Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

El Estado no tiene porqué ser aburrido ¡conoce a gov.co!

¿Sabes que es GOV.CO?

¿Sabes que es GOV.CO? Conócelo aquí

Servicio Geológico Colombiano

Skip Navigation Linksv4ch16
Seleccione su búsqueda
miig

​​Volcán Tabor, Ibagué, Tolima

 Volume 4 Chapter 16

Chapter 16

Mapping Land Subsidence in Bogotá, Colombia, Using the Interferometric Synthetic Aperture Radar (InSAR) Technique with TerraSAR–X Images   

Héctor MORA–PÁEZ, Fredy DÍAZ–MILA, and ​Leonardo CARDONA

https://doi.org/10.32685/pub.esp.38.2019.16


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 4: 978-958-52959-5-7

ISBN digital Vol. 4: 978-958-52959-9-5​


Citation is suggested as: 
Mora–Páez, H., Díaz–Mila, F. & Cardona, L. 2020. Mapping land subsidence in Bogotá, Colombia, using the interferometric synthetic aperture radar (InSAR) technique with TerraSAR–X images. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 515–548. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.16

Download chapter  ​    

Abstract 

Bogotá, the capital city of Colombia, is the largest and most populous urban center in the country. Established in a moderate seismic zone, its complex topography facilitates the occurrence of landslides and floods. The city has been subject to a massive migration process in recent years, which has generated the accelerated urbanization of the city and increased its vulnerability to various natural hazards. Bogotá is located within the Sabana de Bogotá, a tectonic–sedimentary basin consolidated after the uplifting of the northern Andes approximately 5 Ma. With TerraSAR–X radar images, a quantitative analysis of the subsidence in the Sabana de Bogotá was carried out using the interferometric synthetic aperture radar technique for the city of Bogotá. The obtained results allowed establishing subsidence values in the central region of the city on the order of 3.3 cm/y. It is important to note that the BOGT GPS Continuously Operating Reference Station, which is part of a global network, indicates a decreasing value in its vertical component on the order of 3.5 ± 0.09 cm/y.

 

Keywords: subsidence, Sabana de Bogotá, interferometric synthetic aperture radar.



Resumen 

Bogotá, la capital de Colombia, es el centro urbano más poblado y grande del país. Establecida en una zona sísmica moderada, su compleja topografía facilita la ocurrencia de deslizamientos e inundaciones. La ciudad ha sido objeto de un proceso de migración masiva en los últimos años, lo cual ha generado la urbanización acelerada de la ciudad y un incremento en la vulnerabilidad ante diversas amenazas naturales. Bogotá está localizada en la Sabana de Bogotá, una cuenca tectonosedimentaria consolidada después del levantamiento del norte de los Andes hace aproximadamente 5 Ma. Mediante el uso de imágenes de radar TerraSAR–X se realizó el análisis cuantitativo de la subsidencia en la Sabana de Bogotá empleando la técnica de interferometría de radar de apertura sintética para la ciudad de Bogotá. Los resultados obtenidos permitieron establecer valores de subsidencia en la región central de la ciudad del orden de 3,3 cm/año. Es importante señalar que la estación GPS permanente de referencia denominada BOGT, que forma parte de la red global, indica un valor de descenso en su componente vertical del orden de 3,5 ± 0,09 cm/año.

 

Palabras clave: subsidencia, Sabana de Bogotá, interferometría de radar de apertura sintética.



Abbreviations 

AIST                                                                                Advanced Information Systems Technology

ALOS–1, ALOS–2                                 Advanced Land Observing Satellite

CIC                                                                                   Cartographic Institute of Catalunya

cGPS                                                                             Continuous Global Positioning System

Cosmo–SkyMed                                    Constellation of Small Satellites for Mediterranean basin Observatory

DAMA                                                                         Departamento Administrativo del Medio Ambiente

DEM                                                                               Digital elevation model

DLR                                                                                  Deutsches Zentrum für Luft– und Raumfahrt (German Aerospace Center)

Envisat                                                                    ENVIronmental SATellite

ERS–1, ERS–2                                               European Remote Sensing Satellite

ESTO                                                                               Earth Science Technology Office

FHI                                                                                       Formal Housing Index

FOPAE                                                                           Fondo para la Prevención y Atención de Emergencias

GeoRED                                                                     Geodesia: Red de Estudios de Deformación

GIAnT                                                                             Generic InSAR Analysis Toolbox

GNSS                                                                               Global Navigation Satellite System

GPS                                                                                     Global Positioning System

IGAC                                                                                   Instituto Geográfico Agustín Codazzi

InSAR                                                                                Interferometric synthetic aperture radar

ISCE                                                                                     InSAR Scientific Computing Environment

JPL                                                                                         Jet Propulsion Laboratory

LOS                                                                                       Line–of–sight

MLE                                                                                       Maximum likelihood estimation

NASA                                                                                  National Aeronautics and Space Administration

NISAR                                                                                 NASA–ISRO SAR (NASA– Indian Space Research Organization synthetic aperture radar)

NSBAS                                                                               New Small Baseline Subset

RADARSAT–1, RADARSAT–2  Canada´s Earth observation satellite

SAR                                                                                           Synthetic Aperture Radar

SBAS                                                                                       Small baseline subset

SEGAL                                                                                   Space & Earth Geodetic Analysis Laboratory at the University of Beira Interior

SGC                                                                                           Servicio Geológico Colombiano 

SRTM                                                                                       Shuttle Radar Topography Mission

TerraSAR–X                                                                 German Earth–observation satellite

TDR                                                                                              Time domain reflectometry

UNESCO                                                                             United Nations Educational Scientific and Cultural Organization



References 

Agram, P., Jolivet, R. & Simons, M. 2012a. The generic InSAR analysis toolbox, user manual. California Institute of Technology, 100 p. Pasadena, USA.

 

Agram, P.S, Jolivet, R., Riel, B.V., Simons, M., Doin, M.P., Lasserre, M.C. & Hetland, E.A. 2012b. GIAnT–generic InSAR analysis toolbox. American Geophysical Union, Fall Meeting 2012. Abstract id. G43A–0897, 1 p. San Francisco, USA.

 

Agram, P.S., Jolivet, R., Riel, B.V., Lin, Y.N., Simons, M., Hetland, E., Doin, M.P. & Lasserre, C. 2013. New radar interferometric time series analysis toolbox released. EOS, Transactions American Geophysical Union, 94(7): 69–70. https://doi.org/10.1002/2013EO070001

 

Agram, P.S., Gurrola, E.M., Lavalle, M., Sacco, G.F. & Rosen, P.A. 2016. The InSAR Scientific Computing Environment (ISCE): An earth science SAR processing framework, toolbox, and foundry. American Geophysical Union, Fall Meeting 2016. Abstract #G43A–1039, 1 p. San Francisco, USA.

 

Aly, M.H., Zebker, H.A., Giardino, J.R. & Klein, A.G. 2009. Permanent scatterer investigation of land subsidence in Greater Cairo, Egypt. Geophysical Journal International, 178(3): 1238–1245. https://doi.org/10.1111/j.1365-246X.2009.04250.x

 

Amelung, F., Galloway, D.L., Bell, J.W., Zebker, H.A. & Laczniak, R.J. 1999. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer–system deformation. Geology, 27(6): 483–486. https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2

 

Antonio–Fragala, F. & Obregón–Neira, N. 2011. Estimación de la recarga media anual en los acuíferos de la Sabana de Bogotá. Ingeniería y Universidad, 15(1): 145–169.

 

Arbeláez, A.M., Steiner, R., Becerra, A. & Wills, D. 2011. Housing tenure and housing demand in Colombia. IDB Working Paper, Series 259, 50 p.

 

Arbinger, C., D'Amico, S. & Eineder, M. 2004. Precise ground–in–the–loop orbit control for low earth observation satellites. 18th International Symposium on Space Flight Dynamics Proceedings (ESA SP–548), p. 333. Munich, Germany.

 

Bawden, G.W., Thatcher, W., Stein, R.S., Hudnut, K.W. & Peltzer, G. 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412(6849): 812–815. https://doi.org/10.1038/35090558

 

Bayuaji, L., Sumantyo, J.T.S. & Kuze, H. 2010. ALOS PALSAR D–InSAR for land subsidence mapping in Jakarta, Indonesia. Canadian Journal of Remote Sensing, 36(1): 1–8. https://doi.org/10.5589/m10-023

 

Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375–2383. https://doi.org/10.1109/TGRS.2002.803792

 

Bertiger, W., Desai, S.D., Haines, B., Harvey, N., Moore, A.W., Owen, S. & Weiss, J.P. 2010. Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84(5): 327–337. https://doi.org/10.1007/s00190-010-0371-9

 

Bock, Y., Wdowinski, S., Ferretti, A., Novali, F. & Fumagalli, A. 2012. Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochemistry, Geophysics, Geosystems, 13(3): 1–13. https://doi.org/10.1029/2011GC003976

 

Bos, M.S., Fernandes, R.M.S., Williams, S.D.P. & Bastos, L. 2013. Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87(4): 351–360. https://doi.org/10.1007/s00190-012-0605-0

 

Bozzano, F., Esposito, C., Franchi, S., Mazzanti, P., Perissin, D., Rocca, A. & Romano, E. 2015. Understanding the subsidence process of a Quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: The Acque Albule Plain case study. Remote Sensing of Environment, 168: 219–238. https://doi.org/10.1016/j.rse.2015.07.010

 

Burbey, T.J. 2002. The influence of faults in basin–fill deposits on land subsidence, Las Vegas Valley, Nevada, USA. Hydrogeology Journal, 10(5): 525–538. https://doi.org/10.1007/s10040-002-0215-7

 

Bürgmann, R., Rosen, P.A. & Fielding, E.J. 2000. Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28(1): 169–209. https://doi.org/10.1146/annurev.earth.28.1.169

 

Cabral–Cano, E., Dixon, T.H., Miralles–Wilhelm, F., Díaz–Molina, O., Sánchez–Zamora, O. & Carande, R.E. 2008. Space geodetic imaging of rapid ground subsidence in Mexico City. GSA Bulletin, 120(11–12): 1556–1566. https://doi.org/10.1130/B26001.1

 

Carvajal, J.H. & Navas, O. 2016. Bogotá “Savanna". In: Hermelin, M. (editor), Landscapes and landforms of Colombia. Springer, p. 115–126. https://doi.org/10.1007/978-3-319-11800-0_10

 

Chaussard, E., Amelung, F., Abidin, H. & Hong, S.H. 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128: 150–161. https://doi.org/10.1016/j.rse.2012.10.015

 

Chaussard, E., Wdowinski, S., Cabral–Cano, E. & Amelung, F. 2014. Land subsidence in central Mexico detected by ALOS InSAR time–series. Remote Sensing of Environment, 140: 94–106. https://doi.org/10.1016/j.rse.2013.08.038

 

Corapcioglu, M.Y. 1984. Land subsidence: A state–of–the–art review. In: Bear, J. & Corapcioglu, M.Y. (editors), Fundamentals of transport phenomena in porous media. NATO ASI, Series 82, Martinus Nijhoff Publishers, p. 369–444. Dordrecht, the Netherlands. https://doi.org/10.1007/978-94-009-6175-3_8

 

Damoah–Afari, P., Ding, X., Li, Z., Lu, Z. & Omura, M. 2007. Six years of land subsidence in Shanghai revealed by JERS–1 SAR data. IEEE International Geoscience and Remote Sensing Symposium. Abstracts, p. 2093–2097. Barcelona, Spain. https://doi.org/10.1109/IGARSS.2007.4423246

 

Departamento Administrativo del Medio Ambiente. 1999. Elaboración del modelo hidrogeológico para los acuíferos de Santafé de Bogotá D.C. DAMA–PNUD–Hidrogeocol, 45 p. Bogotá.

 

Departamento Administrativo Nacional de Estadística. 2020. Resultados Censo Nacional de Población y Vivienda. 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018 (consulted in July 2020).

 

Deutsches Zentrum für Luft– und Raumfahrt. 2009. TerraSAR–X: The German radar eye in space. 44 p. Bonn, Germany.

 

Dixon, T.H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., Sella, G., Kim, S.W., Wdowinski, S. & Whitman, D. 2006. Subsidence and flooding in New Orleans. Nature, 441(7093): 587–588. https://doi.org/10.1038/441587a

 

Doin, M.P., Lodge, F., Guillaso, S., Jolivet, R., Lasserre, C., Ducret, G., Grandin, R., Pathier, E. & Pinet, V. 2011. Presentation of the small baseline NSBAS processing chain on a case example: The Etna deformation monitoring from 2003 to 2010 using ENVISAT data. FRINGE Symposium 2011, Proceedings, 7 p. Frascati, Italy.

 

Eineder, M., Runge, H., Boerner, E., Bamler, R., Adam, N., Schättler, B., Breit, H. & Suchandt, S. 2003. SAR interferometry with TerraSAR–X. FRINGE Workshop 2003, Proceedings, 6 p. Frascati, Italy.

 

European Space Agency. 2014. The ASAR user guide, ESA earthnet online. https://earth.esa.int/handbooks/asar/CNTR1.html#eph.asar.ug (consulted in October 2018).

 

Fergason, K.C., Rucker, M.L. & Panda, B.B. 2015. Methods for monitoring land subsidence and earth fissures in the Western USA. Proceedings of the International Association of Hydrological Sciences, 372: 61–366. https://doi.org/10.5194/piahs-372-361-2015

 

Ferreti, A., Monti–Guarnieri, A., Prati, C., Rocca, F. & Massonnet, D. 2007. InSAR principles: Guidelines for SAR interferometry processing and interpretation. ESA Publications, TM–19, 48 p. The Netherlands.

 

Fruneau, B. & Sarti, F. 2000. Detection of ground subsidence in the city of Paris using radar interferometry: Isolation of deformation from atmospheric artifacts using correlation. Geophysical Research Letters, 27(24): 3981–3984. https://doi.org/10.1029/2000GL008489

 

Fruneau, B., Deffontaines, B., Rudant, J.P. & Le Parmentier, A.M. 2005. Monitoring vertical deformation due to water pumping in the city of Paris (France) with differential interferometry. Comptes Rendus Geoscience, 337(13): 1173–1183. https://doi.org/10.1016/j.crte.2005.05.014

 

Global Volcanism Program. 2012. Report on Mauna Loa (United States). In: Wunderman, R. (editor), Bulletin of the Global Volcanism Network, 37: 5. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN201205-332020

 

Goldstein, R.M., Zebker, H.A. & Werner, C.L. 1988. Satellite radar interferometry: Two–dimensional phase unwrapping. Radio Science, 23(4): 713–720. https://doi.org/10.1029/RS023i004p00713

 

Gurrola, E., Rosen, P., Sacco, G., Szeliga, W., Zebker, H., Simons, M., Sandwell, D., Shanker, P., Wortham, C. & Chen, A. 2010. InSAR scientific computing environment. American Geophysical Union Meeting. Abstract id. IN43B–1397. San Francisco, USA.

 

Heleno, S.I.N., Oliveira, L.G.S., Henriques, M.J., Falcão, A.P., Lima, J.N.P., Cooksley, G., Ferretti, A., Fonseca, A.M., Lobo–Ferreira, J.P. & Fonseca, J.F.B.D. 2011. Persistent scatterers interferometry detects and measures ground subsidence in Lisbon. Remote Sensing of Environment, 115(8): 2152–2167. https://doi.org/10.1016/j.rse.2011.04.021

 

Hoffmann, J., Zebker, H.A., Galloway, D.L. & Amelung, F. 2001. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resources Research, 37(6): 1551–1566. https://doi.org/10.1029/2000WR900404

 

Hooper, A. & Zebker, H.A. 2007. Phase unwrapping in three dimensions with application to InSAR time series. Journal of the Optical Society of America A, 24(9): 2737–2747. https://doi.org/10.1364/JOSAA.24.002737

 

Instituto Cartográfico de Cataluña. 2007. Estudio interferométrico diferencial SAR (DInSAR) para la monitorización de deformaciones del terreno en la ciudad de Bogotá. Fondo de Prevención y Atención de Emergencias de Bogotá D.C. Internal report, 28 p. Barcelona, Spain.

 

Instituto Cartográfico de Cataluña. 2009. Estudios de subsidencias sobre Bogotá mediante técnicas DInSAR. Fondo de Prevención y Atención de Emergencias de Bogotá D.C. Internal report, 26 p. Barcelona, Spain.

 

Instituto Cartográfico y Geológico de Cataluña. 2014. Análisis de subsidencias mediante DInSAR, análisis de subsidencias mediante técnicas DInSAR. Zona de Bogotá. Fondo de Prevención y Atención de Emergencias de Bogotá D.C. Internal report, 108 p. Barcelona, Spain.

 

Kahle, R. & D'Amico, S. 2014. The TerraSAR–X precise orbit control: Concept and flight results. International Symposium on Space Flight Dynamics (ISSFD). Conference paper, 12 p. Laurel, USA.

 

Kaniuth, K., Häfele, P. & Sánchez, L. 2001. Subsidence of the permanent GPS station Bogotá. In: Drewes, H., Dodson, A., Fortes, L.P.S., Sánchez, L. & Sandoval, P. (editors), Vertical reference systems. International Association of Geodesy Symposia, 24, p. 56–59. Berlin–Heidelberg, Germany. https://doi.org/10.1007/978-3-662-04683-8_12

 

Lanari, R., Mora, O., Manunta, M., Mallorqui, J.J., Berardino, P. & Sansosti, E. 2004. A small–baseline approach for investigating deformations on full–resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42(7): 1377–1386. https://doi.org/10.1109/TGRS.2004.828196

 

Le, T.S., Chang, C.P., Nguyen, X.T. & Yokha, A. 2016. TerraSAR–X data for high–precision land subsidence monitoring: A case study in the historical centre of Hanoi, Vietnam. Remote Sens, 8(4): 1–23. https://doi.org/10.3390/rs8040338

 

Lobo–Guerrero, A. 1992. Geología e hidrogeología de Santafé de Bogotá y su sabana. VII Jornadas Geotécnicas de la Ingeniería de Colombia–I Foro sobre Geotecnia de la Sabana de Bogotá. Sociedad Colombiana de Ingenieros–Sociedad Colombiana de Geotecnia, Memoirs II, p. 16–36. Bogotá.

 

Lobo–Guerrero, A. 1995. Descenso de niveles de agua subterránea en la Sabana de Bogotá. VIII Jornadas Geotécnicas de la Ingeniería de Colombia–II Foro sobre Geotecnia de la Sabana de Bogotá. Sociedad Colombiana de Ingenieros–Sociedad Colombiana de Geotecnia, 11 p. Bogotá.

 

Lobo–Guerrero, A. 2003. Effects of aquifer overexploitation on the surface infrastructure in the Bogotá Sabana, Colombia. RMZ Materials and Geoenvironment, 50(1): 193–196.

 

Lobo–Guerrero, A. & Gilboa, Y. 1987. Groundwater in Colombia. Hydrological Sciences Journal, 32(2): 161–178. https://doi.org/10.1080/02626668709491175

 

López–Quiroz, P., Doin, M.P., Tupin, F., Briole, P. & Nicolás, J.M. 2009. Time series analysis of Mexico City subsidence constrained by radar interferometry. Journal of Applied Geophysics, 69(1): 1–15. https://doi.org/10.1016/j.jappgeo.2009.02.006

 

Massonnet, D. & Souyris, J.C. 2008. Imaging with synthetic aperture radar. EPFL Press. First Edition, 280 p. Boca Ratón, USA.

 

Meckel, T.A. 2008. An attempt to reconcile subsidence rates determined from various techniques in southern Louisiana. Quaternary Science Reviews, 27(15–16): 1517–1522. https://doi.org/10.1016/j.quascirev.2008.04.013

 

Mora–Páez H., 2006. “Red Nacional de Estaciones Geodésicas Satelitales GPS para estudios e investigaciones geodinámicas". Documento BPIN y Fichas de Proyecto, MGA para Departamento Nacional de Planeación. Ingeominas, 63 p. Bogotá.

 

Mora–Páez, H., Chaussard, E., Wdowinski, S. & Cabral, E. 2013. Space geodetic techniques for assessing land subsidence in Bogota city. XIV Congreso Colombiano de Geología y Primer Simposio de Exploradores. Abstract, p. 83. Bogotá.

 

Mora–Páez, H., Peláez–Gaviria, J.R., Diederix, H., Bohórquez–Orozco, O., Cardona–Piedrahita, L., Corchuelo–Cuervo, Y., Ramírez–Cadena, J. & Díaz–Mila, F. 2018. Space geodesy infrastructure in Colombia for geodynamics research. Seismological Research Letters, 89(2A): 446–451. https://doi.org/10.1785/0220170185

 

Mora–Páez, H., Kellogg, J.N. & Freymueller, J.T. 2020. Contributions of space geodesy for geodynamic studies in Colombia: 1988 to 2017. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 479–498. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.14

 

Muntendam–Bos, A.G., Kleuskens, M.H.P., Bakr, M., De Lange, G. & Fokker, P.A. 2009. Unraveling shallow causes of subsidence. Geophysical Research Letters, 36(10): 1–4. https://doi.org/10.1029/2009GL037190

 

Ojeda, J. & Donelly, L. 2006. Landslides in Colombia and their impact on towns and cities. 10th IAEG International Congress, Proceedings paper 112, 13 p. Nottinghan, UK.

 

Osmanoğlu, B., Dixon, T.H., Wdowinski, S., Cabral–Cano, E. & Jiang, Y. 2011. Mexico City subsidence observed with persistent scatterer InSAR. International Journal of Applied Earth Observation and Geoinformation, 13(1): 1–12. https://doi.org/10.1016/j.jag.2010.05.009

 

Poland, J.F. 1984. Guidebook to studies of land subsidence due to ground–water withdrawal. International Hydrological Programme. Working Group 8.4, UNESCO, 305 p. Chelsea, USA.

 

Poland, J.F., Lofgren, B.E. & Riley, F.S. 1972. Glossary of selected terms useful in studies of the mechanics of aquifer systems and land subsidence due to fluid withdrawal. Geological Survey Water–Supply Paper 2025, 9 p. Washington, USA. https://doi.org/10.3133/wsp2025

 

Raucoules, D., Colesanti, C. & Carnec, C. 2007. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geoscience, 339(5): 289–302. https://doi.org/10.1016/j.crte.2007.02.002

 

Rocca, F., Prati, C. & Ferreti, A. 2014. An overview of SAR interferometry. ESA earthnet online. http://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/ (consulted in April 2018).

 

Rosen, P.A., Zebker, H., Gurrola, E., Sacco, G., Simmons, M., Hensley, S. & Sandwell, D. 2009. InSAR scientific computing environment. AGU Fall Meeting 2009. Abstract id. IN13C–02. San Francisco, USA.

 

Rosen, P.A., Gurrola, E., Sacco, G.F. & Zebker, H. 2012. The InSAR scientific computing environment. 9th European Conference on Synthetic Aperture Radar. EUSAR, Memoirs, p. 730–733. Nuremberg, Germany.

 

Rosen, P.A., Gurrola, E.M., Agram, P.S., Sacco, G.F. & Lavalle, M. 2015. The InSAR scientific computing environment (ISCE): A python framework for earth science. AGU Fall Meeting 2015. Abstract id. IN11C–1789. San Francisco, USA.

 

Rudenko, S., Schön, N., Uhlemann, M. & Gendt, G. 2013. Reprocessed height time series for GPS stations. Solid Earth, 4(1): 23–41. https://doi.org/10.5194/se-4-23-2013

 

Sousa, J.J., Magalhães, L.G., Ruiz, A.M., Sousa, A.M.R. & Cardoso, G. 2013. The viStaMPS tool for visualization and manipulation of time series interferometric results. Computers & Geosciences, 52: 409–421. https://doi.org/10.1016/j.cageo.2012.11.012

 

Strozzi, T. & Wegmuller, U. 1999. Land subsidence in Mexico City mapped by ERS differential SAR interferometry. IEEE International Geoscience and Remote Sensing Symposium. Proceedings, 4, p. 1940–1942. Hamburg, Germany. https://doi.org/10.1109/IGARSS.1999.774993

 

Teatini, P., Strozzi, T., Tosi, L., Wegmuller, U., Werner, C. & Carbognin, L. 2007. Assessing short–and long–time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. Journal of Geophysical Research: Earth Surface, 112(F1): 1–17. https://doi.org/10.1029/2006JF000656

 

Tesauro, M., Berardino, P., Lanari, R., Sansosti, E., Fornaro, G. & Franceschetti, G. 2000. Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry. Geophysical Research Letters, 27(13): 1961–1964. https://doi.org/10.1029/2000GL008481

 

Tomás, R., Herrera, G., Delgado, J. & Peña, F. 2009. Subsidencia del terreno. Enseñanza de las Ciencias de la Tierra, 17(3): 295–302.

 

UNESCO. 2018. The UNESCO Working Group on Land Subsidence. http://landsubsidence-unesco.org/ (consulted in April 9, 2018)

 

Universidad Nacional Autónoma de México. 2017. Subsidencia urbana. http://cardi.geofisica.unam.mx/subsidencia/index.html (consulted in December 2017).

 

Universidad Nacional de Colombia. 2011. Estudio de modelación geotécnica del fenómeno de subsidencia en la ciudad de Bogotá. Contrato 415 de 2010 FOPAE. Final report 1, 175 p. Bogotá.

 

U.S. Geological Survey. 2017. Measuring land subsidence, InSAR. https://ca.water.usgs.gov/land_subsidence/california-subsidence-measuring.html (consulted in April 2018).

 

van der Hammen, T., Werner, J.H. & van Dommelen, V. 1973. Palynological record of the upheaval of the northern Andes: A study of the Pliocene and lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its high–Andean biota. Review of Palaeobotany and Palynology, 16(1–2): 1–122. https://doi.org/10.1016/0034-6667(73)90031-6

 

Veloza, J. 2013. Sistema de modelamiento hidrogeológico del Distrito Capital Bogotá. Secretaría Distrital de Ambiente. Unpublished report, 234 p. Bogotá.

 

Wegmüller, U., Santoro, M., Werner, C., Strozzi, T., Wiesmann, A. & Lengert, W. 2009. DEM generation using ERS–ENVISAT interferometry. Journal of Applied Geophysics, 69(1): 51–58. https://doi.org/10.1016/j.jappgeo.2009.04.002

 

Wijninga, V.M. 1996a. Paleobotany and palynology of Neogene sediments from the High Plain of Bogota (Colombia). Evolution of the Andean flora from a paleoecological perspective. Doctoral thesis, University of Amsterdam, 370 p. Amsterdam, the Netherlands.

 

Wijninga, V.M. 1996b. Neogene ecology of the Salto de Tequendama site (2475 m altitude, cordillera Oriental, Colombia): The paleobotanical record of montane and lowland forests. Review of Palaeobotany and Palynology, 92(1–2): 97–156. https://doi.org/10.1016/0034-6667(94)00100-6

 

Yuill, B., Lavoie, D. & Reed, D.J. 2009. Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research, SI(54): 23–36. https://doi.org/10.2112/SI54-012.1

 

Zhou, X., Chang, N.B. & Li, S. 2009. Applications of SAR interferometry in Earth and environmental science research. Sensors, 9(3): 1876–1912. https://doi.org/10.3390/s90301876

 

Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. & Webb, F.H. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3): 5005–5017. https://doi.org/10.1029/96JB03860