Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Servicio Geológico Colombiano

Skip Navigation Linksv4ch13
Seleccione su búsqueda
miig

​​Volcán Tabor, Ibagué, Tolima

 Volume 4 Chapter 13

Chapter 13

Quaternary Activity of the Bucaramanga Fault in the Departments of Santander and Cesar   

Hans DIEDERIX, Olga Patricia BOHÓRQUEZ, Héctor MORA–PÁEZ, Juan Ramón PELÁEZ , Leonardo CARDONA, Yuli CORCHUELO, Jair RAMÍREZ, and ​Fredy DÍAZ–MILA

https://doi.org/10.32685/pub.esp.38.2019.13


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 4: 978-958-52959-5-7

ISBN digital Vol. 4: 978-958-52959-9-5​


Citation is suggested as: 

Diederix, H., Bohórquez, O.P., Mora–Páez, H., Peláez, J.R., Cardona, L., Corchuelo, Y., Ramírez, J. & Díaz–Mila, F. 2020. Quaternary activity of the Bucaramanga Fault in the Departments of Santander and Cesar. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 453–477. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.13

Download chapter  ​     

Abstract 

The 350 km long Bucaramanga Fault is the southern and most prominent segment of the 550 km long Santa Marta–Bucaramanga Fault that is a NNW striking left lateral strike–slip fault system. It is the most visible tectonic feature north of latitude 6.5° N in the northern Andes of Colombia and constitutes the western boundary of the Maracaibo Tectonic Block or microplate, the southeastern boundary of the block being the right lateral strike–slip Boconó Fault in Venezuela. The Bucaramanga Fault has been subjected in recent years to neotectonic, paleoseismologic, and paleomagnetic studies that have quantitatively confirmed the Quaternary activity of the fault, with eight seismic events during the Holocene that have yielded a slip rate in the order of 2.5 mm/y, whereas a paleomagnetic study in sediments of the Bucaramanga alluvial fan have yielded a similar slip rate of 3 mm/y. This recent activity is not reflected in surveys of instrumental seismicity that indicate a low level of seismic activity whereas the strong geomorphic expression of the fault trace, corroborated by field studies and landscape evolutionary models, suggests higher slip rates during the Pleistocene. The occurrence of a large transpressive duplex structure developed in a right hand restraining step–over along the northern stretch of the fault suggests fault locking that might explain this low level of seismicity. Recent results of GPS instrumentation of certain sectors of the fault indicate a confusing pattern of velocity vectors that are a reflection of considerable deformation within the shear zone of the fault.

 

Keywords: Ocaña duplex structure, morphotectonic indicators, neotectonics, slip rate, recurrence interval, restraining step–over.



Resumen 

Los 350 km de la Falla de Bucaramanga son el segmento sur y más destacado de los 550 km de la Falla Santa Marta–Bucaramanga que es un sistema NNW de movimiento lateral sinestral. Es el rasgo tectónico más visible al norte de la latitud 6,5° N en los Andes del norte de Colombia y constituye el límite occidental de la microplaca o Bloque Tectónico de Maracaibo, el límite suroriental del bloque inicia en Venezuela en la falla dextral conocida como Falla de Boconó. En los últimos años se han realizado estudios de neotectónica, paleosismología y paleomagnetismo en la Falla de Bucaramanga. Estos estudios han confirmado cuantitativamente la actividad cuaternaria de la falla, con ocho eventos sísmicos durante el Holoceno que han arrojado una tasa de desplazamiento de 2,5 mm/año, mientras que un estudio de paleomagnetismo en sedimentos del abanico aluvial de Bucaramanga arrojó una tasa de movimiento similar de 3 mm/año. Esta actividad reciente no se ve reflejada en los estudios de sismicidad instrumental que indican un nivel bajo de actividad sísmica, mientras que la fuerte expresión geomorfológica del trazo de falla, corroborado por estudios de campo y modelos de evolución del paisaje, sugiere altas tazas de desplazamiento durante el Pleistoceno. La presencia de un gran dúplex transpresivo desarrollado al lado derecho y que restringe el escalón (step–over) a lo largo del segmento norte de la falla sugiere que el bloqueo de la falla podría explicar el bajo nivel de sismicidad. Los resultados recientes de la instrumentación GPS de ciertos sectores de la falla indican un patrón confuso de los vectores de velocidad que son un reflejo de la deformación considerable dentro de la zona de cizalla de la falla.

 

Palabras clave: estructura dúplex de Ocaña, indicadores morfotectónicos, neotectónica, tasa de deslizamiento, intervalo de recurrencia, escalón (step–over) restrictivo.



Abbreviations 

BF                                              Bucaramanga Fault

DEMs                                 D igital elevation models

GeoRED                       Grupo de Trabajo Investigaciones Geodésicas Espaciales

GPS                                       Global Positioning System

InSAR                                 Interferometric synthetic aperture radar

JAXA                                    Japan Aerospace Exploration Agency

MTB                                     Maracaibo Tectonic Block

NAB                                      North Andean Block

NASA                                  National Aeronautics and Space Administration

RSNC                                 Red Sismológica Nacional de Colombia

SGC                                      Servicio Geológico Colombiano

Sentinel                      European satellite radar

SMBF                                 Santa Marta–Bucaramanga Fault

SMF                                       Santa Marta Fault

SNSM                                 Sierra Nevada de Santa Marta

SRTM                                  Satellite Radar Topographic Mission



References 

Acosta, J., Velandia, F., Osorio J., Lonergan, L. & Mora, H. 2007. Strike–slip deformation within the Colombian Andes. In: Ries, A.C., Butler, R.W.H. & Graham, R. (editors), Deformation of the continental crust: The legacy of Mike Coward. Geological Society of London, Special Publication 272, p. 303–319. London. https://doi.org/10.1144/GSL.SP.2007.272.01.16

 

Arnaiz–Rodríguez, M.S. & Audemard, F.A. 2014. Variations in elastic thickness and flexure of the Maracaibo Block. Journal of South American Earth Sciences 56, 251–264. https://doi.org/10.1016/j.jsames.2014.09.014

 

Audemard, F.A. 1993. Néotectonique, sismotectonique et aléa sismique du nord–oest du Venezuela: Systéme de failles d´Oca–Ancon. Doctoral thesis, Université Montpellier II, 351 p. Montpellier, France.

 

Audemard, F.A. 2003. Geomorphic and geologic evidence of ongoing uplift and deformation in the Mérida Andes, Venezuela. Quaternary International, 101–102: 43–65. https://doi.org/10.1016/S1040-6182(02)00128-3

 

Audemard, F.A. 2014. Active block tectonics in and around the Caribbean: A review. In: Schmitz, M., Audemard, F.A. & Urbani, F. (editors), The northeastern limit of the South American Plate: Lithospheric structures from surface to the mantle. Editorial Innovación Tecnológica–Fundación Venezolana de Investigaciones Sismológicas (FUNVISIS), p. 29–77. Caracas, Venezuela.

 

Audemard, F.E. & Audemard, F.A. 2002. Structure of the Mérida Andes, Venezuela: Relations with the South America–Caribbean geodynamic interaction. Tectonophysics, 345(1–4): 299–327. https://doi.org/10.1016/S0040-1951(01)00218-9

 

Audemard M., F.A. & Castilla, R. 2016. Present–day stress tensors along the southern Caribbean Plate boundary zone from inversion of focal mechanism solutions: A successful trial. Journal of South American Earth Sciences, 71: 309–319. https://doi.org/10.1016/j.jsames.2016.06.005

 

Audemard, F.A., Romero, G., Rendón, H. & Cano, V. 2005. Quaternary fault kinematics and stress tensors along the southern Caribbean from fault–slip data and focal mechanism solutions. Earth–Science Reviews, 69(3–4): 181–233. https://doi.org/10.1016/j.earscirev.2004.08.001

 

Audemard, F.A., Singer, A., Soulas, J.P., Acosta, L., Arzola, A., Beltrán, C., Beck, C., Bellier, O., Bonnot, D., Bousquet, J.C., Carrillo, E., Casas––Sainz, A., Castilla, R., Costa, C., De Santis, F., Diederix, H., Gallardo, C., Giraldo, C., González, R., Mocquet, A., Ollarves, R., Rivero, C.A., Rodríguez, E., Rodríguez, J.A., Rojas, C., Sauret, B., Schubert, C. & Subieta, T. 2006. Quaternary faults and stress regime of Venezuela. Revista de la Asociación Geológica Argentina, 61(4), 480–491.

 

Aydin, A. & Nur, A. 1985. The types and role of stepovers in strike–slip tectonics. In: Biddle, K.T. & Christie–Blick, N. (editors), Strike–slip deformation, basin formation, and sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publication 37, p. 35–44. https://doi.org/10.2110/pec.85.37.0035

 

Boinet, T, Bourgois, J., Mendoza, H. & Vargas, R. 1985. Le poinçon de Pamplona (Colombia): Un jalon de la frontière méridionale de la Plaque Carïbe. Bulletin de la Société Géologique de France, 1(3): 403–413. https://doi.org/10.2113/gssgfbull.I.3.403

 

Boinet, T., Babin, C., Bourgois, J., Broutin, J., Lardeux, H., Pons, D. & Racheboeuf, P. 1986. Les grandes étapes de l´évolution paléozoïque du Massif de Santander (Andes de Colombie): Signification de la discordance du Dévonien moyen. Comptes Rendus de l´Académie des Sciences, série II, 303(8): 707–712.

 

Boinet, T, Bourgois, J., Mendoza, H. & Vargas, R. 1989. La Falla de Bucaramanga, Colombia: Su función durante la Orogenia Andina. Geología Norandina (11): 3–10.

 

Campbell, C.J. 1965. The Santa Marta wrench fault of Colombia and its regional setting. 4th Caribbean Geological Conference, Transactions, 247–Port–of–Spain, Trinidad & Tobago.

 

Cediel, F., Shaw, R.P. & Cáceres, C. 2003. Tectonic assembly of the northern Andean Block. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 815–848. Tulsa, USA.

 

Colmenares, L. & Zoback, M.D. 2003. Stress field and seismotectonics of northern South America. Geology, 31(8): 721–724. https://doi.org/10.1130/G19409.1

 

Cortés, M. & Angelier, J. 2005. Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): Implications on plate kinematics of the south Caribbean region. Tectonics, 24(1): 1–27. https://doi.org/10.1029/2003TC001551

 

Costa, C.H., Audemard, F.A., Bezerra, F.H.R., Lavenu, A., Machette, M.N. & Paris, G. 2006. An overview of the main Quaternary deformation of South America. Revista de la Asociación Geológica Argentina, 61(4): 461–479.

 

Crowell, J.C. 1962. Displacement along the San Andreas Fault, California. Geological Society of America, Special Paper 71, 61p.

 

Cuéllar, M.A., Lopez, J.A., Osorio, J.A. & Carrillo, E.J. 2012. Análisis estructural del segmento Bucaramanga del Sistema de Fallas de Bucaramanga (SFB) entre los municipios de Pailitas y Curumaní, Cesar, Colombia. Boletín de Geología, 34(2): 73–101.

 

Cunningham, W.D. & Mann, P. 2007. Tectonics of strike–slip restraining and releasing bends. In: Cunningham, W.D. & Mann, P. (editors), Tectonics of strike–slip restraining and releasing bends. Geological Society of London, Special Publication 290, p. 1–12. London. https://doi.org/10.1144/SP290.1

 

Del Real, C. & Velandia, F. 2013. Cartografía geomorfológica y evidencias de actividad reciente de la Falla de Chaguacá, prolongación sur de la Falla de Bucaramanga en el Macizo de Floresta. XIV Congreso Colombiano de Geología. Memoirs, p. 365–366. Bucaramanga.

 

De Porta, J. 1959. La terraza de Bucaramanga. Boletín de Geología, (3): 5–13.

 

Diederix, H. & Bohórquez, O.P. 2013. La neotectónica de la estructura del dúplex de transcurrencia de la Falla de Bucaramanga en la región de Ocaña. Servicio Geológico Colombiano, unpublished report, Bogotá.

 

Diederix, H., Hernández, C., Torres, E.M. & Botero, P.A. 2008. Modelo de evolución morfotectónica cuaternaria basado en evidencias estructurales, neotectónicas y paleosismológicas de los principales sistemas de falla en la región de Bucaramanga. Ingeominas, unpublished report, 145 p. Bogotá.

 

Diederix, H., Hernández, C., Torres, E., Osorio, J.A. & Botero, P. 2009a. Resultados preliminares del primer estudio paleosismológico a lo largo de la Falla de Bucaramanga. Colombia. Ingeniería, Investigación y Desarrollo, 9(2): 18–23.

 

Diederix, H., Torres, E., Hernández, C. & Bohórquez, O.P. 2009b. Evolución tectónica y morfodinámica durante el Cuaternario en la zona de Cúcuta y alrededores. Ingeominas, unpublished report, 104 p. Bogotá.

 

Diederix, H., Bohórquez, O.P., Mora–Páez, H., Peláez, J.R., Cardona, L., Corchuelo, Y., Ramírez, J. & Díaz–Mila, F. 2020. The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 423–452. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.12

 

Duque–Caro, H. 1980. Geotectónica y evolución de la región noroccidental colombiana. Boletín Geológico, 23(3): 4–37.

 

Egbue, O. & Kellogg, J. 2010. Pleistocene to present north Andean “escape". Tectonophysics, 489(1–4): 248–257. https://doi.org/10.1016/j.tecto.2010.04.021

 

Freymueller, J.T., Kellogg, J.N. & Vega, V. 1993. Plate motions in the north Andean region. Journal of Geophysical Research: Solid Earth, 98(B12): 21853–21863. https://doi.org/10.1029/93JB00520

 

Gutscher, M.A., Malavielle, J., Lallemand, S. & Collot, J.Y. 1999. Tectonic segmentation of the north Andean margin: Impact of the Carnegie Ridge collision. Earth and Planetary Science Letters 168(3–4): 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6

 

Hernandez, C., Speranza, F. & Di Chiara, A. 2014. Understanding kinematics of intra–arc transcurrent deformation: Paleomagnetic evidence from the Liquiñe–Ofqui Fault zone, Chile (38–41° S). Tectonics, 33(10): 1964–1988. https://doi.org/10.1002/2014TC003622

 

Idárraga–García, J. & Romero, J. 2010. Neotectonic study of the Santa Marta Fault System, western foothills of the Sierra Nevada de Santa Marta, Colombia. Journal of South American Earth Sciences, 29(4): 849–860. https://doi.org/10.1016/j.jsames.2009.11.004

 

Ingeominas & Gobernación de Santander, 1997. Microzonificación sísmica del área metropolitana de Bucaramanga, Santander, Colombia: Fase I. Ingeominas, unpublished report, 134 p. Bucaramanga.

 

Irving, E.M. 1971. La evolución estructural de los Andes más septentrionales de Colombia. Boletín Geológico, 19 (2); 1–90.

 

Jiménez, G., Speranza, F., Faccenna, C., Bayona, G. & Mora, A. 2015. Magnetic stratigraphy of the Bucaramanga alluvial fan: Evidence for a ≤3 mm/yr slip rate for the Bucaramanga–Santa Marta Fault, Colombia. Journal of South American Earth Sciences, 57: 12–22. https://doi.org/10.1016/j.jsames.2014.11.001

 

Julivert, M. 1958. La morfoestructura de la zona de las Mesas al SW de Bucaramanga, Colombia, S.A. Boletín de Geología, (1): 9–43.

 

Julivert, M. 1959. Geología de la vertiente W. del Macizo de Santander en el sector de Bucaramanga. Boletín de Geología, (3): 15–34.

 

Julivert, M., 1961. Geología de la vertiente W de la cordillera Oriental en el sector de Bucaramanga. Boletín de Geología, (8): 39–42.

 

Julivert, M. 1963. Nuevas observaciones sobre la estratigrafía y tectónica del Cuaternario de los alrededores de Bucaramanga. Boletín de Geología, (15): 41–59.

 

Julivert, M. 1970. Cover and basement tectonics in the cordillera Oriental of Colombia, South America, and a comparison with some other folded chains. Geological Society of America Bulletin, 81(12): 3623–3646. https://doi.org/10.1130/0016-7606(1970)81[3623:CABTIT]2.0.CO;2

 

Kammer, A. & Sánchez, J. 2006. Early Jurassic rift structures associated with the Soapaga and Boyacá Faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21(4): 412–422. https://doi.org/10.1016/j.jsames.2006.07.006

 

Kellogg, J. N. 1984. Cenozoic tectonic history of the sierra de Perijá, Venezuela–Colombia, and adjacent basins. Geological Society of America. Memoir, 162, p. 239–261. https://doi.org/10.1130/MEM162-p239

 

Kellogg, J.N. & Bonini, W.E. 1982. Subduction of the Caribbean Plate and basement uplifts in the overriding South America Plate. Tectonics, 1(3): 251–276. https://doi.org/10.1029/TC001i003p00251

 

Kellogg, J.N. & Vega, V. 1995. Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In: Mann P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 75–90. Boulder, Colorado. https://doi.org/10.1130/SPE295-p75

 

Kroonenberg, S.B., Bakker, J.G.M. & van der Wiel, A.M. 1990. Late Cenozoic uplift and paleogeography of the Colombian Andes: Constraints on the development of high–Andean biota. Geologie en Mijnbouw, 69: 279–290.

 

Laubscher, H.P. 1987. The kinematic puzzle of the Neogene northern Andes. In: Schaer, J.P. & Rodgers, J. (editors), The anatomy of mountain ranges. Princeton University Press, p. 211–228. Princeton, USA. https://doi.org/10.1515/9781400858644.211

 

Mann, P. 2007. Global catalogue, classification and tectonic origins of restraining– and releasing bends on active and ancient strike–slip fault systems. In: Cunningham, W.D. & Mann, P. (editors), Tectonics of strike–slip restraining and releasing bends. Geological Society of London. Special Publication 290, p. 13–142. https://doi.org/10.1144/SP290.2

 

McCalpin, J.P. (editor). 2009. Paleoseismology, 2nd edition. Academic Press, 629 p.

 

Montes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V. & Jaramillo, C. 2010. Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato–San Jorge and Cesar–Ranchería Basins. Journal of South American Earth Sciences, 29(4): 832–848. https://doi.org/10.1016/j.jsames.2009.07.010

 

Mora, A. & Garcia, A. 2006. Cenozoic tectono–stratigraphic relationship between the Cesar Sub–basin and the southeastern Lower Magdalena Valley Basin of northern Colombia. Annual Convention American Association of Petroleum Geologists, article 30046, 12 p. Houston, USA.

 

Mora, A., Ibañez–Mejia, M., Oncken, O., De Freitas, M., Vélez, V., Mesa, A. & Serna, L. 2017. Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection–seismic and U–Pb–Hf insights into the termination of the central Andes against the Caribbean Basin. Journal of South American Earth Sciences, 74: 1–26. https://doi.org/10.1016/j.jsames.2017.01.001

 

Mora–Páez, H., Trenkamp, R., Kellogg, J., Freymueller, J. & Ordoñez, M. 2002. Resultados del uso de geodesia satelital para estudios geodinámicos en Colombia. Geofísica Colombiana, (6): 43–52.

 

Mora–Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona–Piedrahita, L., Peláez–Gaviria, J.R. & Corchuelo–Cuervo, Y. 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophysical Research Letters, 43(16): 8407–8416. https://doi.org/10.1002/2016GL069795

 

Mora–Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M.S, Diederix, H., LaFemina, P., Cardona–Piedrahita, L., Lizarazo, S., Peláez–Gaviria, J.R., Díaz–Mila, F., Bohórquez–Orozco, O., Giraldo–Londoño, L. & Corchuelo–Cuervo, Y. 2019. Crustal deformation in the northern Andes: A new GPS velocity field. Journal of South American Earth Sciences, 89: 76–91. https://doi.org/10.1016/j.jsames.2018.11.002

 

Mothes, P., Rolandone, F., Nocquet, J.M., Jarrin, P., Alvarado, A., Cisneros, D. & Yepes, M. 2016. GPS trends of the eastern boundary of the North Andean Sliver, Ecuador. Conference 2016 UNAVCO Science Workshop. Memoirs, 2p. Broomfield, USA.

 

Nevistic, A., Rossello, E., Haring, C., Covellone, G., Bettini, F., Rodríguez, H., Salvay, R., Colo, C., Araque, L., Castro, E., Pinilla, C. & Bordarampé, C. 2003. The Andean Santander–oriental tectonic syntaxis: A first–order pattern controlling exploration play–model concepts in Colombia. VIII Simposio Bolivariano Exploración Petrolera en las Cuencas Subandinas. Proceedings, p. 130–134. Cartagena, Colombia.

 

Nocquet, J.M., Villegas–Lanza, J.C., Chlieh, M., Mothes, P.A., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., Martin, X., Font, Y., Régnier, M., Vallée, M., Tran,T., Beauval, C., Maguiña–Mendoza, J.M., Martinez, W., Tavera, H. & Yepes, H. 2014. Motion of continental slivers and creeping subduction in the northern Andes. Nature Geoscience, 7(4): 287–291. https://doi.org/10.1038/NGEO2099

 

Nocquet, J.M., Jarrin, P., Vallée, M., Mothes, P.A., Grandin, R., Rolandone, F., Delouis, B., Yepes, H., Font, Y., Fuentes, D., Régnier, M., Laurendeau, A., Cisneros, D., Hernández, S., Sladen, A., Singaucho, J.C., Mora, H., Gómez, J., Montes., L. & Charvis, P. 2016. Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nature Geoscience, 10(2): 145–149. https://doi.org/10.1038/ngeo2864

 

Page, W. 1986. Seismic geology and seismicity of northwestern Colombia. Woodward–Clyde Consultants & Interconexión Elétrica S.A., unpublished report, 156 p. Medellín.

 

Paris, G., Machette, M.N., Dart, R.L. & Haller, K.M. 2000. Map and database of Quaternary faults and folds in Colombia and its offshore regions. U.S. Geological Survey, Open–File report 00–0284, 61 p. Denver, USA.

 

Pennington, W.D. 1981. Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11): 10753–10770. https://doi.org/10.1029/JB086iB11p10753

 

Ramírez, J.E. 2004. Actualización de la historia de los terremotos en Colombia. Pontificia Universidad Javeriana. 186 p. Bogotá.

 

Rodríguez, L., Diederix, H., Torres, E., Audemard, F., Hernández, C., Singer, A., Bohórquez, O. & Yepes, S. 2018. Identification of the seismogenic source of the 1875 Cucuta earthquake on the basis of a combination of neotectonic, paleoseismologic and historic seismicity studies. Journal of South American Earth Sciences, 82: 274–291. https://doi.org/10.1016/j.jsames.2017.09.019

 

Rossello, E.A., Nevistic, V.A., Araque, L., Bettini, F., Bordarampé. C., Castro, E., Colo, C., Córsico, S., Covellone, G., Haring, C., Pina, C., Pinilla, C., Ruiz, J.C. & Salvay, R.O. 2010. La sintaxis tectónica neógena de las cordilleras Oriental y Santander: Aportes de modelos analógicos y controles regionales sobre los sistemas petroleros. 3rd Convención Técnica Asociación Colombiana de Geólogos y Geofísicos del Petróleo.

 

Sarmiento–Rojas, L.F. 2001. Mesozoic rifting and Cenozoic basin inversion history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Doctoral thesis, Vrije Universiteit, 295 p. Amsterdam, the Netherlands.

 

Storti, F., Holdsworth, R.E. & Salvini, F. 2003. Intraplate strike–slip deformation belts. In: Storti, F., Holdsworth, R.E. & Salvini, F. (editors), Intraplate strike–slip deformation belts. Geological Society of London. Special Publication 210, p. 1–14. London.

 

Sylvester, A.G. 1988. Strike–slip faults. Geological Society of America Bulletin, 100(11): 1666–1703. https://doi.org/10.1130/0016-7606(1988)100<1666:ssf>2.3.co;2

 

Taboada, A., Dimaté, C. & Fuenzalida, A. 1998. Sismotectónica de Colombia: Deformación continental activa y subducción. Física de la Tierra (10): 11–147.

 

Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J. & Rivera, C. 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5): 787–813. https://doi.org/10.1029/2000TC900004

 

Toro, J. 1990. The termination of the Bucaramanga Fault in the cordillera Oriental, Colombia. Master thesis, University of Arizona, 60 p. Tucson, USA.

 

Trenkamp, R., Kellogg, J.N., Freymueller, J.T. & Mora, H. 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2): 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4

 

Tschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H. & Cebula, G.T. 1974. Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geological Society of America Bulletin, 85(2): 273–284. https://doi.org/10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2

 

Ujueta, G. 2003. La Falla de Santa Marta–Bucaramanga no es una sola falla; son dos fallas diferentes: La Falla de Santa Marta y la Falla de Bucaramanga. Geología Colombiana, (28): 133–153.

 

Vargas, C.A. & Mann, P. 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc–indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025–2046. https://doi.org/10.1785/0120120328

 

Velandia, F. 2005. Interpretación de transcurrencia de las fallas Soapaga y Boyacá a partir de imágenes landsat TM. Boletín de Geología, 27(1): 81–94.

 

Velandia, F., Silva, G., Morales, C. & Osorio, J. 2007. Análisis cinemático de la región central del departamento de Santander. XI Congreso Colombiano de Geología. Memoirs, 19 p. Bucaramanga, Colombia.

 

Ward, D.E., Goldsmith, R., Cruz, J. & Restrepo, H. 1973. Geología de los cuadrángulos H–12 Bucaramanga y H–13 Pamplona, departamento de Santander. Boletín Geológico, 21(1–3): 1–132.

 

Wilcox, R., Harding, T.P. & Seely, D.R. 1973. Basic wrench tectonics. Bulletin of the America Association of Petroleum Geologists Bulletin, 57(1): 74–96.

 

Witt, C., Bourgois, J., Michaud, F., Ordoñez, M. & Jiménez, N. 2006. Development of the Gulf of Guayaquil (Ecuador) during the Quaternary as an effect of the North Andean Block escape. Tectonics, 25(3): 22 p. https://doi.org/10.1029/2004TC001723

 

Woodcock, N.H. & Schubert, C. 1994. Continental strike–slip tectonics. In: Hancock, P.L. (editor), Continental deformation. Pergamon Press, p. 251–263. Oxford.

 

Yeats, R.S., Sieh, K. & Allen, C.R. 1997. Geology of earthquakes. Oxford University Press. 576 p. New York.