombiano

SENTINEL                     European satellite radar

SRTM                                     Satellite Radar Topographic Mission​



References


Acosta, J., Lonergan, L. & Coward, M.P. 2004. Oblique transpression in the western thrust front of the Colombian Eastern Cordillera. Journal of South American Earth Sciences, 17(3): 181–194. https://doi.org/10.1016/j.jsames.2004.06.002

 

Acosta, J., Velandia, F., Osorio J., Lonergan, L. & Mora, H. 2007. Strike–slip deformation within the Colombian Andes. In: Ries, A.C., Butler, R.W.H., & Graham, R. (editors), Deformation of the Continental Crust: The Legacy of Mike Coward. Geological Society of London, Special Publication 272, p. 303–319. London. https://doi.org/10.1144/GSL.SP.2007.272.01.16

 

Alvarado, A., Audin, L., Nocquet, J.M., Jaillard, E., Mothes, P., Jarrin, P., Segovia, M., Rolandone, F. & Cisneros, D. 2016. Partitioning of oblique convergence in the Northern Andes subduction zone: Migration history and the present–day boundary of the North Andean sliver in Ecuador. Tectonics 35(5): 1048–1065. https://doi.org/10.1002/2016TC004117

 

Anderson, V.J., Horton, B.K., Saylor, J.E., Mora, A., Tesón, E., Breecker, D.O. & Ketcham, R.A. 2016. Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco and Amazon River System. Geosphere, 12(4): 1235–1256. https://doi.org/10.1130/GES01294.1

 

Audemard, F.A. 1993. Néotectonique, sismotectonique et aléa sismique du nord–oest du Venezuela: Systéme de failles d´Oca–Ancon. Doctoral thesis, Université Montpellier II, 351 p. Montpellier, France.

 

Audemard, F.A. 1998. Contribución de la paleosismología a la sismicidad histórica: Los terremotos de 1610 y de 1894 en los Andes venezolanos meridionales. Revista Geográfica Venezolana, 39(1–2): 87–105.

 

Audemard, F.A. 2008. Historia sísmica y segmentación sismogenética de la Falla de Boconó con base en el análisis geológico de sedimentos recientes deformados (por vía de trincheras y núcleos continuos). Proyecto Fonacit 2001002492, Internal report FUN–025, 83 p. Caracas, Venezuela.

 

Audemard, F.A. 2014. Active block tectonics in and around the Caribbean: A review. In: Schmitz, M., Audemard, F.A. & Urbani, F. (editors), The northeastern limit of the South American Plate: Lithospheric structures from surface to the mantle. Editorial Innovación Tecnológica–Fundación Venezolana de Investigaciones Sismológicas (FUNVISIS), p. 29–77. Caracas, Venezuela.

 

Audemard, F.A. 2016. Evaluación paleosísmica del segmento San Felipe de la Falla de Boconó, Venezuela noroccidental: ¿Responsable del terremoto del 26 de marzo de 1812? Boletín de Geología, 38(1): 125–149.

 

Audemard, F.E. & Audemard, F.A. 2002. Structure of the Mérida Andes, Venezuela: Relations with the South America–Caribbean geodynamic interaction. Tectonophysics, 345(1–4): 299–327. https://doi.org/10.1016/S0040-1951(01)00218-9

 

Audemard, F.A., Romero, G., Rendón, H. & Cano, V. 2005. Quaternary fault kinematics and stress tensors along the southern Caribbean from fault–slip data and focal mechanism solutions. Earth–Science Reviews, 69(3–4): 181–233. https://doi.org/10.1016/j.earscirev.2004.08.001

 

Audemard, F.A., Singer, A., Soulas, J.P., Acosta, L., Arzola, A., Beltrán, C., Beck, C., Bellier, O., Bonnot, D., Bousquet, J.C., Carrillo, E., Casas––Sainz, A., Castilla, R., Costa, C., De Santis, F., Diederix, H., Gallardo, C., Giraldo, C., González, R., Mocquet, A., Ollarves, R., Rivero, C.A., Rodríguez, E., Rodríguez, J.A., Rojas, C., Sauret, B., Schubert, C. & Subieta, T. 2006. Quaternary faults and stress regime of Venezuela. Revista de la Asociación Geológica Argentina, 61(4), 480–491.

 

Aydin, A. & Nur, A. 1982. Evolution of pull–apart basins and their scale independence. Tectonics, 1(1): 91–105. https://doi.org/10.1029/TC001i001p00091

 

Baize, S., Audin, L., Winter, T., Alvarado, A., Pilatasig–Moreno, L., Taipe, M., Reyes, P., Kauffmann, P. & Yepes, H. 2014. Paleoseismology and tectonic geomorphology of the Pallatanga Fault (central Ecuador), a major structure of the South–American crust. Geomorphology, 237: 14–28. https://doi.org//10.1016/j.geomorph.2014.02.030

 

Bakker, J.G.M. 1990. Tectonic and climatic controls on late Quaternary sedimentary processes in a neotectonic intramontane basin: The Pitalito Basin, south Colombia. Doctoral thesis, University of Wageningen, 160 p. Wageningen, The Netherlands.

 

Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J.J. & Reyes–Harker, A. 2008. An integrated analysis of an orogen–sedimentary basin pair: Latest Cretaceous – Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos Foreland Basin of Colombia. Geological Society of America Bulletin, 120(9–10): 1171–1197. https://doi.org/10.1130/B26187.1

 

Boinet, T, Bourgois, J., Mendoza, H., & Vargas, R. 1985. Le poinçon de Pamplona (Colombia): Un jalon de la frontière méridionale de la Plaque Carïbe. Bulletin de la Société Géologique de France, 1(3): 403–413. https://doi.org/10.2113/gssgfbull.I.3.403

 

Butler, K. & Schamel, S. 1988. Structure along the eastern margin of the Central Cordillera, Upper Magdalena Valley, Colombia. Journal of South American Earth Sciences, 1(1), 109–120. https://doi.org/10.1016/0895-9811(88)90019-3

 

Cárdenas, J.I., Fuquen, J.A. & Núñez, A. 1998. Geología de la plancha 388 Pitalito. Scale 1:100 000. Ingeominas, Bogotá.

 

Chorowicz, J., Chotin, P. & Guillande, R. 1996. The Garzón Fault: Active southwestern boundary of the Caribbean Plate in Colombia. Geologische Rundschau, 85: 172–179. https://doi.org/10.1007/BF00192075

 

Christie–Blick, N. & Biddle, K.T. 1985. Deformation and basin formation along strike–slip faults. In: Biddle, K.T. & Christie–Blick, N. (editors), Strike–slip deformation, basin formation, and sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publication 37, p. 1–34.

 

Cifuentes, H.G. & Sarabia, A.M. 2009. Revisión de información histórica y reevaluación de intensidades del sismo del 9 de febrero de 1967, Colombia, Huila. Ingeominas, Internal report, 40 p. Bogotá.

 

Costa, C.H., Audemard, F.A., Bezerra, F.H.R., Lavenu, A., Machette, M.N. & Paris, G. 2006. An overview of the main Quaternary deformation of South America. Revista de la Asociación Geológica Argentina, 61(4): 461–479.

 

Crowell, J.C. 1962. Displacement along the San Andreas Fault, California. Geological Society of America, Special Paper 71, 61p.

 

Crowell, J.C. 1973. Origin of Late Cenozoic basins in Southern California. In: Sylvester, A.G. (compiler), Wrench Fault Tectonics. American Association of Petroleum Geologists, Reprint Series 28, p. 195–209. Tulsa, USA.

 

Cunningham, W.D. & Mann, P. 2007. Tectonics of strike–slip restraining and releasing bends. In: Cunningham, W.D. & Mann, P. (editors), Tectonics of strike–slip restraining and releasing bends. Geological Society of London, Special Publication 290, p. 1–12. London. https://doi.org/10.1144/SP290.1

 

Diederix, H. & Gómez, H. 1991. Mapa geológico del sur del departamento del Huila. Scale: 1:100 000. Instituto Geográfico Agustín Codazzi. Bogotá.

 

Diederix, H. & Romero, J. 2009. Falla Algeciras. In: Atlas de deformaciones cuaternarias de los Andes. Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas. Publicación Geológico Multinacional (7), p. 235–243.

 

Diederix, H., Audemard, F., Osorio, J.A., Montes, N., Velandia, F. & Romero, J. 2006. Modelado morfotectónico de la falla transcurrente de Ibagué, Colombia. Revista de la Asociación Geológica Argentina, 61(4): 492–503.

 

Diederix, H., Romero, J. & Audemard, F. 2009. Falla Ibagué. In: Atlas de deformaciones cuaternarias de los Andes. Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas. Publicación Geológico Multinacional (7), p. 226–234.

 

Diederix, H., Torres, E., García, L.F. & Oviedo, J.A. 2010. Neotectónica del piedemonte llanero entre los municipios de Tauramena, Monterrey y Villanueva, Casanare. Ingeominas, Internal report, 118 p. Bogotá.

 

Dimaté, C., Rivera, L. & Cisternas, A. 2005. Re–visiting large historical earthquakes in the Colombian Eastern Cordillera. Journal of Seismology, (9): 1–22. https://doi.org/10.1007/s10950-005-1413-2

 

Dooley, T. & McClay, K. 1997. Analog modeling of pull–apart basins. American Association of Petroleum Geologists, 81(11): 1804–1826. https://doi.org/10.1306/3B05C636-172A-11D7-8645000102C1865D

 

Egbue, O. & Kellogg, J. 2010. Pleistocene to present north Andean “escape". Tectonophysics, 489(1–4): 248–257. https://doi.org/10.1016/j.tecto.2010.04.021

 

Ego, F., Sébrier, M., Lavenu, A., Yepes, H. & Egüez, A. 1996. Quaternary state of stress in the Northern Andes and the restraining bend model for the Ecuadorian Andes. Tectonophysics, 259(1–3): 101–116. https://doi.org/10.1016/0040-1951(95)00075-5

 

Eguez, A., Alvarado, A., Yepes, H., Machette, M.N., Costa, C. & Dart, R.L. 2003. Database and map of Quaternary faults and folds in Ecuador and its offshore regions. U.S. Geological Survey, Open–File Report 03–289, 71 p. https://doi.org/10.3133/ofr03289

 

Ferrari, L. & Tibaldi, A. 1992. Recent and active tectonics of the north–eastern Ecuadorian Andes. Journal of Geodynamics, 15(1–2): 39–58. https://doi.org/10.1016/0264-3707(92)90005-D

 

Freymueller, J.T., Kellogg, J.N. & Vega, V. 1993. Plate motions in the north Andean region. Journal of Geophysical Research: Solid Earth, 98(B12): 21853–21863. https://doi.org/10.1029/93JB00520

 

García, L.F., Torres, E.M., Diederix, H. & Oviedo, J.A. 2011. Evidencias de deformación tectónica superficial durante el Cuaternario en el piedemonte cordillerano en la zona de Tauramena, Monterrey y Villanueva, Casanare, Colombia. XIV Congreso Latinoamericano de Geología y XIII Congreso Colombiano de Geología. Abstracts, p. 168. Medellín.

 

Gómez, J., Nivia, A., Montes, N.E., Jiménez, D.M., Tejada, M.L., Sepúlveda, M.J., Gaona, T., Diederix, H., Uribe, H. & Mora, M., compilers. 2007. Mapa Geológico de Colombia 2007. Scale 1:1 000 000. Ingeominas, 2 sheets. Bogotá.

 

Gómez, J., Montes, N.E., Nivia, A. & Diederix, H., compilers. 2015. Mapa Geológico de Colombia 2015. Scale 1:1 000 000. Servicio Geológico Colombiano, 2 sheets. Bogotá. https://doi.org/10.32685/10.143.2015.935

 

Gregory–Wodzicki, K.M. 2000. Uplift history of the Central and Northern Andes: A Review. GSA Bulletin, 112(7): 1091–1105. https://doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.3.CO;2

 

Guillande, R. 1988. Evolution Méso–Cénozoïque d'une vallée intercordilleraine: La Haute Vallée du río Magdalena, Colombie. Doctoral thesis, Université Pierre et Marie Curie, 358 p. Paris.

 

Gutscher, M.A., Malavielle, J., Lallemand, S. & Collot, J.Y. 1999. Tectonic segmentation of the North Andean margin: Impact of the Carnegie Ridge collision. Earth and Planetary Science Letters 168(3–4): 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6

 

Idárraga–García, J, Kendall, J.M. & Vargas, C.A. 2016. Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9): 3655–3673. https://doi.org/10.1002/2016GC006323

 

Ingeominas & Geoestudios. 1998. Geología de la plancha 389 Timaná. Scale 1:100 000. Ingeominas. Bogotá.

 

Ingeominas & Geoestudios. 1999. Geología de la plancha 412 San Juan de Villalobos. Scale 1:100 000. Ingeominas. Bogotá.

 

Ingeominas & Geoestudios. 2000. Geología de la plancha 465 Churuyaco. Scale 1:100 000. Ingeominas. Bogotá.

 

Kellogg, J.N. & Vega, V. 1995. Tectonic development of Panamá, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In: Mann P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in Southern Central America. Geological Society of America, Special Paper 295, p. 75–90. Boulder, USA. https://doi.org/10.1130/SPE295-p75

 

Kroonenberg, S.B. & Diederix, H. 1982. Geology of South–Central Huila, Uppermost Magdalena Valley, Colombia. Guide Book 21th Annual Field Trip, Colombian Society of Petroleum Geologists and Geophysicists, 30 p. Bogotá.

 

Kroonenberg, S.B., Pichler, H. & Diederix, H. 1982. Cenozoic alkalibasaltic to ultrabasic volcanism in the uppermost Magdalena Valley, southern Huila Department, Colombia. Geología Norandina 5: 19–26.

 

Kroonenberg, S.B., Pichler, H. & Schmitt, C. 1987. Young alkali–basaltic to nephelinitic volcanism in the southern Colombian Andes: Origin by the subduction of a spreading rift? Zeitblatt für Geologie und Paläontologie, 1(7/8): 919–936. Stuttgart, Germany.

 

Kroonenberg, S.B., Bakker, J.G.M. & van der Wiel, A.M. 1990. Late Cenozoic uplift and paleogeography of the Colombian Andes: Constraints on the development of high–Andean biota. Geologie en Mijnbouw, 69: 279–290.

 

Mann, P. 2007. Global catalogue, classification and tectonic origins of restraining–and releasing bends on active and ancient strike–slip fault systems. In: Cunningham, W.D. & Mann, P. (editors), Tectonics of strike–slip restraining and releasing bends. Geological Society of London. Special Publication 290, p. 13–142. https://doi.org/10.1144/SP290.2

 

McCalpin, J.P. (editor). 2009. Paleoseismology, 2nd edition. Academic Press, 629 p.

 

Monsalve–Bustamante, M.L., Gómez, J. & Núñez–Tello, A. 2020. Rear–Arc Small–Volume Basaltic Volcanism in Colombia: Monogenetic Volcanic Fields. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 353–396 Bogotá. https://doi.org/10.32685/pub.esp.38.2019.10

 

Montes, C., Hatcher, R.D. & Restrepo–Pace, P.A. 2005. Tectonic reconstruction of the Northern Andean Blocks: Oblique convergence and rotations derived from the kinematics of the Piedras–Girardot area, Colombia. Tectonophysics, 399(1–4): 221–250. https://doi.org/10.1016/j.tecto.2004.12.024

 

Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Zeilinger, G., Jaramillo, C., Da Silva, S.F. & Blanco, M. 2010. The eastern foothills of the Eastern Cordillera of Colombia: An example of multiple factors controlling structural styles and active tectonics. GSA Bulletin, 122(11–12): 1846–1864. https://doi.org/10.1130/B30033.1

 

Mora–Páez, H., Trenkamp, R., Kellogg, J., Freymueller, J. & Ordoñez, M. 2002. Resultados del uso de geodesia satelital para estudios geodinámicos en Colombia. Geofísica Colombiana, (6): 43–52.

 

Mora–Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona–Piedrahita, L., Peláez–Gaviria, J.R. & Corchuelo–Cuervo, Y. 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophysical Research Letters, 43(16): 8407–8416. https://doi.org/10.1002/2016GL069795

 

Mora–Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M.S, Diederix, H., LaFemina, P., Cardona–Piedrahita, L., Lizarazo, S., Peláez–Gaviria, J.R., Díaz–Mila, F., Bohórquez–Orozco, O., Giraldo–Londoño, L. & Corchuelo–Cuervo, Y. 2019. Crustal deformation in the northern Andes–A new GPS velocity field. Journal of South American Earth Sciences, 89: 76–91. https://doi.org/10.1016/j.jsames.2018.11.002

 

Nocquet, J.M., Villegas–Lanza, J.C., Chlieh, M., Mothes, P.A., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., Martin, X., Font, Y., Régnier, M., Vallée, M., Tran,T., Beauval, C., Maguiña–Mendoza, J.M., Martinez, W., Tavera, H. & Yepes, H. 2014. Motion of continental slivers and creeping subduction in the Northern Andes. Nature Geoscience, 7(4): 287–291. https://doi.org/10.1038/NGEO2099

 

Núñez, A., Gómez, J. & Rodríguez, G.I. 2001. Vulcanismo básico al sureste de la ciudad de Ibagué, departamento del Tolima, Colombia. VIII Congreso Colombiano de Geología. Memoirs, 12 p. Manizales.

 

Osorio, J., Montes, N., Velandia, F., Acosta, J., Romero, J., Diederix, H., Audemard, F.A. & Núñez, A. 2008. Estudio paleosismológico de la Falla de Ibagué. Publicaciones Geológicas Especiales 29, p. 9–212. Bogotá.

 

Page, W. 1986. Seismic geology and seismicity of northwestern Colombia. Woodward–Clyde Consultants & Interconexión Elétrica S.A., unpublished report, 156 p. Medellín.

 

Paris, G., Machette, M.N., Dart, R.L. & Haller, K.M. 2000. Map and database of Quaternary faults and folds in Colombia and its offshore regions. U.S. Geological Survey, Open–File report 00–0284, 61 p. Denver, USA.

 

Pennington, W.D. 1981. Subduction of the eastern Panamá Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11): 10753–10770. https://doi.org/10.1029/JB086iB11p10753

 

Pousse–Beltran, L., Vassallo, R., Audemard, F., Jouanne, F., Carcaillet, J., Pathier, E. & Volat, M. 2017. Pleistocene slip rates on the Boconó Fault along the North Andean Block plate boundary, Venezuela. Tectonics 36 (7): 1207–1231. https://doi.org/10.1002/2016TC004305

 

Ramírez, J.E. 2004. Actualización de la historia de los terremotos en Colombia. Pontifica Universidad Javeriana. 186 p. Bogotá.

 

Ramírez, W., Tesón, E., Garcia, I.N. & Velandia, F. 2015. Cronología de la exhumación del Macizo de Garzón: Implicaciones en la migración de hidrocarburos. XV Congreso Colombiano de Geología. Memoirs, p. 919–923. Bucaramanga.

 

Reijs, J. & McClay, K. 2003. The Salina del Fraile pull–apart basin, northwest Argentina. In: Storti, F., Holdsworth, R.E. & Salvini, F. (editors), Intraplate strike–slip deformation belts. Geological Society of London, Special Publication 210, p. 197–209. London. https://doi.org/10.1144/GSL.SP.2003.210.01.12

 

Rodríguez, L., Diederix, H., Torres, E., Audemard, F., Hernández, C., Singer, A., Bohórquez, O. & Yepes, S. 2018. Identification of the seismogenic source of the 1875 Cúcuta earthquake on the basis of a combination of neotectonic, paleoseismologic and historic seismicity studies. Journal of South American Earth Sciences, 82: 274–291. https://doi.org/10.1016/j.jsames.2017.09.019

 

Romero, J., Sarabia, A.M. & Cifuentes, H. 2009. El sismo del 16 de noviembre 1827. Guadalupe, Huila. Reconocimiento de efectos geológicos y medio–ambientales. Una aproximación a la paleosismología. Ingeominas, Internal report, 20 p. Bogotá.

 

Saeid, E., Bakioglu, K.B., Kellogg, J., Leier, A., Martínez, J.A. & Guerrero, E. 2017. Garzón Massif basement tectonics: Structural control on evolution of petroleum systems in Upper Magdalena and Putumayo Basins, Colombia. Marine and Petroleum Geology, 88: 381–401. https://doi.org//10.1016/j.marpetgeo.2017.08.035

 

Sarabia, A.M., Cifuentes, H.G. & Dimaté, M.C. 2006. Estudio macrosísmico del sismo del 16 de noviembre de 1827, Altamira, Huila. Ingeominas, Internal report, 39 p. Bogotá.

 

Sengör, A.M.C., Görür, N. & Saroğglu, F. 1985. Strike–slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, K.T. & Christie–Blick, N. (editors), Strike–slip deformation, basin formation, and sedimentation. SEPM Society for Sedimentary Geology, Special Publication 37, 227–264. https://doi.org/10.2110/pec.85.37.0211

 

Soulas, J.P., Eguez, A., Yepez, H. & Perez, H. 1991. Tectonica activa y riesgo sísmico en los Andes Ecuatorianos y el extremo Sur de Colombia. Boletín Geológico Ecuatoriano, 2(1): 3–11.

 

Storti, F., Holdsworth, R.E. & Salvini, F. 2003. Intraplate strike–slip deformation belts. In: Storti, F., Holdsworth, R.E. & Salvini, F. (editors), Intraplate strike–slip deformation belts. Geological Society of London. Special Publication 210, p. 1–14. London.

 

Sylvester, A.G. 1988. Strike–slip faults. Geological Society of America Bulletin, 100(11): 1666–1703. https://doi.org/10.1130/0016-7606(1988)100<1666:ssf>2.3.co;2

 

Taboada, A., Dimaté, C. & Fuenzalida, A. 1998. Sismotectónica de Colombia: Deformación continental activa y subducción. Física de la Tierra (10): 11–147.

 

Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J. & Rivera, C. 2000. Geodynamics of the Northern Andes: Subductions and intracontinental deformation, Colombia. Tectonics, 19(5): 787–813. https://doi.org/10.1029/2000TC900004

 

Tchalenko, J.S. & Ambraseys, N.N. 1970. Structural analysis of the Dasht–e Baȳaz (Iran): Earthquake fractures. Geological Society of America Bulletin, 81(1): 41–60. https://doi.org/10.1130/0016-7606(1970)81[41:SAOTDB]2.0.CO;2

 

Tibaldi, A. & Ferrari, L. 1991. Multisource, remotely sensed data, field checks and seismicity for the definition of active tectonics in the Ecuadorian Andes. International Journal of Remote Sensing, 12(11): 2343–2358. https://doi.org/10.1080/01431169108955262

 

Tibaldi, A. & Ferrari, L. 1992. Latest Pleistocene – Holocene tectonics of the Ecuadorian Andes. Tectonophysics, 205(1–3): 109–125. https://doi.org/10.1016/0040-1951(92)90421-2

 

Tibaldi, A., Rovida, A. & Corazzato, C. 2007. Late Quaternary kinematics, slip–rate and segmentation of a major cordillera–parallel transcurrent fault: The Cayambe–Afiladores–Sibundoy system, NW South America. Journal of Structural Geology, 29(4): 664–680. https://doi.org/10.1016/j.jsg.2006.11.008

 

Trenkamp, R., Kellogg, J.N., Freymueller, J.T. & Mora, H. 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2): 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4

 

van der Wiel, A.M. 1991. Uplift and volcanism of the SE Colombian Andes in relation to Neogene sedimentation in the Upper Magdalena Valley. Doctoral thesis, Agricultural University of Wageningen, 198 p. Wageningen, The Netherlands.

 

Vargas, C.A. & Mann, P. 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc–indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025–2046. https://doi.org/10.1785/0120120328

 

Velandia, F., Acosta, J., Terraza R. & Villegas, H. 2005. The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics 399(1–4): 313–329. https://doi.org/10.1016/j.tecto.2004.12.028

 

Vergara, H. 1996. Rasgos y actividad neotectónica de la Falla de Algeciras. VII Congreso Colombiano de Geología. Memoirs I, p. 491–500.Bogotá.

 

Wilcox, R., Harding, T,P. & Seely, D.R. 1973. Basic wrench tectonics. American Association of Petroleum Geologists Bulletin, 57(1): 74–96. https://doi.org/10.1306/819A424A-16C5-11D7-8645000102C1865D

 

Witt, C., Bourgois, J., Michaud, F., Ordoñez, M. & Jiménez, N. 2006. Development of the Gulf of Guayaquil, Ecuador, during the Quaternary as an effect of the North Andean Block escape. Tectonics, 25(3): 22 p. https://doi.org/10.1029/2004TC001723

 

Woodcock, N.H. 1986. The role of strike–slip fault systems at plate boundaries. Philosophical Transactions of the Royal Society of London. Series A, 317(1539): 13–29.

 

Woodcock, N.H. & Schubert, C. 1994. Continental strike–slip tectonics. In: Hancock, P.L. (editor), Continental Deformation. Pergamon Press, p. 251–263. Oxford.

 

Yeats, R.S., Sieh, K. & Allen, C.R. 1997. Geology of Earthquakes. Oxford University Press. 576 p. New York.


Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: radicacioncorrespondencia@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer