Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv2ch13
Seleccione su búsqueda
miig

​​​​​​​​​​​​​​

 Volume 2 Chapter 13

Chapter  13

Plesiosaurs, Palaeoenvironments, and the Paja Formation Lagerstätte of Central Colombia: An Overview   

Leslie F. NOÈ  and Marcela GÓMEZ–PÉREZ

https://doi.org/10.32685/pub.esp.36.2019.13


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 2: 978-958-52959-3-3

ISBN digital Vol. 2: 978-958-52959-8-8​​


Citation is suggested as: 

Noè, L.F. & Gómez–Pérez, M. 2020. Plesiosaurs, palaeoenvironments, and the Paja Formation Lagerstätte of central Colombia: An overview. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 441–483. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.13


Download chapter  ​​​     

Download EndNote reference​ 


Abstract 


The Cretaceous Paja Formation of the alto Ricaurte of the Eastern Cordillera of central Colombia was laid down under an epicontinental sea during Hauterivian – Aptian times. The Paja Formation epicontinental sea was home to a diverse, and now well–preserved, pelagic marine fauna that includes members of Plesiosauria, other marine reptiles, fish, and ammonites. However, the benthic fauna is depauperate, preserving just a few thin–shelled bivalves and evidence of microbial mats. This suggests dysoxic–anoxic bottom waters, separated from oxic surface waters by a chemocline–pycnocline. The exceptional preservation of the Paja Formation fauna makes the alto Ricaurte a unique Lower Cretaceous marine vertebrae Lagerstätte. Previous palaeoenvironmental interpretations of the Paja Formation, based on observations of the gypsiferous, dark mudrock sequence, suggested an intertidal evaporitic (sabkha) environment. However, integration of sedimentological, palaeobiological, taphonomic, and diagenetic data provides evidence for deeper water conditions. The exquisite preservation and articulation of the skeletons of large marine reptiles, three–dimensionally preserved fish, beautifully ornamented ammonites, and delicate plants, do not accord with a sabkha environment. Sabkha is typical of mid–latitude, dryer climates under the descended limb of the Hadley atmospheric cell, rather than a wet tropical equatorial location of the Paja Formation. Mineralogical arguments used to infer the presence of sabkha are not primary depositional features, but due to secondary migration of mineral–rich fluids. These fluids probably had their source in the earliest Cretaceous topographic high now beneath the Sabana de Bogotá, and were driven by hydraulic pressure generated by volumetric changes due to hydration of anhydrite into gypsum due to the post–Cretaceous rise of the northern Andes mountain chain. The separation of primary and secondary diagenetic features is thereby critical for understanding the evolution of the Paja Formation sedimentary basin in the alto Ricaurte.

Keywords: Lagerstätte, Lower Cretaceous, Paja Formation, palaeoenvironments, Plesiosauria.



Resumen 

La Formación Paja de la región del alto Ricaurte en la cordillera Oriental de Colombia se depositó en un mar epicontinental durante el Hauteriviano–Aptiano. Este mar tenía una fauna marina pelágica diversa que se encuentra hoy en día muy bien preservada e incluye miembros del orden Plesiosauria, otros reptiles marinos, peces y amonitas. Sin embargo, la fauna bentónica está empobrecida, se conservan solo algunos bivalvos de conchilla delgada y evidencia de tapetes microbiales. Esto sugiere que las aguas profundas eran de carácter disóxico–anóxico, separadas de las aguas superficiales oxigenadas por la quimoclina–picnoclina. La preservación excepcional de la fauna de la Formación Paja hace que el alto Ricaurte sea un Lagerstätte de vertebrados marinos del Cretácico Inferior único a nivel mundial. Interpretaciones previas del paleoambiente de la Formación Paja, basadas en observaciones de la secuencia de lodolitas oscuras yesosas, sugirieron un ambiente evaporítico intermareal (sabkha). Sin embargo, la integración de datos sedimentológicos, paleobiológicos, tafonómicos y diagenéticos proporciona evidencia de condiciones de aguas más profundas. La exquisita preservación y la articulación de los esqueletos de grandes reptiles marinos, peces, amonitas bellamente ornamentadas y plantas delicadas no concuerdan con un ambiente de sabkha. Los sabkhas son característicos de latitudes medias y climas más secos, localizados bajo la rama descendente de la celda atmosférica de Hadley, antes que típicos de la localización más ecuatorial tropical húmeda de la Formación Paja. Los argumentos mineralógicos utilizados para inferir la presencia del sabkha no son característicos de deposición primaria, sino debido a la migración secundaria de fluidos ricos en minerales. Estos fluidos probablemente tenían su origen en la topografía alta del Cretácico más temprano, ahora debajo de la Sabana de Bogotá, y fueron impulsados por la presión hidráulica generada por los cambios volumétricos debidos a la hidratación de la anhidrita en yeso como un resultado del levantamiento pos–Cretácico de la cadena montañosa norte de los Andes. Por lo tanto, la separación entre características diagenéticas primarias y secundarias es crítica para comprender la evolución de la cuenca sedimentaria de la Formación Paja en el alto Ricaurte.

 

Palabras clave: Lagerstätte, Cretácico Inferior, Formación Paja, paleoambientes, Plesiosauria.​




Ab​breviations 

AA                                       Arcillolitas Abigarradas

AcNH                             Arcillolitas con Nódulos Huecos

CIP                                    Centro de Investigaciones Paleontológicas km 4, vía Santa Sofía, Villa de Leyva, Boyacá, Colombia

ECC                                   Eastern Cordillera of Colombia

LNI                                    Lutitas Negras Inferiores

JAVCM                       Junta de Acción Comunal, vereda Monquirá (now MJACM)

LFN                                   Leslie Francis NOÈ

MG–P                           Marcela GÓMEZ–PÉREZ

MJACM                     Museo El Fósil, vereda Monquirá, Boyacá, Colombia

OAEs                              Oceanic anoxic events

SGC                                  Servicio Geológico Colombiano Dirección de Geociencias Básicas Museo Geológico José Royo y Gómez                                                   ​Diagonal 53 n.° 34–53, Bogotá D. C., Colombia

TOC                                  Total organic carbon

UCMP                            University of California Museum of Palaeontology

                                                  1101 Valley Life Sciences Building, Berkeley

                                                 California 94720, USA

UN                                     Universidad Nacional de Colombia Departamento de Geociencias 

                                                 Carrera 45 n.° 26–85, Bogotá D. C., Colombia​



References

Acosta, C.E., Huerta, G. & Ruiz, P.M. 1979. Noticia preliminar sobre el hallazgo de un presunto Kronosaurus (Reptilia: Dolichrorhynchopidae) en el Aptiano superior de Villa de Leyva, Colombia. Lozania (Acta Zoológica Colombiana), 28: 1–7.

 

Algeo, T.J., Heckel, P.H., Maynard, B., Blakey, R.C. & Rowe, H. 2008. Modern and ancient epeiric seas and the super–estuarine circulation model of marine anoxia. In: Pratt, B.R. & Holmden, C. (editors), Dynamics of epeiric seas. Geological Association of Canada, Special Paper 48, p. 7–38. Toronto.

 

Álvarez–León, R., Orozco–Rey, R.H., Páramo–Fonseca, M.E. & Restrepo–Santamaría, D. 2013. Lista de los peces fósiles y actuales de Colombia: Nombres científicos válidos, distribución geográfica, diagnosis de referencia & nombres comunes e indígenas. Eco Prints Diseño Gráfico y Audiovisual Ltda., 346 p. Bogotá.

 

Andrews, C.W. 1913. A descriptive catalogue of the marine reptiles of the Oxford Clay: Based on the Leeds Collection in the British Museum (Natural History), London. British Museum, II, 206 p. London. https://doi.org/10.5962/bhl.title.61785

 

Babault, J., Teixell, A., Struth, L., van den Driessche, J., Arboleya, M.L. & Tesón, E. 2013. Shortening, structural relief and drainage evolution in inverted rifts: Insights from the Atlas Mountains, the Eastern Cordillera of Colombia and the Pyrenees. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 141–158. London. https://doi.org/10.1144/SP377.14

 

Bádenas, B. & Aurell, M. 2008. Kimmeridgian epeiric sea deposits of northeastern Spain: Sedimentary dynamics of a storm–dominated carbonate ramp. In: Pratt, B.R. & Holmden, C. (editors), Dynamics of epeiric seas. Geological Association of Canada, Special Paper 48, p. 55–71. Toronto.

 

Bardet, N. 1995. Evolution et extinction des reptiles marins au cours du Mésozoïque. Palaeovertebrata, 24(3–4): 177–283.

 

Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda–Superbiola, X., Pérez–García, A., Rage, J.C. & Vincent, P. 2014. Mesozoic marine reptile palaeobiogeography in response to drifting plates. Gondwana Research, 26(3–4): 869–887. https://doi.org/10.1016/j.gr.2014.05.005

 

Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V., Mahecha, H., Lamus, F., Montenegro, O., Jiménez, G., Mesa, A. & Valencia, V. 2013. Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; Response to Caribbean–South American convergence in early Palaeogene time. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 285–314. London. https://doi.org/10.1144/SP377.5

 

Benson, R.B.J. & Druckenmiller, P.S. 2014. Faunal turnover of marine tetrapods during the Jurassic – Cretaceous transition. Biological Reviews: Cambridge Philosophical Society, 89(1): 1–23. https://doi.org/10.1111/brv.12038

 

Bogdanova, T.N. & Hoedemaeker, P.J. 2004. Barremian – early Aptian Deshayesitidae, Oppeliidae, Desmoceratidae and Silesitidae of Colombia. Scripta Geologica, 128: 183–312.

 

Bornemann, A., Pross, J., Reichelt, K., Herrle, J.O., Hemleben, C. & Mutterlose, J. 2005. Reconstruction of short–term palaeoceanographic changes during the formation of the late Albian 'Niveau Breistroffer' black shales (Oceanic Anoxic Event 1d, SE France). Journal of the Geological Society, 162(4): 623–639. https://doi.org/10.1144/0016-764903-171

 

Bottjer, D.J., Etter, W., Hagadorn, J.W. & Tang, C.M., editors. 2002. Exceptional fossil preservation: A unique view on the evolution of marine life. Columbia University Press, 403 p. New York.

 

Brady, M. & Bowie, C. 2017. Discontinuity surfaces and microfacies in a storm–dominated shallow epeiric sea, Devonian Cedar Valley Group, Iowa. The Depositional Record, 3(2): 136–160. https://doi.org/10.1002/dep2.26

 

Brenchley, P.J. & Harper, D.A.T. 1998. Palaeoecology: Ecosystems, environments and evolution. Chapman & Hall, 402 p. London. https://doi.org/10.1002/gj.810

 

Bürgl, H. 1954. El Cretáceo Inferior en los alrededores de Villa de Leiva, Boyacá. Boletín Geológico, 2(1): 5–22.

 

Cadena, E.A. 2014. The fossil record of turtles in Colombia: A review of the discoveries, research and future challenges. Acta Biológica Colombiana, 19(3): 333–339. https://doi.org/10.15446/abc.v19n3.42223

 

Cadena, E.A. 2015. The first South American sandownid turtle from the Lower Cretaceous of Colombia. PeerJ, 3(e1431): 1–24. https://doi.org/10.7717/peerj.1431

 

Cadena, E.A. & Parham, J.F. 2015. Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia. PaleoBios, 32(1): 1–42.

 

Campos–Álvarez, N.O. & Roser, B.P. 2007. Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23(4): 271–289. https://doi.org/10.1016/j.jsames.2007.02.003

 

Campos–Álvarez, N.O., Roser, B.P. & Sampei, Y. 2002. Organic carbon and carbonate contents of black shales from the Lower Cretaceous Paja Formation (Colombia) by loss on ignition and CHNS analysis: Comparison of methods. Geoscience Reports of Shimane University, 21: 9–16.

 

Caplan, M.L. & Bustin, R.M. 1998. Palaeoceanographic controls on geochemical characteristics of organic–rich Exshaw mudrocks: Role of enhanced primary production. Organic Geochemistry, 30(2–3): 161–188. https://doi.org/10.1016/S0146-6380(98)00202-2

 

Carballido, J.L., Pol, D., Parra–Ruge, M.L., Padilla–Bernal, S., Páramo–Fonseca, M.E. & Etayo–Serna, F. 2015. A new Early Cretaceous brachiosaurid (Dinosauria, Neosauropoda) from northwestern Gondwana (Villa de Leiva, Colombia). Journal of Vertebrate Paleontology, 35(5): 1–12. https://doi.org/10.1080/02724634.2015.980505

 

Carpenter, K. 1999. Revision of North American elasmosaurs from the Cretaceous of the Western Interior. Paludicola, 2(2): 148–173.

 

Carroll, R.L. 1988. Vertebrate paleontology and evolution. W.H. Freeman and Company, 698 p. New York.

 

Clapham, P. 1997. Whales. Colin Baxter Photography, 132 p. Scotland.

 

Cobbold, P.R., Zanella, A., Rodrigues, N. & Løseth, H. 2013. Bedding–parallel fibrous veins (beef and cone–in–cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization. Marine and Petroleum Geology, 43: 1–20. https://doi.org/10.1016/j.marpetgeo.2013.01.010

 

Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.X. 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199–204.

 

Cortés, M., Colletta, B. & Angelier, J. 2006. Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. Journal of South American Earth Sciences, 21(4): 437–465. https://doi.org/10.1016/j.jsames.2006.07.004

 

Decker, K. & Rögl, F. 1988. Early Cretaceous agglutinated foraminifera from limestone–marl rhythmites of the Gresten Klippen Belt, eastern Alps (Austria). Abhandlungen der Geologischen Bundesanstalt, 41: 41–59.

 

Dodd Jr, C.K. 1988. Sinopsis of the biological data on the loggerhead sea turtle Caretta caretta (Linnaeus 1758). U.S. Department of the Interior. Fish and Wildlife Service. Biological Report, 88(14), 110 p. Washington D.C.

 

Emanuel, K. 2003. Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31: 75–104. https://doi.org/10.1146/annurev.earth.31.100901.141259

 

Eriksson, P.G., Schieber, J., Bouougri, E., Gerdes, G., Porada, H., Banerjee, S., Bose, P.K. & Sarkar, S. 2007. Classification of structures left by microbial mats in their host sediments. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. & Catuneau, O. (editors), Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Atlases in geoscience, 2, p. 39–52. Oxford, UK.

 

Espinel–Arias, V. & Hurtado–Henao, J.A. 2010. Petrografía y análisis facial de las rocas calcáreas aflorantes de la sección Tunja–Villa de Leiva, Boyacá. Bachelor thesis, Universidad de Caldas, 117 p. Manizales.

 

Espinosa, A. 2016. El Servicio Geológico Colombiano 1916–2016: Cien años al servicio de Colombia. Servicio Geológico Colombiano, 261 p. Bogotá.

 

Etayo–Serna, F. 1964. Posición de las faunas en los depósitos cretácicos colombianos y su valor en la subdivisión cronológica de los mismos. Boletín de Geología, (16–17): 5–142.

 

Etayo–Serna, F. 1965. Sinopsis estratigráfica de la región de Villa de Leiva y zonas próximas. Boletín de Geología, (21): 19–32.

 

Etayo–Serna, F. 1968. El sistema Cretáceo en la región de Villa de Leiva y zonas próximas. Geología Colombiana, 5: 5–74.

 

Etayo–Serna, F. 1979. Zonation of the Cretaceous of central Colombia by ammonites. Publicaciones Geológicas Especiales del Ingeominas 2, 186 p. Bogotá.

 

Etayo–Serna, F. 1981. On the supposed Aptian occurrence of the ammonite genus Neodeshayesites in Colombia and Venezuela; with an appendix on Neodeshayesites karsteni (Marcou). Geología Norandina, (3): 45–51.

 

Etayo–Serna, F. Acosta, C.E., Ruiz, P.M. & Huertas, G. 1978. Un posible Kronosaurus en el Aptiano de Villa de Leiva. II Congreso Colombiano de Geología. Abstracts, p. 40. Bogotá.

Etayo–Serna, F., Montoya, D.M. & Terraza, M.R. 2015. Patrimonio geológico y paleontológico Villa de Leiva y zonas próximas: Un caso único. Servicio Geológico Colombiano, unpublished report, 42 p. Bogotá.

 

Evans, S. 1999. Wood–boring bivalves and boring linings. Bulletin of the Geological Society of Denmark, 45: 130–134.

 

Fernández, M.S. & Aguirre–Urreta, M.B. 2005. Revision of Platypterygius hauthali von Huene, 1927 (Ichthyosauria: Ophthalmosauridae) from the Early Cretaceous of Patagonia, Argentina. Journal of Vertebrate Paleontology, 25(3): 583–587. https://doi.org/10.1671/0272-4634(2005)025[0583:ROPHVH]2.0.CO;2

 

Fernández, M.S., Archuby, F., Talevi, M. & Ebner, R. 2005. Ichthyosaurian eyes: Paleobiological information content in the sclerotic ring of Caypullisaurus (Ichthyosauria, Ophthalmosauria). Journal of Vertebrate Paleontology, 25(2): 330–337. https://doi.org/10.1671/0272-4634(2005)025[0330:IEPICI]2.0.CO;2

 

Fischer, V., Bardet, N., Guiomar, M. & Godefroit, P. 2014. High diversity in Cretaceous ichthyosaurs from Europe prior to their extinction. PLOS ONE, 9(1): 1–26. https://doi.org/10.1371/journal.pone.0084709

 

Fluteau, F., Ramstein, G., Besse, J., Guiraud, R. & Masse, J.P. 2007. Impacts of palaeogeography and sea level changes on mid–Cretaceous climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3–4): 357–381. https://doi.org/10.1016/j.palaeo.2006.11.016

 

Forero–Onofre, H. & Sarmiento–Rojas, L. 1985. La facies evaporítica de la Formación Paja en la región de Villa de Leiva. In: Etayo–Serna, F. & Laverde–Montaño, F. (editors), Proyecto Cretácico: Contribuciones. Publicaciones Geológicas Especiales del Ingeominas 16, p. XVII-1–XVII-16. Bogotá.

 

Gallego–Torres, D., Reolid, M., Nieto–Moreno, V. & Martínez–Casado, F.J. 2015. Pyrite framboid size distribution as a record for relative variations in sedimentation rate: An example on the Toarcian oceanic anoxic event in southiberian palaeomargin. Sedimentary Geology, 330: 59–73. https://doi.org/10.1016/j.sedgeo.2015.09.013

 

Galvis–Arenas, B.E. & Valencia–Escobar, J.L. 2009. Contribución en la determinación de los posibles paleoambientes de las rocas cretáceas tempranas sobre la vía Tunja–Villa de Leyva (entre alto del Arrayan–Peaje Sáchica) y sectores aledaños, departamento de Boyacá. Bachelor thesis, Universidad de Caldas, 144 p. Manizales.

 

Gaona–Narváez, T. 2015. El Cretácico sedimentario al este de la Falla de San Jerónimo: Compilación para el Mapa Geológico de Colombia. In: Gómez, J. & Almanza, M.F. (editors), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33, p. 421–429. Bogotá.

 

Gasparini, Z. & Goñi, R. 1985. Los plesiosaurios cretácicos de América del Sur y del continente antártico. Coletânea de Trabalhos Paleontologicos: Trabalhos apresentados no VIII Congresso Brasileiro de Paleontologia 1983, Série Geologia 27(2), p. 55–63. Brasilia.

 

Gingras, M.K., Maceachern, J.A. & Pickerill, R.K. 2004. Modern perspectives on the Teredolites ichnofacies: Observations from Willapa Bay, Washington. PALAIOS, 19(1): 79–88. https://doi.org/10.1669/0883-1351(2004)019<0079:MPOTTI>2.0.CO;2

 

Gómez–Cruz, A.d.J., Moreno–Sánchez, M. & Vallejo, L. 2011. Fósiles de Insecta (Odonata) del Aptiano tardío en la Formación Paja. Boletín Científico. Centro de Museos. Museo de Historia Natural. Novedades en Historia Natural, 15(2): p. 222.

 

Gómez, J. & Almanza, M.F., editors. 2015. Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33, 401 p. Bogotá.

 

Gómez–Pérez, M. & Noè, L.F. 2017. Cranial anatomy of a new pliosaurid Acostasaurus pavachoquensis from the Lower Cretaceous of Colombia, South America. Palaeontographica, 310(1–2): 5–42. https://doi.org/10.1127/pala/2017/0068

 

Goñi, R. & Gasparini, Z. 1983. Nuevos restos de “Alzadasaurus colombiensis" (Reptilia, Plesiosauria) del Cretácico Temprano de Colombia. Geología Norandina, (7): 49–54.

 

Gradstein, F.M., Kaminski, M.A. & Agterberg, F.P. 1999. Biostratigraphy and paleoceanography of the Cretaceous seaway between Norway and Greenland. Earth–Science Reviews, 46(1–4): 27–98. https://doi.org/10.1016/S0012-8252(99)00018-5

 

Guerrero, J. 2002a. A proposal on the classification of systems tracts: Application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 1: Berriasian to Hauterivian. Geología Colombiana, 27: 3–25.

 

Guerrero, J. 2002b. A proposal on the classification of systems tracts: Application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian. Geología Colombiana, 27: 27–49.

 

Hampe, O. 1992. Ein großwüchsiger Pliosauride (Reptilia: Plesiosauria) aus der Unterkreide (oberes Aptium) von Kolumbien. Courier Forschungsinstitut Senckenberg, 145: 1–25.

 

Hampe, O. 2005. Considerations on a Brachauchenius skeleton (Pliosauroidea) from the lower Paja Formation (late Barremian) of Villa de Leyva area (Colombia). Fossil Record, 8(1): 37–51. https://doi.org/10.1002/mmng.200410003

 

Hampe, O. & Leimkühler, C. 1996. Die anwendung der photogrammetrie in der wirbeltierpaläontologie am beispiel eines Kronosaurus–fundes in Kolumbien. Mainzer Geowissenschaftliche Mitteilungen, 25: 55–78.

 

Haq, B.U., Hardenbol, J. & Vail, P.R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156–1167.

 

Haq, B.U., Hardenbol, J., Vail, P.R., Stover, L.E., Colin, J.P., Ioannides, N.S., Wright, R.C., Baum, G.R., Gombos–Jr, A.M., Pflum, C.E., Loutit, T.S., du Chêne, R.J., Romine, K.K., Sarg, J.F., Posamentier, H.W. & Morgan, B.E. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea–level change. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., van Wagoner, J., Ross, C.A. & Kendall, C.G. (editors), Sea–level changes: An integrated approach. Society Economic Paleontologists and Mineralogists SEPM, Special Publication 42, p. 71–108. https://doi.org/10.2110/pec.88.01.0071

 

Hay, W.W. 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29(5–6): 725–753. https://doi.org/10.1016/j.cretres.2008.05.025

 

Hesselbo, S.P., Jenkyns, H.C., Duarte, L.V. & Oliveira, L.C.V. 2007. Carbon–isotope record of the Early Jurassic (Toarcian) oceanic anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters, 253(3–4): 455–470. https://doi.org/10.1016/j.epsl.2006.11.009

 

Hirth, H.F. 1980. Some aspects of the nesting behavior and reproductive biology of sea turtles. American Zoologist, 20(3): 507–523. https://doi.org/10.1093/icb/20.3.507

 

Hoedemaeker, P.J. & Kakabadze, M.V. 2004. Preface: Early Cretaceous ammonites from Colombia. Scripta Geologica, 128: 1–2.

 

Huber, K. & Wiedmann, J. 1986. Sobre el límite Jurásico–Cretácico en los alrededores de Villa de Leiva, departamento de Boyacá, Colombia. Geología Colombiana, 15: 81–92.

 

Huertas, G. 1967. Sertum florulae fossilis Villae de Leivae. Caldasia, 10(46): 59–75.

 

Huertas, G. 1970. Sertum florulae fossilis Villae de Leivae II. Caldasia, 10(50): 595–602.

 

Huertas, G. 1976. Sertum florulae fossilis Villae de Leiva. Caldasia, 11(54): 17–23.

 

Hu, X., Wagreich, M. & Yilmaz, I.O. 2012. Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research, 38: 1–6. https://doi.org/10.1016/j.cretres.2012.04.012

 

Imai, T., Jintasakul, P., Azuma, Y., Noda, Y. & Chokchaloemwong, D. 2016. First confirmed fossil turtle eggshells (Oogenus Testudoolithus) from the Lower Cretaceous of Thailand. Memoir of the Fukui Prefectural Dinosaur Museum, 15: 1–6.

 

Immenhauser, A. 2009. Estimating palaeo–water depth from the physical rock record. Earth–Science Reviews, 96(1–2): 107–139. https://doi.org/10.1016/j.earscirev.2009.06.003

 

Isaji, S., Matsushita, A. & Hirayama, R. 2006. Chelonian eggshells from the Lower Cretaceous Kuwajima Formation of the Tetori Group, central Japan. Paleontological Research, 10(1): 29–36. https://doi.org/10.2517/prpsj.10.29

 

Jenkyns, H.C. 1980. Cretaceous anoxic events: From continents to oceans. Journal of the Geological Society, 137(2): 171–188. https://doi.org/10.1144/gsjgs.137.2.0171

 

Jenkyns, H.C. 1997. Mesozoic anoxic events and palaeoclimate. Zentralblatt für Geologie und Paläontologie, 1(7–9): 943–949.

 

Jenkyns, H.C. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11(3): 1–30. https://doi.org/10.1029/2009GC002788

 

Jerez–Jaimes, J.H. & Narváez–Parra, E.X. 2001. Callawayasaurus colombiensis (Welles) Carpenter 1999 el plesiosaurio de Villa de Leyva (Boyacá, Colombia). ¿Un nuevo espécimen? Boletín de Geología, 23(38): 9–19.

 

G., Speranza, F., Faccenna, C., Bayona, G. & Mora, A. 2014. Paleomagnetism and magnetic fabric of the Eastern Cordillera of Colombia: Evidence for oblique convergence and nonrotational reactivation of a Mesozoic intracontintental rift. Tectonics, 33(11): 2233–2260. https://doi.org/10.1002/2014TC003532

 

Jones, C.E. & Jenkyns, H.C. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301(2): 112–149. https://doi.org/10.2475/ajs.301.2.112

 

Kakabadze, M.V. & Hoedemaeker, P.J. 1997. New and less known Barremian – Albian ammonites from Colombia. Scripta Geologica, 114: 57–117.

Kakabadze, M.V. & Hoedemaeker, P.J. 2004. Heteromorphic ammonites from the Barremian and Aptian strata of Colombia. Scripta Geologica, 128: 39–182.

 

Keller, G. 2008. Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research, 29 (5–6): 754–771. https://doi.org/10.1016/j.cretres.2008.05.030

 

Kershaw, S. & Guo, L. 2016. Beef and cone–in–cone calcite fibrous cements associated with the end–Permian and end–Triassic mass extinctions: Reassessment of processes of formation. Journal of Palaeogeography, 5(1): 28–42. https://doi.org/10.1016/j.jop.2015.11.003

 

Kominz, M.A. 2001. Sea level variations over geologic time. In: Steele, J.H., Thorpe, S.A, & Turekian, K.K. (editors), Encyclopedia of ocean sciences. Elsevier, p. 2605–2613. https://doi.org/10.1006/rwos.2001.0255

 

Larson, R.L. & Erba, E. 1999. Onset of the mid–Cretaceous greenhouse in the Barremian – Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography and Paleoclimatology, 14(6): 663–678. https://doi.org/10.1029/1999PA900040

 

Lash, G.G. & Blood, D. 2004. Geochemical and textural evidence for early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York. Chemical Geology, 206(3–4): 407–424. https://doi.org/10.1016/j.chemgeo.2003.12.017

 

Leckie, R.M., Bralower, T.J. & Cashman, R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid–Cretaceous. Paleoceanography and Paleoclimatology, 17(3): 13–1-13–29. https://doi.org/10.1029/2001PA000623

 

Macellari, C.E. 1988. Cretaceous paleogeography and depositional cycles of western South America. Journal of South American Earth Sciences, 1(4): 373–418. https://doi.org/10.1016/0895-9811(88)90024-7

 

Macellari, C.E. & de Vries, T.J. 1987. Late Cretaceous upwelling and anoxic sedimentation in northwestern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 59: 279–292. https://doi.org/10.1016/0031-0182(87)90086-1

 

Mannion, P.D., Allain, R. & Moine, O. 2017. The earliest known titanosauriform sauropod dinosaur and the evolution of Brachiosauridae. PeerJ 5(e3217): 1–82. https://doi.org/10.7717/peerj.3217

 

Mann, U. & Stein, R. 1997. Organic facies variations, source rock potential, and sea level changes in Cretaceous black shales of the quebrada Ocal, Upper Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 81(4): 556–576.

 

Martill, D.M. 1985. The preservation of marine vertebrates in the Lower Oxford Clay (Jurassic) of central England. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 311(1148): 155–165. https://doi.org/10.1098/rstb.1985.0147

 

Martill, D.M. 1988. Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology, 31(1): 1–18.

 

Martill, D.M. 1993. Soupy substrates: A medium for the exceptional preservation of ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany. Kaupia–Darmstädter Beiträge zur Naturgeschichte, 2: 77–97.

 

Martínez, F., Okino, K., Ohara, Y., Reysenbach, A.L. & Goffredi, S.K. 2007. Back–arc basins. Oceanography, 20(1): 116–127. https://doi.org/10.5670/oceanog.2007.85

 

Martin, R.E. 1999. Taphonomy a process approach. Cambridge Paleobiology Series 4. Cambridge University Press, 524 p. Cambridge.

 

Massare, J.A. 1984. Ecology and evolution of Mesozoic marine reptiles. Doctoral thesis, John Hopkins University, 182 p. Baltimore, USA.

 

Massare, J.A. 1997. Faunas, behavior, and evolution. In: Callaway, J.M. & Nicholls, E.L. (editors), Ancient marine reptiles. Academic Press, p. 401–421. San Diego.

 

Mattioli, E., Gardin, S., Giraud, F., Olivero, D., Pittet, B. & Reboulet, S. 2008. Guidebook for the post–congress fieldtrip in the Vocontian Basin, SE France (September 11–13, 2008). 12th Meeting of the International Nannoplankton Association, 26 p.

 

Maxwell, E.E., Dick, D., Padilla, S. & Parra, M.L. 2016. A new opthalmosaurid ichthyosaur from the Early Cretaceous of Colombia. Palaeontology, 2(1): 59–70. https://doi.org/10.1002/spp2.1030

 

May, R.M. & Harvey, P.H., editors. 1995. Ecology and evolution in anoxic worlds. Oxford University Press, 276 p. Oxford.

 

McGavin, G.C. 2001. Essential entomology: An order–by–order introduction. Oxford University Press, 328 p. Oxford.

 

Méhay, S., Keller, C.E., Bernasconi, S.M., Weissert, H., Erba, E., Bottini, C. & Hochuli, P.A. 2009. A volcanic CO2 pulse triggered the Cretaceous oceanic anoxic event 1a and a biocalcification crisis. Geology, 37(9): 819–822. https://doi.org/10.1130/G30100A.1

 

Meyer, K.M. & Kump, L.R. 2008. Oceanic euxinia in Earth history: Causes and consequences. Annual Review of Earth and Planetary Sciences, 36: 251–288. https://doi.org/10.1146/annurev.earth.36.031207.124256

 

Mikhailov, K.E. 1997. Fossil and recent eggshell in amniotic vertebrates: Fine structure, comparative morphology and classification. Special Papers in Palaeontology, (56): 1–80.

 

Miller, A.I. & Foote, M. 2009. Epicontinental seas versus open–ocean settings: The kinetics of mass extinction and origination. Science, 326(5956): 1106–1109. https://doi.org/10.1126/science.1180061

 

Miller, J.D., Limpus, C.J. & Godfrey, M.H. 2003a. Nest site selection, oviposition, eggs, development, hatching, and emergence of loggerhead turtles. In: Bolten, A.B. & Witherington, B.E. (editors), Loggerhead sea turtles. Smithsonian Books, p. 125–143. Washington D.C.

 

Miller, K.B. Brett, C.E. & Parsons, K.M. 1988. The paleoecologic significance of storm–generated disturbance within a Middle Devonian muddy epeiric sea. PALAIOS, 3(1): 35–52. https://doi.org/10.2307/3514543

 

Miller, K.G., Sugarman, P.J., Browning, J.V., Kominz, M.A., Hernández, J.C., Olsson, R.K., Wright, J.D., Feigenson, M.D. & van Sickel, W. 2003b. Late Cretaceous chronology of large, rapid sea–level changes: Glacioeustasy during the greenhouse world. Geology, 31(7): 585–588. https://doi.org/10.1130/0091-7613(2003)031<0585:LCCOLR>2.0.CO;2

 

Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie–Blick, N. & Pekar, S.F. 2005. The Phanerozoic record of global sea–level change. Science, 310(5752): 1293–1298. https://doi.org/10.1126/science.1116412

 

Moore, C.M., Mills, M.M., Arrigo, K.R., Berman–Frank, I., Bopp, L., Boyd, P.W., Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., Jickells, T.D., La Roche, J., Lenton, T.M., Mahowald, N.M., Marañón, E., Marinov, I., Moore, J.K., Nakatsuka, T., Oschlies, A., Saito, M.A., Thingstad, T.F., Tsuda, A. & Ulloa, O. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 6: 701–710. https://doi.org/10.1038/ngeo1765

 

Moore, J. 2001. An introduction to the invertebrates. Cambridge University Press, 355 p. Cambridge.

 

Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V. & Vallejo–Jaramillo, J. 2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120(7–8): 930–949. https://doi.org/10.1130/B26186.1

 

Morales, L.G. 1958. General geology and oil occurrences of Middle Magdalena Valley, Colombia. In: Weeks, L.G. (editor), Habitat of oil. American Association of Petroleum Geologists, p. 641–695. Tulsa, USA.

 

Moreno, N., Silva, A., Mora, A., Tesón, E., Quintero, I., Rojas, L.E., López, C., Blanco, V., Castellanos, J., Sánchez, J., Osorio, L., Namson, J., Stockli, D. & Casallas, W. 2013. Interaction between thin– and thick–skinned tectonics in the foothill areas of an inverted graben: The Middle Magdalena Foothill belt. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 221–255. London. https://doi.org/10.1144/SP377.18

 

Moreno–Sánchez, M., Gómez–Cruz, A.d.J. & Castillo–González, H. 2007. Frenelopsis y Pseudofrenelopsis (Coniferales: Cheirolepidiaceae) en el Cretácico Temprano de Colombia. Boletín de Geología, 29(2): 13–19.

 

Mosolf, J.G., Horton, B.K., Heizler, M.T. & Matos, R. 2010. Unroofing the core of the central Andean fold–thrust belt during focused late Miocene exhumation: Evidence from the Tipuani–Mapiri wedge–top basin, Bolivia. Basin Research, 23: 346–360. https://doi.org/10.1111/j.1365-2117.2010.00491.x

 

Müller, R.D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. 2008. Long–term sea–level fluctuations driven by ocean basin dynamics. Science, 319(5868): 1357–1362. https://doi.org/10.1126/science.1151540

 

Mutterlose, J., Pauly, S. & Steuber, T. 2009. Temperature controlled deposition of Early Cretaceous (Barremian – early Aptian) black shales in an epicontinental sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 273(3–4): 330–345. https://doi.org/10.1016/j.palaeo.2008.04.026

 

Nicholls, E.L. & Russell, A.P. 1990. Paleobiogeography of the Cretaceous Western Interior Seaway of North America: The vertebrate evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 79(1–2): 149–169. https://doi.org/10.1016/0031-0182(90)90110-S

 

Nichols, G. 2009. Sedimentology and stratigraphy, second edition. Wiley–Blackwell, 419 p. Chichester, UK.

 

Nuamsukon, S., Chuen–Im, T., Rattanayuvakorn, S., Panishkan, K., Narkkong, N. & Areekijseree, M. 2009. Thai marine turtle eggshell: Morphology, ultrastructure and composition. Journal of Microscopy Society of Thailand, 23(1): 52–56.

 

Pacton, M., Schmid, T., Gorin, G., Massault, M. & Stadler, J. 2011. Cretaceous black shale: A window into microbial life adaptation. Terra Nova, 23(6): 362–368. https://doi.org/10.1111/j.1365-3121.2011.01020.x

 

Páramo–Fonseca, M.E. 1997. Platypterygius sachicarum (Reptilia, Ichthyosauria) nueva especie del Cretácico de Colombia. Revista Ingeominas, 6: 1–12.

 

Páramo–Fonseca, M.E. 2015. Estado actual del conocimiento de los reptiles marinos cretácicos de Colombia. Publicación Electrónica de la Asociación Paleontológica Argentina, 15(1): 40–57. https://doi.org/10.5710/PEAPA.12.06.2015.98

 

Páramo–Fonseca, M.E., Gómez–Pérez, M., Noè, L.F. & Etayo–Serna, F. 2016. Stenorhynchosaurus munozi, gen. et sp. nov. a new pliosaurid from the upper Barremian (Lower Cretaceous) of Villa de Leiva, Colombia, South America. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40(154): 84–103. http://dx.doi.org/10.18257/raccefyn.239

 

Patarroyo–Camargo, G.D., Patarroyo, P. & Sánchez–Quiñónez, C.A. 2009. Foraminíferos bentónicos en el Barremiano inferior de la Formación Paja (Boyacá–Santander, Colombia): Evidencias preliminares de un posible bioevento. Geología Colombiana, 34: 111–122.

 

Patarroyo–Camargo, G., Patarroyo, P. & Sánchez–Quiñónez, C.A. 2011. Benthic foraminiferal biostratigraphy of northern South America: Problems and perspectives. 22nd Colloquium on Latin American Earth Sciences. Abstract, 28 p. Heidelberg Institute of Earth Sciences. Heidelberg, Germany.

 

Patarroyo, P. 1997. Barremiano inferior en la base de la Formación Paja, Barichara, Santander–Colombia. Geología Colombiana, 22: 135–138.

 

Patarroyo, P. 2000a. Primer registro de un áptico, asociado con Nicklesia pulchella (D'Orbigny), en Villa de Leiva–Boyacá (Colombia–Sudamérica). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 24(91): 279–283.

 

Patarroyo, P. 2000b. Distribución de amonitas del Barremiano de la Formación Paja en el sector de Villa de Leiva (Boyacá, Colombia). Bioestratigrafía. Geología Colombiana, 25: 149–162.

 

Patarroyo, P. 2009. Amonitas de un nivel de alta energía del Barremiano inferior en la Formación Paja de los sectores de Villa de Leiva (Boyacá) y de Vélez (Santander). Boletín de Geología, 31(2): 15–21.

 

Petrash, D.A., Gueneli, N., Brocks, J.J., Méndez–Dot, J.A., González–Arismendi, G., Poulton, S.W. & Konhauser, K.O. 2016. Black shale deposition and early diagenetic dolomite cementation during oceanic anoxic event 1: The mid–Cretaceous Maracaibo platform, northwestern South America. American Journal of Science, 316(7): 669–711. https://doi.org/10.2475/07.2016.03

 

Philipp, S.L. 2008. Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England. Geological Magazine, 145(6): 831–844. https://doi.org/10.1017/S0016756808005451

 

Phillott, A.D. & Parmenter, C.J. 2006. The ultrastructure of sea turtle eggshell does not contribute to interspecies variation in fungal invasion of the egg. Canadian Journal of Zoology, 84(9): 1339–1344. https://doi.org/10.1139/z06-125

 

Pictet, A., Delanoy, G., Adatte, T., Spangenberg, J.E., Baudouin, C., Boselli, P., Boselli, M., Kindler, P. & Föllmi, K.B. 2015. Three successive phases of platform demise during the early Aptian and their association with the oceanic anoxic Selli episode (Ardèche, France). Palaeogeography, Palaeoclimatology, Palaeoecology, 418: 101–125. https://doi.org/10.1016/j.palaeo.2014.11.008

 

Poulsen, C.J., Pollard, D. & White, T.S. 2007. General circulation model simulation of the δ18O content of continental precipitation in the middle Cretaceous: A model–proxy comparison. Geology, 35(3): 199–202. https://doi.org/10.1130/G23343A.1

 

Pritchard, P.C.H. & Mortimer, J.A. 1999. Taxonomy, external morphology, and species identification. In: Eckert, K.L., Bjorndal, K.A., Abreu–Grobois, F.A. & Donnelly, M. (editors), Research and management techniques for the conservation of sea turtles. IUCN/SSC Marine Turtle Specialist Group 4, p. 21–38. Washington D.C.

 

Renzoni, G. 1981. Geología del cuadrángulo J–12 Tunja. Boletín Geológico, 24(2): 31–48.

 

Roychoudhury, A.N., Kostka, J.E. & van Cappellen, P. 2003. Pyritization: A palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science, 57(5–6): 1183–1193. https://doi.org/10.1016/S0272-7714(03)00058-1

 

Ruppel, S.C. & Loucks, R.G. 2008. Black mudrocks: Lessons and questions from the Mississippian Barnett Shale in the southern midcontinent. The Sedimentary Record, 6(2): 4–8.

 

Sageman, B.B. 1985. High–resolution stratigraphy and paleobiology of the Hartland Shale Member: Analysis of an oxygen–deficient epicontinental sea. In: Pratt, L.M., Kauffman, E.G. & Zelt, F.B. (editors), Fine–grained deposits and biofacies of the Cretaceous Western Interior Seaway: Evidence of cyclic sedimentary processes. Society of Economic Paleontologists and Mineralogists SEPM, Field Trip Guidebook 4, p. 110–121. Tulsa, USA. https://doi.org/10.2110/sepmfg.04.110

 

Sageman, B.B., Wignall, P.B. & Kauffman, E.G. 1991. Biofacies models for oxygen–deficient facies in epicontinental seas: Tool for paleoenvironmental analysis. In: Einsele, G., Ricken, W. & Seilacher, A. (editors), Cycles and events in stratigraphy. Springer–Verlag, p. 542–564. Berlin.

 

Sarkar, S., Samanta, P. & Altermann, W. 2011. Setulfs, modern and ancient: Formative mechanism, preservation bias and palaeoenvironmental implications. Sedimentary Geology, 238(1–2): 71–78. https://doi.org/10.1016/j.sedgeo.2011.04.003

 

Schäfer, W. 1972. Ecology and palaeoecology of marine environments. University of Chicago Press, 568 p. Edinburgh, Scotland.

 

Schieber, J. 2011. Iron sulfide formation. In: Reitner, J. & Thiel, V. (editors), Encyclopedia of Geobiology. Encyclopedia of Earth Science Series. Springer, p. 486–502. Dordrecht, the Netherlands. https://doi.org/10.1007/978-1-4020-9212-1_118

 

Schieber, J. 2016. Mud re–distribution in epicontinental basins–exploring likely processes. Marine and Petroleum Geology, 71: 119–133. https://doi.org/10.1016/j.marpetgeo.2015.12.014

 

Schlanger, S.O. & Jenkyns, H.C. 1976. Cretaceous oceanic anoxic events: Causes and consequences. Geologie en Mijnbouw, 55(3–4): 179–184.

 

Schultze, H.P. & Stöhr, D. 1996. Vinctifer (Pisces, Aspidorhynchidae) aus der Unterkreide (oberes Aptium) von Kolumbien. Neues Jahrbuch für Geologie und Paläeontologie, Abhandlungen, 199(3): 395–415.

 

Selden, P.A. & Nudds, J.R. 2012. Evolution of fossil ecosystems. Academic Press, 288 p. London.

 

Seton, M., Gaina, C., Müller, R.D. & Heine, C. 2009. Mid–Cretaceous seafloor spreading pulse: Fact or fiction? Geology, 37(8): 687–690. https://doi.org/10.1130/G25624A.1

 

Sharikadze, M.Z., Kakabadze, M.V. & Hoedemaeker, P.J. 2004. Aptian and early Albian Douvilleiceratidae, Acanthohoplitidae and Parahoplitidae of Colombia. Scripta Geologica, 128: 313–514.

 

Shirihai, H. & Jarrett, B. 2006. Whales dolphins and seals: A field guide to the marine mammals of the world. A & C Black Publishers Ltd., 384 p. London.

 

Smith, A.G., Smith, D.G. & Funnell, B.M. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, 99 p. Cambridge.

 

Teixell, A., Ruiz, J.C., Teson, E. & Mora, A. 2015. The structure of an inverted back–arc rift: Insights from a transect across the Eastern Cordillera of Colombia near Bogotá. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 499–516. https://doi.org/10.1306/M1081307

 

Tong, H. & Meylan, P. 2013. Morphology and relationships of Brachyopsemys tingitana gen. et sp. nov. from the early Paleocene of Morocco and recognition of the new eucryptodiran turtle family: Sandownidae. In: Brinkman, D.B., Holroyd, P.A. & Gardner, J.P. (editors), Morphology and evolution of turtles: Vertebrate Paleobiology and Paleoanthropology. Springer, p. 187–212. Dordrecht, the Netherlands. https://doi.org/10.1007/978-94-007-4309-0_13

 

Tourtelot, H.A. 1979. Black shale–its deposition and diagenesis. Clays and Clay Minerals, 27(5): 313–321.

 

Townson, W.G. 1975. Lithostratigraphy and deposition of the type Portlandian. Journal of the Geological Society, 131(6): 619–638. https://doi.org/10.1144/gsjgs.131.6.0619

 

Tyson, R.V. & Pearson, T.H. 1991. Modern and ancient continental shelf anoxia: An overview. In: Tyson, R.V. & Pearson, T.H. (editors), Modern and ancient continental shelf anoxia. Geological Society of London, Special Publication 58, p. 1–24. https://doi.org/10.1144/GSL.SP.1991.058.01.01

 

Ufnar, D.F., González, L.A., Ludvigson, G.A., Brenner, R.L. & Witzke, B.J. 2002. The mid–Cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 188(1–2): 51–71. https://doi.org/10.1016/S0031-0182(02)00530-8

 

van Helmond, N.A.G.M., Sluijs, A., Sinninghe–Damsté, J.S., Reichart, G.J., Voigt, S., Erbacher, J., Pross, J. & Brinkhuis, H. 2015. Freshwater discharge controlled deposition of Cenomanian – Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany). Climate of the Past, 11(3): 495–508. https://doi.org/10.5194/cp-11-495-2015

 

van Waveren, I.M., van Konijnenburg–van Cittert, J.H.A., van der Burgh, J. & Dilcher, D.L. 2002. Macrofloral remains from the Lower Cretaceous of the Leiva region (Colombia). Scripta Geologica, 123: 1–39.

 

Vašíček, Z. & Hoedemaeker, P.J. 2003. A new Karsteniceras from the Barremian (Lower Cretaceous) of Colombia. Scripta Geologica, 125: 141–143.

 

Wahl, W.R. 2009. Taphonomy of a nose dive: Bone and tooth displacement and mineral accretion in an ichthyosaur skull. Paludicola, 7(3): 107–116.

 

Wallace, B.P., Sotherland, P.R., Tomillo, P.S., Bouchard, S.S., Reina, R.D., Spotila, J.R. & Paladino, F.V. 2006. Egg components, egg size, and hatchling size in leatherback turtles. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145(4): 524–532. https://doi.org/10.1016/j.cbpa.2006.08.040

 

Weissert, H. 1981. The environment of deposition of black shales in the Early Cretaceous: An ongoing controversy. In: Warme, J.E., Douglas, R.G. & Winterer, E.L. (editors), The deep sea drilling project: A decade of progress. Society of Economic Paleontologists and Mineralogists SEPM, Special Publication 32, p. 547–560. https://doi.org/10.2110/pec.81.32.0547

 

Welles, S.P. 1943. Elasmosaurid plesiosaurs with description of new material from California and Colorado. Memoirs of the University of California, Berkeley, 13(3): 125–254.

 

Welles, S.P. 1962. A new species of elasmosaur from the Aptian of Colombia and a review of the Cretaceous plesiosaurs. University of California Publications in Geological Sciences, 44(1): 1–96.

 

Wightman, W.G. 1992. Reworked benthic foraminifers from Site 802, East Mariana Basin, western equatorial Pacific. In: Larson, R.L., Lancelot, Y., Fisher, A., Abrams, L., Behl, R., Busch, W.H., Cameron, G., Castillo, P.R., Covington, J.M., Dürr, G., Erba, E., Floyd, P.A., France–Lanord, C., Hauser, E.H., Karl, S.M., Karpoff, A.M., Matsuoka, A., Molinie, A., Ogg, J.G., Salimullah, A.R.M., Steiner, M., Wallick, B.P. & Wightman, W. (editors), Proceedings of the Ocean Drilling Program, Scientific Results 129, p. 229–245. College Station, USA.

 

Wignall, P.B. 1989. Sedimentary dynamics of the Kimmeridge Clay: Tempests and earthquakes. Journal of the Geological Society, 146(2): 273–284. https://doi.org/10.1144/gsjgs.146.2.0273

 

Wignall, P.B. 1991a. Model for transgressive black shales? Geology, 19(2): 167–170. https://doi.org/10.1130/0091-7613(1991) 019<0167:MFTBS>2.3.CO;2

 

Wignall, P.B. 1991b. Dysaerobic trace fossils and ichnofabrics in the Upper Jurassic Kimmeridge Clay of southern England. PALAIOS, 6(3): 264–270. https://doi.org/10.2307/3514906

 

Wignall, P.B. & Myers, K.J. 1988. Interpreting benthic oxygen levels in mudrocks: A new approach. Geology, 16(5): 452–455. https://doi.org/10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2

 

Willis, K.J. & McElwain, J.C. 2002. The evolution of plants. Oxford University Press, 378 p. Oxford.

 

Winkler, J.D. & Sánchez–Villagra, M.R. 2006. A nesting site and egg morphology of a Miocene turtle from Urumaco, Venezuela: Evidence of marine adaptations in Pelomedusoides. Palaeontology, 49(3): 641–646. https://doi.org/10.1111/j.1475-4983.2006.00557.x

 

Witkowska, M. 2012. Palaeoenvironmental significance of iron carbonate concretions from the Bathonian (Middle Jurassic) ore–bearing clays at Gnaszyn, Kraków–Silesia homocline, Poland. Acta Geologica Polonica, 62(3): 307–324.

 

Würtz, M. & Repetto, N. 1998. Whales & dolphins: A guide to the biology and behaviour of cetaceans. Swan Hill Press, 167 p. Shrewsbury, UK.

 

Zammit, M. 2012. Cretaceous ichthyosaurs: Dwindling diversity, or the empire strikes back? Geosciences, 2(2): 11–24. https://doi.org/10.3390/geosciences2020011

 

Zhang, X., Chen, K., Hu, D. & Sha, J. 2016. Mid–Cretaceous carbon cycle perturbations and oceanic anoxic events recorded in southern Tibet. Scientific Reports, 6(39643): 1–6. https://doi.org/10.1038/srep39643

 

Ziegler, A.M., Eshel, G., McAllister–Rees, P., Rothfus, T., Rowley, D. & Sunderlin, D. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia, 36(3): 227–254. https://doi.org/10.1080/00241160310004657


Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: relacionciudadana@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer