Home
Aumentar fuente
Aumentar contraste
Lengua de señas
Chapter 10
Cretaceous record from a Mariana– to an Andean–Type Margin in the Central Cordillera of the Colombian Andes
Agustín CARDONA , Santiago LEÓN, Juan S. JARAMILLO, Victor A. VALENCIA, Sebastian ZAPATA, Andrés PARDO–TRUJILLO, Axel K. SCHMITT, Dany MEJÍA, and Juan Camilo ARENAS
https://doi.org/10.32685/pub.esp.36.2019.10
ISBN impreso obra completa: 978-958-52959-1-9
ISBN digital obra completa: 978-958-52959-6-4
ISBN impreso Vol. 2: 978-958-52959-3-3
ISBN digital Vol. 2: 978-958-52959-8-8
Citation is suggested as:
Cardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo–Trujillo, A., Schmitt, A.K., Mejía, D. & Arenas, J.C. 2020. Cretaceous record from a Mariana– to an Andean–type margin in the Central Cordillera of the Colombian Andes. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 335–373. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.10
Download chapter Download supplementary information
Download EndNote reference
Abstract
The Cretaceous tectonic evolution of the western margin of South America involves a shift from an extensional convergent margin toward a more compressional setting that marks the beginning of the Andean Orogeny. In the Colombian Andes, this changing scenario is recorded in the Cretaceous sedimentary and magmatic rocks of the Central Cordillera. A review of field relationships, together with analysis of integrated provenance constraints, including sandstone petrography and detrital zircon geochronology from various localities, suggests that during the Early Cretaceous until the Aptian – Albian, siliciclastic basin fills were characterized by transgressive fining– upward trends, with prominent first–cycle quartzose provenances that indicate strong chemical weathering in the source areas. Jurassic, Triassic, and older detrital zircon U–Pb ages suggest that the igneous and metamorphic rocks forming the basement of the Central Cordillera were the main sources. Furthermore, the presence of Early Cretaceous detrital ages between 120 and 100 Ma, together with interlayered volcanic rocks at the top of the sequence characterized by mixed arc–like, MORB, and E–MORB geochemical signatures, can be related to the evolution of an extensional arc with associated back–arc basin formation. Plutonic rocks with ca. 98 Ma crystallization ages show Nd, Sr, Hf, and O isotope evidence for the existence of thinned continental crust that may account for the dominant mantle signature. By ca. 93 Ma, the Early Cretaceous sedimentary sequences were deformed and intruded by plutonic rocks, which conversely show isotopic fingerprints characteristic of crustal signatures that can be explained by the involvement of thicker crust that promoted melt interaction with the more radiogenic host rocks.
This tectonic change from a Mariana– to an Andean–type subduction style was probably triggered by regional–scale plate kinematic reorganizations, as suggested by similar coeval tectonic scenarios along the entire South American margin, and set the conditions for the construction of the Andean chain.
Keywords: Cretaceous, back–arc, intra–arc, Andean Orogeny, Geochemistry.
Resumen
La evolución tectónica del borde occidental de Suramérica durante el Cretácico está marcada por el cambio de un margen convergente extensional hacia una configuración más compresiva que marca el inicio de la Orogenia Andina. En los Andes colombianos, este cambio está registrado en las rocas sedimentarias y magmáticas cretácicas de la cordillera Central. La revisión de las relaciones de campo, junto con el análisis de procedencia de rocas siliciclásticas (petrografía de areniscas y geocronología en circones detríticos de varias localidades), sugiere que durante el Cretácico Temprano hasta el Aptiano–Albiano el relleno siliciclástico de la cuenca se caracterizó por tener un carácter transgresivo granodecreciente y una composición cuarzosa con componentes de primer ciclo asociados a condiciones de meteorización intensa en el área fuente. Las edades U–Pb en circón jurásicas, triásicas y más antiguas sugieren que las fuentes principales fueron las rocas ígneas y metamórficas que conforman el basamento de la cordillera Central. Además, la presencia de edades detríticas del Cretácico Temprano entre 120 y 100 Ma, junto con la de rocas volcánicas intercaladas al tope de la secuencia que se caracterizan por una mezcla de firmas geoquímicas de arco, MORB y E–MORB, puede estar relacionada con la evolución de un arco extensional y la formación de una cuenca de retroarco. Las rocas plutónicas con edades de cristalización de ca. 98 Ma muestran evidencias isotópicas de Nd, Sr, Hf y O de afinidad mantélica que estarían asociadas a la existencia de una corteza continental adelgazada. A los ca. 93 Ma, las secuencias sedimentarias del Cretácico Temprano fueron deformadas e intruidas por rocas plutónicas, las cuales en cambio muestran características isotópicas corticales que pueden explicarse por la participación de una corteza más gruesa que promovió la interacción del fundido con las rocas caja más radiogénicas.
Este cambio tectónico de un estilo de subducción de tipo Marianas a uno de tipo andino es común en toda la margen continental suramericana y estaría asociado con reorganizaciones cinemáticas a escala de placas que marcarían el inicio de la construcción de la cadena andina.
Palabras clave: Cretácico, retroarco, intraarco, Orogenia Andina, geoquímica.
CLIP Caribbean Large Igneous Province
E–MORB Enriched mid–ocean ridge basalt
FC Faraday cup
DM Depleted mantle
HFSE High field strength element
TDM Depleted mantle model ages
HREE Heavy rare earth element
ICP–AES Inductively coupled plasma atomic emission spectroscopy
ICP–MS Inductively coupled plasma mass spectrometry
LA–ICP–MS Laser ablation inductively coupled plasma mass spectrometry
LILE Large–ion lithophile element
LREE Light rare earth element
MORB Mid–ocean ridge basalt
MREE Middle rare earth element
TIMS Thermal ionization mass spectrometry
VSMOW Vienna standard mean ocean water
Almeida, J. J. & Villamizar, F. 2012. Petrografía y geoquímica del Batolito Antioqueño en un sector del municipio Santa Rosa de Osos, Antioquia. Bachelor thesis, Universidad Industrial de Santander, 88 p. Bucaramanga.
Álvarez, J. 1987. Geología del Complejo Ofiolítico de Pácora y secuencias relacionadas de arco de islas (Complejo Quebradagrande), Colombia. Ingeominas, Internal report 2027, 81 p. Medellín.
Álvarez, J., Rico, H., Vásquez, H., Hall, R. & Blade, L. 1975. Geologic map of the Yarumal quadrangle (H–8) and part of the Ituango quadrangle (H–7), Colombia. Scale 1:100 000. Ingeominas & U.S. Geological Survey. https://doi.org/10.3133/i842
Amelin, Y., Krot, A.N., Hutcheon, I.D. & Ulyanov, A.A. 2002. Lead isotopic ages of chondrules and calcium–aluminum–rich inclusions. Science, 297(5587): 1678–1683. https://doi.org/10.1126/science.1073950
Arévalo, O.J, Mojica, J. & Patarroyo, P. 2001. Sedimentitas del Aptiano tardío al sur de Pijao, quebrada La Maizena, flanco occidental de la cordillera Central, departamento del Quindío, Colombia. Geología Colombiana, 26: 29–43.
Atherton, M. & Aguirre, L. 1992. Thermal and geotectonic setting of Cretaceous volcanic rocks near Ica, Perú, in relation to Andean crustal thinning. Journal of South American Earth Sciences, 5(1): 47–69. https://doi.org/10.1016/0895-9811(92)90059-8
Baby, P., Rivadeneira, M., Barragan, R. & Christophoul, F. 2013. Thick–skinned tectonics in the Oriente foreland basin of Ecuador. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skinned–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 59–76. https://doi.org/10.1144/SP377.1
Baertschi, P. 1976. Absolute 18O content of standard mean ocean water. Earth and Planetary Science Letters, 31(3): 341–344. https://doi.org/10.1016/0012-821X(76)90115-1
Barrero, D. & Vesga, C.J. 1976. Mapa geológico del cuadrángulo K–9 Armero y mitad sur del J–9 La Dorada. Scale 1:100 000. Ingeominas. Bogotá.
Barrero, D., Pardo, A., Vargas, C. A., & Martínez, J. F. 2007. Colombian sedimentary basins: Nomenclature, boundaries and petroleum geology, a new proposal. Agencia Nacional de Hidrocarburos, 92 p. Bogotá.
Bayona, G., Rapalini, A. & Costanzo–Álvarez, V. 2006. Paleomagnetism in Mesozoic rocks of the northern Andes and its implications in Mesozoic tectonics of northwestern South America. Earth, Planets and Space, 58(10): 1255–1272. https://doi.org/10.1186/BF03352621
Bayona, G., Jiménez, G., Silva, C., Cardona, A., Montes, C., Roncancio, J. & Cordani, U. 2010. Paleomagnetic data and K–Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences, 29(4): 817–831. https://doi.org/10.1016/j.jsames.2009.10.005
Blanco–Quintero, I.F., García–Casco, A., Toro–Toro, L.M., Moreno, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Lázaro, C. & Morata, D. 2014. Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15): 1852–1872. https://doi.org/10.1080/00206814.2014.963710
Botero, G. 1963. Contribución al conocimiento de la geología de la zona central de Antioquia. Universidad Nacional de Colombia, Anales de la Facultad de Minas, 57, 101 p. Medellín.
Botero, G. & González, H. 1983. Algunas localidades fosilíferas cretáceas de la cordillera Central, Antioquia y Caldas, Colombia. Geología Norandina, (7): 15–28.
Busby, C.J. 2012. Extensional and transtensional continental ARC basins: Case studies from the southwestern United States. In: Busby, C. & Azor, A. (editors), Tectonics of sedimentary basins: Recent advances. Wiley–Blackwell, p. 382–404. https://doi.org/10.1002/9781444347166.ch19
Bustamante, A., Juliani, C.M., Hall, C.M. & Essene, E.J. 2011. 40Ar/39Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia: Implications on the styles of accretion in the Northern Andes. Geologica Acta, 9(3–4): 351–362. http://dx.doi.org/10.1344/105.000001697
Bustamante, C., Archanjo, C.J., Cardona, A. & Vervoort, J.D. 2016. Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long–term arc maturity. Geological Society of America Bulletin, 128(11–12): 1762–1779. https://doi.org/10.1130/B31307.1
Bustamante, C., Archanjo, C.J., Cardona, A., Bustamante, A. & Valencia, V. 2017. U–Pb ages and Hf isotopes in zircons from parautochthonous Mesozoic terranes in the western margin of Pangea: Implications for the terrane configurations in the northern Andes. The Journal of Geology, 125(5): 487–500. https://doi.org/10.1086/693014
Campos–Álvarez, N.O. & Roser, B.P. 2007. Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23(4): 271–289. https://doi.org/10.1016/j.jsames.2007.02.003
Cardona, A., Valencia, V.A., Lotero, A., Villafañez, Y. & Bayona, G. 2016. Provenance of middle to late Palaeozoic sediments in the northeastern Colombian Andes: Implications for Pangea reconstruction. International Geology Review, 58(15): 1914–1939. https://doi.org/10.1080/00206814.2016.1190948
Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D. & Windley, B.F. 2009. Accretionary orogens through Earth history. In: Cawood, P.A. & Kröner, A. (editors), Earth Accretionary Systems in Space and Time. Geological Society of London, Special Publication 318, p. 1–36. https://doi.org/10.1144/SP318.1
Cediel, F., Shaw, R.P. & Cáceres. C. 2003. Tectonic assembly of the northern Andean block. In: Bartolini, C., Buffer, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, 815–848. Tulsa, USA.
Chang, Z., Vervoort, J.D., McClelland, W.C. & Knaack, C. 2006. U–Pb dating of zircon by LA–ICP–MS. Geochemistry, Geophysics, Geosystems, 7(5): 1–14. https://doi.org/10.1029/2005GC001100
Chapman, J.B., Ducea, M.N., Kapp, P., Gehrels, G.E. & DeCelles, P.G. 2017. Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens. Gondwana Research, 48: 189–204. https://doi.org/10.1016/j.gr.2017.04.019
Cochrane, R. 2013. U–Pb thermochronology, geochronology and geochemistry of NW South America: Rift to drift transition, active margin dynamics and implications for the volume balance of continents. Doctoral thesis, University of Geneva, 118 p. Geneva.
Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B. & Chiaradia, M. 2014a. Permo–Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191: 383–402. https://doi.org/10.1016/j.lithos.2013.12.020
Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A. & Chiaradia, M. 2014b. Distinguishing between in–situ and accretionary growth of continents along active margins. Lithos, 202–203: 382–394. https://doi.org/10.1016/j.lithos.2014.05.031
Correa, A.M., Pimentel, M., Restrepo, J.J., Nilson, A., Ordoñez, O., Martens, U., Laux, J.E. & Junges, S. 2006. U–Pb zircon ages and Nd–Sr isotopes of the Altavista Stock and the San Diego Gabbro: New insights on Cretaceous arc magmatism in the Colombian Andes. V South American Symposium on Isotope Geology. Memoirs, p. 84–86. Punta del Este, Uruguay.
DeGraaff–Surpless, K., Graham, S.A., Wooden, J.L. & McWilliams, M.O. 2002. Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc–forearc system. Geological Society of America Bulletin, 114(12): 1564–1580. https://doi.org/10.1130/0016-7606(2002)114<1564:DZPAOT>2.0.CO;2
Dickinson, W.R. & Gehrels, G.E. 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2): 115–125. https://doi. org/10.1016/j.epsl.2009.09.013
Dott Jr., R.H. 2003. The importance of eolian abrasion in supermature quartz sandstone and the paradox of weathering on vegetation–free landscapes. The Journal of Geology, 111(4): 387–405. https://doi.org/10.1086/375286
Duarte, E. Cardona, A., Lopera, S., Valencia, V. & Estupiñan, H., 2018. Provenance and diagenesis from two stratigraphic sections of the Lower Cretaceous Caballos Formation in the Upper Magdalena Valley: Geological and reservoir quality implications. Ciencia, Tectonología y Futuro, 8 (1): 5–29.
Dufrane, S.A., Vervoort, J.D. & Hart, G.L. 2007. Uncertainty of Hf isotope analysis in zircon using LA–MC–ICPMS techniques: Full disclosure. 17th Annual V.M. Goldschmidt Conference, Cologne, Germany. Geochimica et Cosmochimica Acta, 71(15): 241.
Duque–Trujillo, J., Bustamante, C., Solari, L., Gómez–Mafla, Á., Toro–Villegas, G., & Hoyos, S. 2018. Reviewing the Antioquia Batholith and satellite bodies: A record of Late Cretaceous to Eocene syn– to post–collisional arc magmatism in the Central Cordillera of Colombia: Andean Geology, 46(1): 82–101. http://dx.doi.org/10.5027/andgeoV46n1-3120
Etayo–Serna, F. 1985. Documentación paleontológica del Infracretácico de San Felix y Valle Alto, cordillera Central. In: Etayo–Serna, F. & Laverde, F. (editors), Proyecto Cretácico: Contribuciones. Publicaciones Geológicas Especiales del Ingeominas 16, p. XXV–1–XXV–7. Bogotá.
Etayo–Serna, F., Renzoni, G. & Barrero, D. 1969. Contornos sucesivos del mar cretáceo en Colombia. Primer Congreso Colombiano de Geología. Memoirs, p. 217–252. Bogotá.
Feininger, T. & Botero, G. 1982. The Antioquian Batholith, Colombia. Publicaciones Geológicas Especiales del Ingeominas 12, p. 1–50. Bogotá.
Feininger, T., Barrero, D. & Castro, N. 1972. Geología de parte de los departamentos de Antioquia y Caldas (sub–zona II–B). Boletín Geológico, 20(2): 1–173.
Fildani, A. & Hessler, A.M. 2005. Stratigraphic record across a retroarc basin inversion: Rocas Verdes–Magallanes Basin, Patagonian Andes, Chile. Geological Society of America Bulletin, 117(11–12): 1596–1614. https://doi.org/10.1130/B25708.1
Fildani, A., Cope, T.D., Graham, S.A. & Wooden, J.L. 2003. Initiation of the Magallanes Foreland Basin: Timing of the southernmost Patagonian Andes Orogeny revised by detrital zircon provenance analysis. Geology, 31(12): 1081–1084. https://doi.org/10.1130/G20016.1
Folk, R. 1974. Petrology of sedimentary rocks. Hemphill Publishing Company, 182 p. Austin, USA.
García–Ramírez, C.A., Ríos–Reyes, C.A., Castellanos–Alarcón, O.M. & Mantilla–Figueroa, L.C. 2017. Petrology, geochemistry and geochronology of the Arquía Complex's metabasites at the Pijao–Génova sector, Central Cordillera, Colombian Andes. Boletín de Geología, 39(1): 105–126. http://dx.doi.org/10.18273/revbol.v39n1-2017005
Garzanti, E. 2016. From static to dynamic provenance analysis–sedimentary petrology upgraded. Sedimentary Geology, 336: 3–13. https://doi.org/10.1016/j.sedgeo.2015.07.010
Gómez–Cruz, A.d.J., Moreno–Sánchez, M. & Pardo–Trujillo, A. 1995. Edad y origen del “Complejo Metasedimentario Aranzazu–Manizales" en los alrededores de Manizales (departamento de Caldas, Colombia). Geología Colombiana, 19: 83–93.
Gómez–Cruz, A.d.J., Moreno–Sánchez, M. & Pardo–Trujillo, A. 2002. Afloramientos fosilíferos del Cretácico Superior en el municipio de Pijao (borde occidental de la cordillera Central, Colombia). Geo–Eco–Trop, 26(2): 41–50.
Gómez, J., Montes, N.E., Nivia, A. & Diederix, H., compilers. 2015. Mapa Geológico de Colombia 2015. Scale 1:1 000 000. Servicio Geológico Colombiano, 2 sheets. Bogotá. https://doi.org/10.32685/10.143.2015.935
Gómez, P.D. & Lizcano, A. 1990. Estudio tectónico–estratigráfico de la franja sedimentaria cretácea de Berlín, Caldas, cordillera Central. Bachelor thesis, Universidad Industrial de Santander, 120 p. Bucaramanga.
González, H. 1980. Geología de las planchas 167 Sonsón y 187 Salamina. Scale 1:100 000. Ingeominas, Internal report 1760, 262 p. Medellín.
González, H. 2001. Memoria explicativa: Mapa geológico del departamento de Antioquia. Scale 1:400 000. Ingeominas, 240 p. Medellín.
Gradstein, F.M., Ogg, J.G. & Hilgen, F.J. 2012. On the geologic time scale. Newsletters on Stratigraphy, 45(2): 171–188. https://doi.org/10.1127/0078-0421/2012/0020
Grosse, E. 1926. Estudio geológico del terciario carbonífero de Antioquia en la parte occidental de la cordillera Central de Colombia, entre el río Arma y Sacaojal, ejecutado en los años de 1920–1923. Dietrich Reimer, 361 p. Berlin.
Hall, R.B., Álvarez, J. & Rico, H. 1972. Geología de los departamentos de Antioquia y Caldas (subzona II–A). Boletín Geológico, 20(1): 1–85.
Hincapié–Gómez, S., Cardona, A., Jiménez, G., Monsalve, G., Ramírez–Hoyos, L. & Bayona, G. 2018. Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the western Colombian Andes: Paleogeographic connections with the Caribbean Plate. Studia Geophysica et Geodaetica, 62(3): 485–511. https://doi.org/10.1007/s11200-016-0678-y
Horton, B.K. 2018. Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37(2): 402–429. https://doi.org/10.1002/2017TC004624
Horton, B.K., Saylor, J.E., Nie, J., Mora, A., Parra, M., Reyes–Harker, A. & Stockli, D.F. 2010. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U–Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10): 1423–1442. https://doi.org/10.1130/B30118.1
Ibañez–Mejia, M., Tassinari, C.C.G. & Jaramillo–Mejía, J.M. 2007. U–Pb zircon ages of the “Antioquian Batholith": Geochronological constraints of late Cretaceous magmatism in the central Andes of Colombia. XI Congreso Colombiano de Geología. Abstracts, 11 p. Bucaramanga.
Ickert, R.B., Hiess, J., Williams, I.S., Holden, P., Ireland, T.R., Lanc, P., Schram, N., Foster, J.J. & Clement, S.W. 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI–DING silicate–glass reference materials and zircon from contrasting granites. Chemical Geology, 257(1–2): 114–128. https://doi.org/10.1016/j.chemgeo.2008.08.024
Irvine, T.N. & Baragar, W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
Jaillard, E., Laubacher, G., Bengston, P., Dhondt, A.V. & Bulot, L.G. 1999. Stratigraphy and evolution of the Cretaceous forearc Celica–Lancones Basin of southwestern Ecuador. Journal of South American Earth Sciences, 12(1): 51–68. https://doi.org/10.1016/S0895-9811(99)00006-1
Jaillard, E., Bengston, P., Ordóñez, M., Vaca, W., Dhondt, A., Suárez, J. & Toro, J. 2008. Sedimentary record of terminal Cretaceous accretions in Ecuador: The Yunguilla Group in the Cuenca area. Journal of South American Earth Sciences, 25(2): 133–144. https://doi.org/10.1016/j.jsames.2007.08.002
Jaimes, E. & De Freitas, M. 2006. An Albian–Cenomanian unconformity in the northern Andes: Evidence and tectonic significance. Journal of South American Earth Sciences, 21(4): 466–492. https://doi.org/10.1016/j.jsames.2006.07.011
Janoušek, V., Farrow, C.M. & Erban, V. 2006. Interpretation of whole–rock geochemical data in igneous geochemistry: Introducing geochemical data toolkit (GCDkit). Journal of Petrology, 47(6): 1255–1259. https://doi.org/10.1093/petrology/egl013
Jaramillo, J.S., Cardona, A., León, S., Valencia, V. & Vinasco, C. 2017. Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6° 35' N, western flank of the Central Cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76: 460–481. https://doi.org/10.1016/j.jsames.2017.04.012
Kammer, A. & Sánchez, J. 2006. Early Jurassic rift structures associated with the Soapaga and Boyacá faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21(4): 412–422. https://doi.org/10.1016/j.jsames.2006.07.006
Kerr, A.C., Marriner, G.F., Tarney, J., Nivia, Á., Saunders, A.D., Thirlwall, M.F. & Sinton, C.W. 1997. Cretaceous basaltic terranes in western Colombia: Elemental, chronological and Sr–Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6): 677–702. https://doi.org/10.1093/petrology/38.6.677
Lackey, J.S., Valley, J.W. & Saleeby, J.B. 2005. Supracrustal input to magmas in the deep crust of Sierra Nevada Batholith: Evidence from high–δ18O zircon. Earth and Planetary Science Letters, 235(1–2): 315–330. https://doi.org/10.1016/j.epsl.2005.04.003
Leal–Mejía, H. 2011. Phanerozoic gold metallogeny in the Colombian Andes: A tectono–magmatic approach. Doctoral thesis, Universitat de Barcelona, 989 p. Barcelona.
León, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V., Chew, D., Montes, C., Posada, G., Monsalve, G. & Pardo–Trujillo, A. 2018. Transition from collisional to subduction–related regimes: An example from Neogene Panama–Nazca–South–America interactions. Tectonics, 37(1): 119–139. https://doi.org/10.1002/2017TC004785
Litherland, M., Aspden, J.A. & Jemielita, R.A. 1994. The metamorphic belts of Ecuador. Overseas Memoir of the British Geological Survey 11, 147 p. Nottingham, England.
Lozano, H., Pérez, H. & Mosquera, D. 1975. Prospección geoquímica en los municipios de Salento, Quindio y Cajamarca, Tolima. Ingeominas, Internal report 1692, 103 p. Bogotá.
Ludwig, K.R. 2003. “User's Manual for Isoplot/Ex, Version 3.00. A Geochronological Toolkit for Microsoft Excel," Berkeley Geochronology Center. Special Publication 4(2), 70 p. Berkeley, USA.
Marsaglia, K.M. 2012. Sedimentation at plate boundaries in transition. In: Busby, C. & Azor, A. (editors), Tectonics of sedimentary basins: Recent advances. Blackwell Publishing Ltd, p 291–309. https://doi.org/10.1002/9781444347166.ch14
Martens, U.C., Restrepo, J.J. & Solari, L.A. 2012. Sinifaná metasedimentites and relations with Cajamarca paragneisses of the Central Cordillera of Colombia. Boletín de Ciencias de la Tierra, (32): 99–110.
Martens, U., Restrepo, J.J., Ordóñez–Carmona, O. & Correa–Martínez, A.M. 2014. The Tahamí and Anacona Terranes of the Colombian Andes: Missing links between the South American and Mexican Gondwana margins. The Journal of Geology, 122(5): 507–530. https://doi.org/10.1086/677177
Matthews, K.J., Seton, M. & Müller, R.D. 2012. A global–scale plate reorganization event at 105−100 Ma. Earth and Planetary Science Letters, 355–356: 283–298. https://doi.org/10.1016/j.epsl.2012.08.023
Maya, M. & González, H. 1995. Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2–3): 43–57.
Mejía–Velásquez, P.J., Dilcher, D.L., Jaramillo, C.A., Fortini, L.B. & Manchester, .S.R. 2012. Palynological composition of a Lower Cretaceous South American tropical sequence: Climatic implications and diversity comparisons with other latitudes. American Journal of Botany, 99(11): 1819–1827. https://doi.org/10.3732/ajb.1200135
Middlemost, E.A.K. 1994. Naming materials in the magma/igneous rock system. Earth–Science Reviews, 37(3–4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
Montes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V. & Jaramillo, C. 2010. Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato–San Jorge and Cesar–Ranchería Basins. Journal of South American Earth Sciences, 29(4): 832–848. https://doi.org/10.1016/j.jsames.2009.07.010
Moreno, J.M. 1990. Stratigraphy of the Lower Cretaceous Rosablanca and Cumbre Formations, Utica Sandstone and Murca Formation, west flank, Eastern Cordillera, Colombia. Geología Colombiana, 17: 65–86.
Moreno, J.M. 1991. Provenance of the Lower Cretaceous sedimentary sequences, central part, Eastern Cordillera, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 18(69): 159–173.
Moreno–Sánchez, M. & Pardo–Trujillo, A. 2003. Stratigraphical and sedimentological constraints on western Colombia: Implications on the evolution of the Caribbean Plate. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 891–924. Tulsa, USA.
Moreno–Sánchez, M., Gómez–Cruz, A.d.J. & Toro–Toro, L.M. 2008. Proveniencia del material clástico del Complejo Quebradagrande y su relación con los complejos estructurales adyacentes. Boletín de Ciencias de la Tierra, (22): 27–38.
Moulin, M., Aslanian, D. & Unternehr, P. 2010. A new starting point for the south and equatorial Atlantic Ocean. Earth–Science Reviews, 98(1–2): 1–37. https://doi.org/10.1016/j.earscirev.2009.08.001
Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5): 757–775. https://doi.org/10.1016/0016-7037(74)90149-5
Naranjo, J.L. 1983. Investigación del potencial uranífero en los shales negros del Sinclinal de Berlín, departamento de Caldas. Bachelor thesis, Universidad Nacional de Colombia, 98 p. Bogotá.
Nivia, Á., Marriner, G.F., Kerr, A.C. & Tarney, J. 2006. The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 423–436. https://doi.org/10.1016/j.jsames.2006.07.002
Ordóñez–Carmona, O. & Pimentel, M.M. 2001. Consideraciones geocronológicas e isotópicas del Batolito Antioqueño. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25(94): 27–35.
Ordóñez–Carmona, O., Pimentel, M.M. & Angel–Cárdenas, P. 2001. Consideraciones geocronológicas e isotópicas preliminares del magmatismo cretáceo–paleoceno en el norte de la cordillera Central. VIII Congreso Colombiano de Geología. Memoirs, 5 p. Manizales.
Ordóñez–Carmona, O., Pimentel, M.M., Frantz, J.C. & Chemale, F.F. 2007. Edades U–Pb convencionales de algunas intrusiones colombianas. XI Congreso Colombiano de Geología. Abstracts, p. 45. Bucaramanga.
Paul, A.N., Spikings, R.A., Ulianov, A. & Ovtcharova, M. 2018. High temperature (>350° C) thermal histories of the long lived (>500 Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U–Pb thermochronology. Geochimica et Cosmochimica Acta, 228: 275–300. https://doi.org/10.1016/j.gca.2018.02.033
Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
Pearce, J.A., Harris, N.B.W. & Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
Peccerillo, A. & Taylor, S.R. 1976. Geochemistry of Eocene calc–alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/BF00384745
Pimiento, R. 2011. Mineralogía y petrografía de la mineralización de uranio en fosforitas del Cretácico Inferior, Sinclinal de Berlín, cordillera Central (departamento de Caldas, Colombia). Bachelor thesis, Universidad Industrial de Santander, 156 p. Bucaramanga.
Pindell, J., Kennan, L., Maresch, W.V., Stanek, K.P., Draper, G. & Higgs, R. 2005. Plate–kinematics and crustal dynamics of circum–Caribbean arc–continent interactions: Tectonic controls on basin development in proto–Caribbean margins. In: Avé–Lallemant, H.G. & Sisson, V.B. (editors), Caribbean–South American Plate interactions, Venezuela. Geological Society of America, Special Paper 394, p. 7–52. https://doi.org/10.1130/0-8137-2394-9.7
Pindell, J.L. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, caribbean and northern South America in the mantle reference frame: An update. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 1–55. https://doi.org/10.1144/SP328.1
Quiroz, L. 2005. Cartografía y análisis estratigráfico de las formaciones Valle Alto y Abejorral en la región de San Félix, departamento de Caldas, Colombia. Bachelor thesis, Universidad Nacional de Colombia, 53 p. Bogotá.
Ramos, V.A. 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Kay, S.M., Ramos, V.A. & Dickinson, W.R. (editors), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Memoirs 204, p. 31–65. https://doi.org/10.1130/2009.1204(02)
Ramos, V.A. 2010. The tectonic regime along the Andes: Present–day and Mesozoic regimes. Geological Journal, 45(1): 2–25. https://doi.org/10.1002/gj.1193
Rendón, D.A. 1999. Cartografía y caracterización de las unidades geológicas de la zona urbana de Medellín. Bachelor thesis, Universidad Nacional de Colombia, 113 p. Medellín.
Restrepo, J.J., Ordóñez–Carmona, O. & Moreno–Sánchez, M. 2009. A comment on ''The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes" by Nivia et al. Journal of South American Earth Sciences, 28(2): 204–205. https://doi.org/10.1016/j.jsames.2009.03.004
Restrepo, J.J., Ordóñez–Carmona, O., Armstrong, R. & Pimentel, M.M. 2011. Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. Journal of South American Earth Sciences, 32(4): 497–507. https://doi.org/10.1016/j.jsames.2011.04.009
Restrepo, J.J., Ibañez–Mejia, M. & García–Casco, A. 2012. U–Pb zircon ages of the Medellín Amphibolites (Central Cordillera of Colombia) reveal mid–Cretaceous tectonic juxtaposition of Triassic and mid–Cretaceous metamorphic complexes. VIII South American Symposium on Isotope Geology. USB memory device, 33 slides. Medellín.
Restrepo–Moreno, S.A. 2009. Long–term morphotectonic evolution and denudation chronology of the Antioqueño Plateau, Cordillera Central, Colombia. Doctoral Thesis. University of Florida, 223 p. Gainesville, USA.
Restrepo–Moreno, S., Foster, D.A. & Kamenov, G. 2007. Formation age and magma sources for the Antioqueño Batholith derived from LA–ICP–MS uranium–lead dating and hafnium–isotope analysis of zircon grains. GSA Meeting 2007, 39(6): p. 493. Denver, CO, USA.
Robertson, A.H.F. 1994. Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the eastern Mediterranean region. Earth–Science Reviews, 37(3–4): 139–213. https://doi.org/10.1016/0012-8252(94)90028-0
Rodríguez, C. & Rojas, R. 1985. Estratigrafía y tectónica de la serie infracretácica en los alrededores de San Felix, cordillera Central de Colombia. In: Etayo–Serna, F. & Laverde–Montaño, F. (editors), Proyecto Cretácico: Contribuciones. Publicaciones Geológicas Especiales del Ingeominas 16, p. XXIV–1–XXI–21. Bogotá.
Rodríguez, G. & Celada–Arango, C.M. 2018. Basaltos de San Pablo: un bloque de un arco de islas en el norte de la cordillera Central de Colombia. Caracterización petrográfica y química. Boletín de Geología, 40(2): 69–85. https://doi.org/10.18273/revbol.v40n2-2018004
Rodríguez, G. & Cetina, L.M. 2016. Caracterización petrográfica y química de rocas de corteza oceánica del Complejo Quebradagrande y comparación con rocas de la unidad Diabasas de San José de Urama. Boletín de Geología, 38(3): 15–29. https://doi.org/10.18273/revbol.v38n3-2016001
Rodríguez, G. & Correa–Martínez, A.M. 2015. Edades U–Pb en circón de varias unidades metamórficas al este y noreste de la ciudad de Medellín, cordillera Central de Colombia. XV Congreso Colombiano de Geología. Memoirs, p. 287–289. Bucaramanga.
Rodríguez, G. & Montoya, T. 1993. Evolución magmática del Stock de Altavista. VI Congreso Colombiano de Geología. Memoirs, II, p. 497–514. Medellín.
Rodríguez, G., Arango, M.I, Zapata, G. & Bermúdez, J.G. 2018. Petrotectonic characteristics, geochemistry, and U–Pb geochronology of Jurassic plutons in the Upper Magdalena Valley–Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences, 81: 10–30. https://doi.org/10.1016/j.jsames.2017.10.012
Rubatto, D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1–2): 123–138. https://doi.org/10.1016/S0009-2541(01)00355-2
Ruiz, G.M.H., Seward, D. & Winkler, W. 2007. Evolution of the Amazon Basin in Ecuador with special reference to hinterland tectonics: Data from zircon fission–track and heavy mineral analysis. In: Mange, M.A. & Wright, D.T. (editors), Heavy Minerals in Use. Developments in Sedimentology, 58: 907–934. https://doi.org/10.1016/S0070-4571(07)58036-2
Saenz, E.A. 2003. Fission track thermochronology and denudational response to tectonics in the north of the Colombian Central Cordillera. Master Thesis, Shimane University, 138 p. Shimane, Japan.
Sarmiento–Rojas, L.F., van Wess, J.D. & Cloetingh, S. 2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4): 383–411. https://doi.org/10.1016/j.jsames.2006.07.003
Schmitt, A.K., Konrad, K., Andrews, G.D.M., Horie, K., Brow, S.R., Koppers, A.A.P., Pecha, M., Busby, C.J. & Tamura, Y. 2017. 40Ar/39Ar ages and zircon petrochronology for the rear arc of the Izu–Bonin–Marianas intra–oceanic subduction zone. International Geology Review, 60(8): 956–976. https://doi.org/10.1080/00206814.2017.1363675
Sdrolias, M. & Müller, R.D. 2006. Controls on back–arc basin formation. Geochemistry, Geophysics, Geosystems, 7(4): 1–40. https://doi.org/10.1029/2005GC001090
Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T.H., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. & Chandler, M. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth–Science Reviews, 113(3–4): 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
Seton, M., Mortimer, N., Williams, S., Quilty, P., Gans, P., Meffre, S., Micklethwaite, S., Zahirovic, S., Moore, J. & Matthews, K.J. 2016. Melanesian back–arc basin and arc development: Constraints from the eastern Coral Sea. Gondwana Research, 39: 77–95. https://doi.org/10.1016/j.gr.2016.06.011
Sláma, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N. & Whitehouse, M.J. 2008. Plešovice zircon–A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
Smyth, H.R., Hall, R. & Nichols, G.J. 2008. Significant volcanic contribution to some quartz–rich sandstones, east Java, Indonesia. Journal of Sedimentary Research, 78(5): 335–356. https://doi.org/10.2110/jsr.2008.039
Spadea, P. & Espinosa, A. 1996. Petrology and chemistry of late Cretaceous volcanic rocks from the southernmost segment of the Western Cordillera of Colombia (South America). Journal of South American Earth Sciences, 9(1–2): 79–90. https://doi.org/10.1016/0895-9811(96)00029-6
Spikings, R., Cochrane, R., Villagómez, D., van der Lelij, R., Vallejo, C., Winkler, W. & Beate, B. 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1): 95–139. https://doi.org/10.1016/j.gr.2014.06.004
Stern, R.J. 2012. Subduction zones. Reviews of Geophysics, 40(4): 3–38. https://doi.org/10.1029/2001RG000108
Suárez, M.B., González, L.A. & Ludvigson, G.A. 2010. Estimating the oxygen isotopic composition of equatorial precipitation during the mid–Cretaceous. Journal of Sedimentary Research, 80(5): 480–491. https://doi.org/10.2110/jsr.2010.048
Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (editors), Magmatism in the ocean basins. Geological Society of London, Special Publication 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Tamayo, J. & Correa, V. 2010. Petrografía y datación de circones detríticos en las facies cuarzosas del complejo Quebradagrande (Cretácico Inferior) de la cordillera Central. Bachelor thesis, Universidad de Caldas, 76 p. Manizales.
Torsvik, T.H., Rousse, S., Labails, C. & Smethurst, M.A. 2009. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177(3): 1315–1333. https://doi.org/10.1111/j.1365-246X.2009.04137.x
Toussaint, J.F. 1996. Evolución geológica de Colombia: 3 Cretácico. Universidad Nacional de Colombia, 277 p. Medellín.
Trail, D., Mojzsis, S.J., Harrison, T.M., Schmitt, A.K., Watson, E.B. & Young, E.D. 2007. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti–thermometry, and rare earth elements. Geochemistry, Geophysics, Geosystems, 8(6): 1–22. https://doi.org/10.1029/2006GC001449
Tunik, M., Folguera, A., Naipauer, M., Pimentel, M. & Ramos, V.A. 2010. Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics, 489(1–4): 258–273. https://doi.org/10.1016/j.tecto.2010.04.017
Uyeda, S. & Kanamori, H. 1979. Back–arc opening and the mode of subduction. Journal of Geophysical Research: Solid Earth, 84(B3): 1049–1061. https://doi.org/10.1029/JB084iB03p01049
van der Lelij, R., Spikings, R. & Mora, A. 2016. Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos, 248–251: 220–239. https://doi.org/10.1016/j.lithos.2016.01.006
Vásquez, M., Altenberger, U., Romer, R.L., Sudo, M. & Moreno–Murillo, J.M. 2010. Magmatic evolution of the Andean Eastern Cordillera of Colombia during the Cretaceous: Influence of previous tectonic processes. Journal of South American Earth Sciences, 29(2): 171–186. https://doi.org/10.1016/j.jsames.2009.02.003
Vavra, G., Schmid, R. & Gebauer, D. 1999. Internal morphology, habit and U–Th–Pb microanalysis of amphibolite–to–granulite facies zircons: Geochronology of the Ivrea zone (southern Alps). Contribution to Mineralogy and Petrology, 134(4): 380–404. https://doi.org/10.1007/s004100050492
Vervoort, J.D. & Blichert–Toft, J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3–4): 533–556. https://doi.org/10.1016/S0016-7037(98)00274-9
Vervoort, J.D. & Patchett, P.J. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19): 3717–3733. https://doi.org/10.1016/0016-7037(96)00201-3
Vervoort, J.D., Patchett, P.J., Söderlund, U. & Baker, M. 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC–ICPMS. Geochemistry, Geophysics, Geosystems, 5(11): 1–15. https://doi.org/10.1029/2004GC000721
Villagómez, D. & Spikings, R. 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the northern Andes. Lithos, 160–161: 228–249. https://doi.org/10.1016/j.lithos.2012.12.008
Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003
Villamil, T. 1999. Campanian–Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1–4): 239–275. https://doi.org/10.1016/S0031-0182(99)00075-9
Villamil, T. & Arango, C. 1998. Integrated stratigraphy of latest Cenomanian and Early Turonian facies of Colombia. In: Pindell, J.L. & Drake, C.L. (editors), Paleogeographic evolution and non–glacial eustacy, northern South America. Society for Sedimentary Geology, Special Publication 58, p. 129–159. https://doi.org/10.2110/pec.98.58.0129
Vinasco, C.J., Cordani, U.G., González, H., Weber, M. & Peláez, C. 2006. Geochronological, isotopic, and geochemical data from Permo–Triassic granitic gneisses and granitoids of the Colombian central Andes. Journal of South American Earth Sciences, 21(4): 355–371. https://doi.org/10.1016/j.jsames.2006.07.007
Weber, M., Gómez–Tapias, J., Cardona, A., Duarte, E., Pardo–Trujillo, A. & Valencia, V. 2015. Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia―Evidence of subduction initiation beneath the Colombian Caribbean Plateau. Journal of South American Earth Sciences, 62: 257–274. https://doi.org/10.1016/j.jsames.2015.04.002
Whattam, S.A. & Stern, R.J. 2015. Late Cretaceous plume–induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1): 38–63. https://doi.org/10.1016/j.gr.2014.07.011
Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H., Schulz–Dobrick, B., Skår, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q. & Zheng, Y.F. 2004. Further characterisation of the 91 500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9–39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x
Williams, I.S. 1998. U–Th–Pb geochronology by ion microprobe. In: Mckibben, M.A., Shanks III, W.C. & Ridley, W.I. (editors.), Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology 7, p. 1–35. Littleton, USA.
Zapata, J.P., Restrepo, J.J., Cardona, A. & Martens, U. 2017. Geoquímica y geocronología de las rocas volcánicas básicas y el Gabro de Altamira, cordillera Occidental (Colombia): Registro de ambientes de plateau y arco oceánico superpuestos durante el Cretácico. Boletín de Geología, 39(2): 13–30. https://doi.org/10.18273/revbol.v39n2-2017001
Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., Leon, S., Mejía, D., Pardo–Trujillo, A. & Castañeda, J. P. 2018. Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66: 207–226. https://doi.org/10.1016/j.gr.2018.10.008