Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv3ch2
Seleccione su búsqueda
miig

​​​​​Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño

 Volume 3 Chapter 2

Chapter 2

Formation and Evolution of the Lower Magdalena Valley Basin and San Jacinto Fold Belt of Northwestern Colombia: Insights from Upper Cretaceous to Recent Tectono–Stratigraphy 

Josué Alejandro MORA–BOHÓRQUEZ  , Onno ONCKEN, Eline LE BRETON, Mauricio IBAÑEZ–MEJIA , Gabriel VELOZA, Andrés MORA, Vickye VÉLEZ, and Mario DE FREITAS

https://doi.org/10.32685/pub.esp.37.2019.02


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 3: 978-958-52959-4-0

ISBN digital Vol. 3: 978-958-53131-0-1​​


Citation is suggested as: 

Mora–Bohórquez, J.A., Oncken, O., Le Breton, E., Ibañez–Mejia, M., Veloza, G., Mora, A., Vélez, V. & De Freitas, M. 2020. Formation and evolution of the Lower Magdalena Valley Basin and San Jacinto fold belt of northwestern Colombia: Insights from Upper Cretaceous to recent tectono–stratigraphy. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 21–66. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.02


Download chapter  ​        Download supplementary information  

Download EndNote reference 


Abstract 


Using a regional geological and geophysical dataset, we reconstructed the stratigraphic evolution of the Lower Magdalena Valley Basin and San Jacinto fold belt of northwestern Colombia. Detailed interpretations of reflection seismic data and new geochronology analyses reveal that the basement of the Lower Magdalena Basin is the northward continuation of the basement terranes of the northern Central Cordillera and consists of Permian – Triassic metasedimentary rocks intruded by Upper Cretaceous granitoids. Structural analyses suggest that the NE–SW strike of faults in basement rocks underlying the northeastern Lower Magdalena is inherited from a Jurassic rifting event, while the ESE–WNW striking faults in the western part originated from a Late Cretaceous to Eocene strike–slip and extensional episode. The Upper Cretaceous to lower Eocene sedimentary rocks preserved in the present–day San Jacinto fold belt were deposited in a submarine, forearc basin formed during the coeval oblique convergence between the Caribbean and South American Plates. A lower to middle Eocene angular unconformity at the top of the upper Paleocene to lower Eocene San Cayetano Sequence, the termination of the activity of the Romeral Fault System, and the cessation of arc magmatism are all interpreted to indicate the onset of low–angle orthogonal subduction of the Caribbean Plateau beneath South America between 56 and 43 Ma. Flat subduction of the plateau has continued to the present and would be the main cause of amagmatic post–Eocene deposition and formation of the Lower Magdalena Valley forearc basin. Extensional reactivation of inherited, pre–Oligocene basement faults was crucial for the tectonic segmentation of the basin and the formation of its two depocenters (Plato and San Jorge). Late Oligocene to early Miocene fault–controlled subsidence allowed initial infill of the Lower Magdalena, while uplift of Andean terranes made possible the connection of the Lower and Middle Magdalena Valleys, and the formation of the largest Colombian drainage system (Magdalena River system). This drainage system started delivering enormous amounts of sediments in middle Miocene times, as fault–controlled subsidence was gradually replaced by sedimentary loading. Such dramatic increase in sedimentation and the huge volume of sediment being delivered to the trench caused the formation of forearc highs in San Jacinto and of an accretionary prism farther to the west. Our results highlight the fundamental role of plate kinematics, inherited basement structure, and sediment flux on the evolution of forearc basins such as the Lower Magdalena and San Jacinto.

 

Keywords: forearc basin, basement, flat–slab subduction, tectono–stratigraphy, Lower Magdalena, San Jacinto fold belt, Caribbean, subsidence, sedimentation.



Resumen


Utilizando una base de datos regional de geología y geofísica reconstruimos la evolución estratigráfica de la Cuenca del Valle Inferior del Magdalena y del cinturón plegado de San Jacinto al noroeste de Colombia. Interpretaciones detalladas de sísmica de reflexión y nuevos análisis geocronológicos revelan que el basamento de la Cuenca del Magdalena Inferior es la continuación hacia el norte de terrenos de basamento del norte de la cordillera Central y consiste en rocas metasedimentarias del Pérmico–Triásico intruidas por granitoides del Cretácico Superior. Análisis estructurales sugieren que el patrón NE–SW de fallas de basamento en el noreste del Magdalena Inferior es heredado de un evento de rifting jurásico, mientras que el patrón ESE–WNW de la parte oeste es heredado de un episodio Cretácico Tardío a Eoceno caracterizado por deformación de rumbo y extensión. Los sedimentos del Cretácico Superior a Eoceno inferior que se encuentran preservados en el actual cinturón de San Jacinto fueron depositados en una cuenca marina de antearco formada durante la convergencia oblicua entre las placas del Caribe y de Suramérica. Una discordancia angular del Eoceno inferior a medio al tope de la secuencia San Cayetano del Paleoceno–Eoceno inferior, la terminación de la actividad del Sistema de Fallas de Romeral y el cese del magmatismo de arco se interpretan como indicativos del comienzo de la subducción ortogonal y de bajo ángulo del Plateau del Caribe bajo Suramérica entre 56 y 43 Ma. La subducción plana del plateau ha continuado hasta el presente y sería la causa del depósito pos–Eoceno y la formación del Valle Inferior del Magdalena con ausencia de magmatismo. La reactivación extensional de fallas heredadas de basamento preoligocenas fue crucial para la segmentación tectónica de la cuenca y la formación de sus dos depocentros (Plato y San Jorge). La subsidencia controlada por fallas entre el Oligoceno Tardío y el Mioceno temprano permitió el llenado inicial del Magdalena Inferior, mientras que pulsos de levantamiento coetáneos en terrenos andinos posibilitaron la conexión de los valles Inferior y Medio del Magdalena, y la formación del sistema de drenaje más grande de Colombia (sistema del río Magdalena). Este sistema de drenaje comenzó a aportar grandes cantidades de sedimento en el Mioceno medio, a medida que la subsidencia controlada por fallas fue reemplazada por subsidencia debido a la carga sedimentaria incremental. Este dramático incremento en sedimentación y los grandes volúmenes de sedimento a la fosa causaron la formación de altos de antearco en San Jacinto y de un prisma de acreción más al oeste. Nuestros resultados resaltan el papel fundamental de la cinemática de placas, de la estructura heredada del basamento y del aporte de sedimentos en la evolución de cuencas de antearco como el Magdalena Inferior y San Jacinto. 

 

Palabras clave: cuenca de antearco, basamento, subducción plana, tectonoestratigrafía, Magdalena Inferior, cinturón de San Jacinto, Caribe, subsidencia, sedimentación. 

​ 


Abbreviations

CC                                         Central Cordillera

LMV                                   Lower Magdalena Valley Basin

MCH                                  Magangué–Cicuco High

MMV                                   Middle Magdalena Valley

OEPFS                          Oca–El Pilar–San Sebastian Fault System

PFS                                       Palestina Fault System

RFS                                       Romeral Fault System

SiF                                         Sinú Fault

SJF                                        San Jerónimo Fault

SJFB                                   San Jacinto fold belt

SMF                                     Santa Marta Fault

SNSM                               Sierra Nevada de Santa Marta

STEP                                   Subduction–transform edge propagator

TWT                                     Two–way–time​



References 

Allen, P.A. & Allen, J.R. 2005. Basin analysis: Principles and applications, 2nd edition. Blackwell Publishing Ltd., 549 p. Singapore.

 

Altamira, A. & Burke, K. 2015. The Ribbon continent of South America in Ecuador, Colombia, and Venezuela. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 39–84. https://doi.org/10.1306/13531931M108846

 

Anderson, V.J., Horton, B.K., Saylor, J.E., Mora, A., Tesón, E., Breecker, D.O. & Ketcham, R.A. 2016. Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon River systems. Geosphere, 12(4): 1235–1256. https://doi.org/10.1130/GES01294.1

 

Angevine, C.L., Heller, P.L. & Paola, C. 1990. Quantitative sedimentary basin modeling. American Association of Petroleum Geologists Continuing Education Course, Note Series 32, 133 p.

 

Assumpção, M., Bianchi, M., Julia, J., Dias, F., Sand Franca, G., Nascimento, R., Drouet, S., Garcia Pavão, C., Farrapo, D. & Lopes, A. 2013. Crustal Thickness map of Brazil: Data compilation and main features. Journal of South American Earth Sciences, 43: 74–85. http://dx.doi.org/10.1016/j.jsames.2012.12.009

 

Barrero, D., Álvarez, J. & Kassem, T. 1969. Actividad ígnea y tectónica en la cordillera Central durante el Meso–Cenozoico. Boletín Geológico, 17(1–3): 145–173.

 

Bayona, G., Montes, C., Cardona, A., Jaramillo, C.A., Ojeda, G., Valencia, V. & Ayala–Calvo, C. 2011. Intraplate subsidence and basin filling adjacent to an oceanic arc–continent collision: A case from the southern Caribbean–South America plate margin. Basin Research, 23(4): 403–422. https://doi.org/10.1111/j.1365-2117.2010.00495.x

 

Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O. & Ibañez–Mejia, M. 2012. Early Paleogene magmatism in the northern Andes: Insights on the effects of oceanic plateau–continent convergence. Earth and Planetary Science Letters, 331–332: 97–111. https://doi.org/10.1016/j.epsl.2012.03.015

 

Berggren, W.A., Kent, D.V., Swisher III, C.C. & Aubry, M.P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A., Kent, D.V., Swisher III, C.C., Aubry, M.P. & Hardenbol, J. (editors), Geochronology, Time Scales and Global Stratigraphic Correlation. Society of Economic Paleontologists and Mineralogists, Special Publication 54, p. 129–212. https://doi.org/10.2110/pec.95.04.0129

 

Bernal–Olaya, R., Mann, P. & Vargas, C.A. 2015a. Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 247–269. https://doi.org/10.1306/13531939M1083642

 

Bernal–Olaya, R., Sánchez, J., Mann, P. & Murphy, M. 2015b. Along–strike crustal thickness variations of the subducting Caribbean Plate produces two distinctive styles of thrusting in the offshore South Caribbean deformed belt, Colombia. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 295–322. https://doi.org/10.1306/13531941M1083645

 

Bernal–Olaya, R., Mann, P. & Escalona, A. 2015c. Cenozoic tectonostratigraphic evolution of the Lower Magdalena Basin, Colombia: An example of an under– to overfilled forearc basin. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 345–397. https://doi.org/10.1306/13531943M1083645

 

Bezada, M., Magnani, M., Zelt, C., Schmitz, M. & Levander, A. 2010a. The Caribbean–South American plate boundary at 65°W: Results from wide–angle seismic data. Journal of Geophysical Research: Solid Earth, 115(B08): 1–17.

 

Bezada, M.J., Levander, A. & Schmandt, B. 2010b. Subduction in the southern Caribbean: Images from finite–frequency P wave tomography. Journal of Geophysical Research: Solid Earth, 115(B12): 1–19. https://doi.org/10.1029/2010JB007682

 

Blow, W.H. 1969. Late middle Eocene to recent planktonic foraminiferal biostratigraphy. In: Bronnimann, P. & Renz, H.H. (editors), Proceedings of the First International Conference on Planktonic Microfossils, 1, p. 199–422. Geneva, Switzerland.

 

Boschman, L.M., van Hinsbergen, D.J.J., Torsvik, T.H., Spakman, W. & Pindell, J.L. 2014. Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth–Science Reviews, 138: 102–136. https://doi.org/10.1016/j.earscirev.2014.08.007

 

Boyden, J.A., Müller, R.D., Gurnis, M., Torsvik, T.H., Clark, J.A., Turner, M., Ivey–Law, H., Watson, R.J. & Cannon, J.S. 2011. Next–generation plate–tectonic reconstructions using GPlates. In: Keller, R. & Baru, C. (editors), Geoinformatics: Cyberinfrastructure for the solid earth sciences. Cambridge University Press, p. 95–114. https://doi.org/10.1017/CBO9780511976308.008

 

Burke, K. 1988. Tectonic evolution of the Caribbean. Annual Review of Earth and Planetary Sciences, 16: 201–230. https://doi.org/10.1146/annurev.ea.16.050188.001221

 

Byrne, D.E., Wang, W.H. & Davis, D.M. 1993. Mechanical role of backstops in the growth of forearcs. Tectonics, 12(1): 123–144. https://doi.org/10.1029/92TC00618

 

Caballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L.E., López, C., Sánchez, N., Horton, B.K., Stockli, D. & Duddy, I. 2013. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo Syncline, Middle Magdalena Valley, Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 315–342. https://doi.org/10.1144/SP377.12

 

Calvert, A.J., Preston, L.A. & Farahbod, A.M. 2011. Sedimentary underplating at the Cascadia mantle–wedge corner revealed by seismic imaging. Nature Geoscience, 4: 545–548. https://doi.org/10.1038/ngeo1195

 

Cardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C., Niño, H., Ramírez, V., Valencia, V., Rincón, D., Vervoort, J. & Zapata, S. 2012. From arc–continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean–South America plate boundary. Tectonophysics, 580: 58–87. https://doi.org/10.1016/j.tecto.2012.08.039

 

Case, J.E. & MacDonald, W.D. 1973. Regional gravity anomalies and crustal structure in northern Colombia. Geological Society of America Bulletin, 84(9): 2905–2916. https://doi.org/10.1130/0016-7606(1973)84<2905:RGAACS>2.0.CO;2

 

Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C. 2009. Towards the standardization of sequence stratigraphy. Earth–Science Reviews, 92(1–2): 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003

 

Cediel, F., Shaw, R.P. & Cáceres, C. 2003. Tectonic assembly of the northern Andean block. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 815–848. Tulsa, USA.

 

Cerón, J.F., Kellogg, J.N. & Ojeda, G.Y. 2007. Basement configuration of the northwestern South America–Caribbean margin from recent geophysical data. Ciencia, Tecnología y Futuro, 3(3): 25–49.

 

Chulick, G., Detweiler, Sh. & Mooney, W. 2013. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. Journal of South American Earth Sciences, 42: 260–276. http://dx.doi.org/10.1016/j.jsames.2012.06.002

 

Clift, P.D. & Hartley, A.J. 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Perú. Geology, 35(6): 503–506. https://doi.org/10.1130/G23584A.1

 

Clift, P. & Vannucchi, P. 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42(2), p. 1–31. https://doi.org/10.1029/2003RG000127

 

Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B. & Chiaradia, M. 2014. Permo–Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191: 383–402. https://doi.org/10.1016/j.lithos.2013.12.020

 

De la Parra, F., Mora, A., Rueda, M. & Quintero, I. 2015. Temporal and spatial distribution of tectonic events as deduced from reworked palynomorphs in the eastern northern Andes. American Association of Petroleum Geologists Bulletin, 99(8): 1455–1472. https://doi.org/10.1306/02241511153

 

Dhuime, B., Hawkesworth, C. & Cawood, P. 2011. When continents formed. Science, 331(6014): 154–155. https://doi.org/10.1126/science.1201245

 

Dickinson, W. 1995. Forearc basins. In: Busby, C.J. & Ingersoll, R.V. (editors), Tectonics of sedimentary basins. Blackwell Science, p. 221–261. Cambridge, USA.

 

Dickinson, W.R. & Gehrels, G.E. 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2): 115–125. https://doi.org/10.1016/j.epsl.2009.09.013

 

Duque–Caro, H. 1979. Major structural elements and evolution of northwestern Colombia. In: Watkins, J.S., Montadert, L. & Wood–Dickerson, P. (editors), Geological and geophysical investigations of continental margins. American Association of Petroleum Geologists, Memoir 29, p. 329–351. Tulsa, USA.

 

Duque–Caro, H. 1984. Structural style, diapirism, and accretionary episodes of the Sinú–San Jacinto Terrane, southwestern Caribbean borderland. In: Bonini, W.E., Hargraves, R.B. & Shagam, R. (editors), The Caribbean–South American plate boundary and regional tectonics. Geological Society of America, Memoir 162, p. 303–316. https://doi.org/10.1130/MEM162-p303

Duque–Caro, H. 1991. Contributions to the geology of the Pacific and the Caribbean coastal areas of northwestern Colombia and South America. Doctoral thesis, Princeton University, 132 p. Princeton, USA.

 

Duque–Caro, H. 2000. Análisis bioestratigráficos de 400 muestras de 34 pozos y 16 muestras de superficie de las cuencas de San Jorge, Sinú, Plato y Barranquilla en el Valle Inferior del Magdalena. Ecopetrol, unpublished report, 403 p. Bogotá.

 

Duque–Caro, H. 2001. Análisis bioestratigráficos de 250 muestras de 5 pozos de las cuencas de San Jorge, Sinú, Plato y Barranquilla en el Valle Inferior del Magdalena. Ecopetrol, unpublished report, 293 p. Bogotá.

 

Duque–Caro, H. 2010. Análisis microestratigráficos de 36 muestras del pozo Saman Norte–1. Hocol, unpublished report, 4 p. Bogotá.

 

Duque–Caro, H. 2014. Microstratigraphic analyses of 39 samples from the Well Calipso–1, Barranquilla Province. Hocol, unpublished report, 47 p. Bogotá.

 

Duque–Caro, H., Guzmán–Ospitia, G. & Hernández, R. 1996. Memoria explicativa: Mapa geológico de la plancha 38 Carmen de Bolívar. Scale 1:100 000. Ingeominas, 83 p. Bogotá.

 

Escalona, A. & Mann, P. 2011. Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean–South American plate boundary zone. Marine and Petroleum Geology, 28(1): 8–39. https://doi.org/10.1016/j.marpetgeo.2010.01.016

 

Etayo–Serna, F., Barrero, D., Lozano, H., Espinosa, A., González, H., Orrego, A., Ballesteros, I., Forero, H., Ramírez, C., Zambrano–Ortiz, F., Duque–Caro, H., Vargas, R., Núñez, A., Álvarez, J., Ropaín, C., Cardozo, E., Galvis, N., Sarmiento, L., Alberts, J.P., Case, J.E., Singer, D.A., Bowen, R.W., Berger, B.R., Cox, D.P. & Hodges, C.A. 1983. Mapa de terrenos geológicos de Colombia. Publicaciones Geológicas Especiales del Ingeominas, 14 (I), 235 p. Bogotá.

 

Flinch, J.F. 2003. Structural evolution of the Sinu–Lower Magdalena area (northern Colombia). In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 776–796.

 

Glodny, J., Lohrmann, J., Echtler, H., Gräfe, K., Seifert, W., Collao, S. & Figueroa, O. 2005. Internal dynamics of a paleoaccretionary wedge: Insights from combined isotope tectonochronology and sandbox modelling of the South–Central Chilean forearc. Earth and Planetary Science Letters, 231(1–2): 23–39. https://doi.org/10.1016/j.epsl.2004.12.014

 

Gómez, E., Jordan, T.E., Allmendinger, R.W., Hegarty, K. & Kelley, S. 2005. Syntectonic Cenozoic sedimentation in the northern Middle Magdalena Valley Basin of Colombia and implications for exhumation of the northern Andes. Geological Society of America Bulletin, 117(5–6): 547–569. https://doi.org/10.1130/B25454.1

 

Gómez, J., Nivia, Á., Montes, N.E., Tejada, M.L., Jiménez, D.M., Sepúlveda, M.J., Osorio, J.A., Gaona, T., Diederix, H., Uribe, H. & Mora, M., compilers. 2007. Geological Map of Colombia 2007. Scale 1:1 000 000. Ingeominas, 2 sheets. Bogotá.

 

Gómez, J., Montes, N.E., Nivia, Á. & Diederix, H., compilers. 2015. Geological Map of Colombia 2015. Scale 1:1 000 000. Servicio Geológico Colombiano, 2 sheets. Bogotá. https://doi.org/10.32685/10.143.2015.936

 

Govers, R. & Wortel, M.J.R. 2005. Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236(1–2): 505–523. https://doi.org/10.1016/j.epsl.2005.03.022

 

Guzmán, G. 2007. Stratigraphy and sedimentary environment and implications in the Plato Basin and the San Jacinto Belt northwestern Colombia. Doctoral thesis, Université de Liège, 275 p. Liège, Belgium.

 

Guzmán, G., Gómez–Londoño, E. & Serrano–Suárez, B.E. 2004. Geología de los cinturones del Sinú, San Jacinto y borde occidental del Valle Inferior del Magdalena, Caribe Colombiano. Ingeominas, unpublished report, 134 p. Bogotá.

 

Haq, B.U., Hardenbol, J. & Vail, P.R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156–1167.

 

Hocol S.A. 1993. Lower Magdalena Valley technical evaluation agreement. Phase I. Unpublished report, 200 p. Cartagena.

 

Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermúdez, M.A., Mora, A., Sevink, J., Sanmartin, I., Sánchez–Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T. & Antonelli, A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006): 927–931. https://doi.org/10.1126/science.1194585

 

Ibañez–Mejia, M., Tassinari, C.C.G. & Jaramillo–Mejía, J.M. 2007. U–Pb zircon ages of the “Antioquian Batholith": Geochronological constraints of late Cretaceous magmatism in the central Andes of Colombia. XI Congreso Colombiano de Geología. Memoirs. 11p. Bucaramanga.

 

Instituto Colombiano del Petróleo. 2000. Evaluación regional integrada cuenca Valle Inferior del Magdalena. Unpublished report, 360 p. Piedecuesta, Colombia.

Kroehler, M.E., Mann, P., Escalona, A. & Christeson, G.L. 2011. Late Cretaceous – Miocene diachronous onset of back thrusting along the South Caribbean deformed belt and its importance for understanding processes of arc collision and crustal growth. Tectonics, 30(6): 31 p. https://doi.org/10.1029/2011TC002918

 

Levander, A., Bezada, M.J., Niu, F. & Schmitz, M. 2015. The two subduction zones of the southern Caribbean: Lithosphere tearing and continental margin recycling in the east, flat slab subduction and Laramide–style uplifts in the west. American Geophysical Union, Fall Meeting. Abstracts, 1 p. San Francisco, USA.

 

Lithosphera Ltda. 2010. Interpretación gravimétrica cuantitativa, región Sinú–San Jacinto y Valle Inferior del Magdalena. Unpublished report, 21 p. Bogotá.

 

Luzieux, L.D.A., Heller, F., Spikings, R., Vallejo, C.F. & Winkler, W. 2006. Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1° N and 3° S: Paleomagnetic, radiometric and fossil evidence. Earth and Planetary Science Letters, 249(3–4): 400–414. https://doi.org/10.1016/j.epsl.2006.07.008

 

Magnani, M.B., Zelt, C.A., Levander, A. & Schmitz, M. 2009. Crustal structure of the South American–Caribbean plate boundary at 67ºW from controlled source seismic data. Journal of Geophysics Research, 114: B02312.

 

Mantilla–Pimiento, A.M. 2007. Crustal structure of the southwestern Colombian Caribbean margin: Geological interpretation of geophysical data. Doctoral thesis, Friedrich–Schiller–Universität Jena, 98 p. Jena, Germany.

 

Mantilla–Pimiento, A.M., Jentszsch, G., Kley, J. & Alfonso–Pava, C. 2009. Configuration of the Colombian Caribbean margin: Constraints from 2D seismic reflection data and potential fields interpretation. In: Lallemand, S. & Funiciello, F. (editors), Subduction zone geodynamics. Frontiers in Earth Sciences. Springer, p. 247–272. Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87974-9_13

 

Masy, J., Niu, F., Levander, A. & Schmitz, M. 2011. Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth and Planetary Science Letters, 305(3–4): 396–404. https://doi.org/10.1016/j.epsl.2011.03.024

 

Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M. & Muller, D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146: 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002

 

McKenzie, D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1): 25–32. https://doi.org/10.1016/0012-821X(78)90071-7

 

Miall, A.D. 2000. Principles of sedimentary basin analysis, 3rd edition. Springer–Verlag, 616 p. Berlin–Heidelberg. https://doi.org/10.1007/978-3-662-03999-1

 

Montes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V. & Jaramillo, C. 2010. Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato–San Jorge and Cesar–Ranchería Basins. Journal of South American Earth Sciences, 29(4): 832–848. https://doi.org/10.1016/j.jsames.2009.07.010

 

Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez–Ángel, L.C., Rodríguez–Parra, L.A., Ramírez, V. & Niño, H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348(6231): 226–229. https://doi.org/10.1126/science.aaa2815

 

Moore, J.C., Diebold, J., Fisher, M.A., Sample, J., Brocher, T., Talwani, M., Ewing, J., von Huene, R., Rowe, C., Stone, D., Stevens, C. & Sawyer, D. 1991. EDGE deep seismic reflection transect of the eastern Aleutian arc–trench layered lower crust reveals underplating and continental growth. Geology, 19(5): 420–424. https://doi.org/10.1130/0091-7613(1991)019<0420:EDSRTO>2.3.CO;2

 

Mora, A., De Freitas, M. & Vélez, V. 2013a. Cenozoic tectonostratigraphy of the northern San Jacinto fold belt, northwestern Colombia. American Association of Petroleum Geologists International Convention and Exhibition. Poster. Cartagena.

 

Mora, A., Reyes–Harker, A., Rodríguez, G., Tesón, E., Ramírez–Arias, J.C., Parra, M., Caballero, V., Mora, J.P., Quintero, I., Valencia, V., Ibañez–Mejia, M., Horton, B.K. & Stockli, D.F. 2013b. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 411–442. https://doi.org/10.1144/SP377.6

 

Mora, A., Parra, M., Rodríguez–Forero, G., Blanco, V., Moreno, N., Caballero, V., Stockli, D., Duddy, I. & Ghorbal, B. 2015. What drives orogenic asymmetry in the northern Andes?: A case study from the apex of the northern Andean orocline. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 547–586. https://doi.org/10.1306/13531949M1083652

 

Mora, J.A., Ibañez–Mejia, M., Oncken, O., De Freitas, M., Vélez, V., Mesa, A. & Serna, L. 2017a. Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection–seismic and U–Pb–Hf insights into the termination of the central Andes against the Caribbean Basin. Journal of South American Earth Sciences, 74: 1–26. https://doi.org/10.1016/j.jsames.2017.01.001

Mora, J.A., Oncken, O., Le Breton, E., Ibañez–Mejia, M., Faccenna, C., Veloza, G., Vélez, V., De Freitas, M. & Mesa, A. 2017b. Linking Late Cretaceous to Eocene tectono–stratigraphy of the San Jacinto fold belt of NW Colombia with Caribbean plateau collision and flat subduction. Tectonics, 36(11): 2599–2629. https://doi.org/10.1002/2017TC004612

 

Mora, J.A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V. & De Freitas, M. 2018. Controls on forearc basin formation and evolution: Insights from Oligocene to recent tectono–stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Marine and Petroleum Geology, 97: 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032

 

Müller, R.D., Royer, J.Y., Cande, S.C., Roest, W.R. & Maschenkov, S. 1999. New constraints on the Late Cretaceous/Tertiary plate tectonic evolution of the Caribbean. Sedimentary Basins of the World, 4: 33–59. https://doi.org/10.1016/S1874-5997(99)80036-7

 

Nivia, A., Marriner, G.F., Kerr, A.C. & Tarney, J. 2006. The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 423–436. https://doi.org/10.1016/j.jsames.2006.07.002

 

Noda, A. 2016. Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geological Society of America Bulletin, 128(5–6): 879–895. https://doi.org/10.1130/B31345.1

 

Parra, M., Mora, A., López, C., Rojas, L.E. & Horton, B.K. 2012. Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology, 40(2): 175–178. https://doi.org/10.1130/G32519.1

 

Petters, V. & Sarmiento, R. 1956. Oligocene and lower Miocene biostratigraphy of the Carmen–Zambraon area, Colombia. Micropaleontology, 2(1): 7–35. https://doi.org/10.2307/1484490

 

Pindell, J.L. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 1–55. https://doi.org/10.1144/SP328.1

 

Piraquive, A. 2017. Structural framework, deformation and exhumation of the Santa Marta Schists: Accretion and deformational history of the Caribbean Terrane at the north of the Sierra Nevada de Santa Marta. Doctoral thesis, Université Grenoble Alpes, 237 p. Grenoble, France.

 

Poveda, E., Monsalve, G. & Vargas, C.A. 2012. Crustal thickness estimation beneath the northern Andes (Colombia) from teleseismic receiver functions. American Geophysical Union, Fall Meeting. Poster. San Francisco, USA.

 

Poveda, E., Monsalve, G. & Vargas, C.A. 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4): 2408–2425. https://doi.org/10.1002/2014JB011304

 

Restrepo, J.J. & Toussaint, J.F. 1988. Terranes and continental accretion in the Colombian Andes. Episodes, 11(3): 189–193. https://doi.org/10.18814/epiiugs/1988/v11i3/006

 

Restrepo, S., Foster, D.A. & Kamenov, G.D. 2007. Formation age and magma sources for the Antioqueño Batholith derived from LA–ICP–MS uranium–lead dating and hafnium–isotope analysis of zircon grains. Geological Society of America Annual Meeting, Abstracts, p. 181. Denver, USA.

 

Reyes–Harker, A., Montenegro–Buitrago, G. & Gómez–Gutiérrez, P.D. 2000. Evolución tectonoestratigráfica del Valle Inferior del Magdalena, Colombia. VIII Simposio Bolivariano–Exploración Petrolera en las Cuencas Subandinas. Memoir, p. 293–309. Caracas.

 

Reyes–Harker, A., Ruiz–Valdivieso, C.F., Mora, A., Ramírez–Arias, J.C., Rodríguez, G., De la Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B.K., Saylor, J.E., Silva, A., Valencia, V., Stockli, D. & Blanco, V. 2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. American Association of Petroleum Geologists Bulletin, 99(8): 1407–1453. https://doi.org/10.1306/06181411110

 

Ridgway, K.D., Trop, J.M. & Finzel, E.S. 2012. Modification of continental forearc basins by flat–slab subduction processes: A case study from southern Alaska. In: Busby, C. & Azor, A. (editors), Tectonics of sedimentary basins: Recent advances, first edition, P. 327–346. Blackwell Publishing Ltd. https://doi.org/10.1002/9781444347166.ch16

 

 

Romero–Otero, G.A., Slatt, R.M. & Pirmez, C. 2015. Evolution of the Magdalena deepwater fan in a tectonically active setting, offshore Colombia. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 675–708. https://doi.org/10.1306/M1081307

 

Rosello, E. & Cossey, S. 2012. What is the evidence for subduction in the Caribbean margin of Colombia? XI Simposio Bolivariano: Petroleum Exploration in Subandean Basins, Memoirs, p. 1–7. Cartagena de Indias, Colombia.

 

Saylor, J.E., Horton, B.K., Stockli, D.F., Mora, A. & Corredor, J. 2012. Structural and thermochronological evidence for Paleogene basement–involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39: 202–215. https://doi.org/10.1016/j.jsames.2012.04.009

 

Scherwath, M., Kopp, H., Flueh, E.R., Henrys, S.A., Sutherland, R., Stagpoole, V.M., Barker, H.N., Reyners, M.E., Bassett, D.G., Planert, L. & Dannowski, P.A. 2010. Fore–arc deformation and underplating at the northern Hikurangi margin, New Zealand. Journal of Geophysical Research, 115(B6): 23 P. https://doi.org/10.1029/2009JB006645

 

Silva–Arias, A., Páez–Acuña, L.A., Rincón–Martínez, D., Tamara–Guevara, J.A., Gómez–Gutiérrez, P.D., López–Ramos, E., Restrepo–Acevedo, S.M., Mantilla–Figueroa, L.C. & Valencia, V. 2016. Basement characteristics in the Lower Magdalena Valley and the Sinú and San Jacinto fold belts: Evidence of a Late Cretaceous magmatic arc at the South of the Colombian Caribbean. Ciencia, Tecnología y Futuro, 6(4): 5–36.

 

Steckler, M.S. & Watts, A.B. 1978. Subsidence of the Atlantic–type continental margin off New York. Earth and Planetary Science Letters, 41(1): 1–13. https://doi.org/10.1016/0012-821X(78)90036-5

 

Symithe, S., Calais, E., De Chabalier, J.B., Robertson, R. & Higgins, M. 2015. Current block motions and strain accumulation on active faults in the Caribbean. Journal of Geophysical Research: Solid Earth, 120(5): 3748–3774. https://doi.org/10.1002/2014JB011779

 

Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H. & Ammon, C.J. 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444: 139–149. https://doi.org/10.1016/j.epsl.2016.03.050

 

J.F. & Restrepo, J.J. 1994. The Colombian Andes during Cretaceous times. In: Salfity, J.A. (editor), Cretaceous tectonics of the Andes. Earth Evolution Series. Vieweg and Teubner Verlag, Wiesbaden, p. 61–100. https://doi.org/10.1007/978-3-322-85472-8_2

 

Trenkamp, R., Kellogg, J.N., Freymueller, J.T. & Mora, H. 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2): 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4

 

van Benthem, S., Govers, R., Spakman, W. & Wortel, R. 2013. Tectonic evolution and mantle structure of the Caribbean. Journal of Geophysical Research, 118: 3019–3036.

 

Vervoort, J.D. & Blichert–Toft, J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3–4): 533–556. https://doi.org/10.1016/S0016-7037(98)00274-9

 

Villagómez, D. & Spikings, R. 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous – Tertiary evolution of the northern Andes. Lithos, 160–161: 228–249. https://doi.org/10.1016/j.lithos.2012.12.008

 

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003

 

Watts, A.B. & Ryan, W.B.F. 1976. Flexure of the lithosphere and continental margin basins. Tectonophysics, 36(1–3): 25–44. https://doi.org/10.1016/0040-1951(76)90004-4

 

Xie, X. & Heller, P.L. 2009. Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121(1–2): 55–64. https://doi.org/10.1130/B26398.1

 

Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693. https://doi.org/10.1126/science.1059412



Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: relacionciudadana@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer