Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv3ch7
Seleccione su búsqueda
miig

​Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño

 Volume 3 Chapter 7

Chapter 7

Cenozoic Evolution of the Sierra Nevada de Santa Marta, Colombia   

Mauricio PARRA, Sebastián ECHEVERRI, Ana María PATIÑO, Juan Carlos RAMÍREZ, Andrés MORA, Edward R. SOBEL, Ariel ALMENDRAL, and Andrés PARDO–TRUJILLO

https://doi.org/10.32685/pub.esp.37.2019.07


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 3: 978-958-52959-4-0

ISBN digital Vol. 3: 978-958-53131-0-1​


Citation is suggested as: 

Parra, M., Echeverri, S., Patiño, A.M., Ramírez, J.C., Mora, A., Sobel, E.R., Almendral, A. & Pardo–Trujillo, A. 2020. Cenozoic evolution of the Sierra Nevada de Santa Marta, Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 185–213. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.07


Download chapter  ​    Download supplementary information S1      Download supplementary information S2 

Download EndNote reference​


Abstract 


The highest coastal relief on Earth occurs in the Sierra Nevada de Santa Marta in northern Colombia. With an average elevation of ca. 4 km and peaks up to ca. 5.8 km, this small mountain range lies only 85 km to the south of an abyssal plain ca. 3.5 km deep in the Caribbean Sea. A compilation of sparse bedrock and detrital low‒ temperature thermochronometric data, new detrital apatite fission‒track and apatite (U‒Th)/He data from modern river sediments, and stratigraphic patterns of adjacent Miocene ‒ Pliocene basins document episodic tectonic development of the Sierra Nevada de Santa Marta. A Paleocene collision of oceanic crust with western Colombia triggered initial exhumation and westward monoclinal tilting of the formerly contiguous Central Cordillera and Santa Marta Massif. Subsequent late Eocene (ca. 35 Ma) dismembering of both ranges occurred associated with right‒lateral translation of the Caribbean Plate against the northwestern continental margin of Colombia. This episode marked the onset of contrasting exhumation histories, characterized by low denudation and pediment formation in the Central Cordillera and rapid, episodic exhumation of the Santa Marta Massif, associated with normal faulting and opening of extensional basins along its southwestern margin. Multiple approaches to extracting exhumation rates from thermochronometry, including 1D and 3D reconstructions, reveal that following rapid late Eocene ‒ early Miocene rock uplift, asymmetric exhumation characterized the Sierra Nevada. On the southwestern margin, moderate to rapid exhumation favored progradation of alluvial fan deposits on top of shallow marine and fan delta facies. In contrast, diminished exhumation prompted a reciprocal stratigraphy in the northern margin, where facies retrograde, leading to the accumulation of shallow marine facies on fan delta and alluvial fan deposits. Thermochronometric ages of outcropping units retrieved from modern river sands imply a very recent (<2 Ma) pulse of exhumation, possibly triggered by removal of lower crust, whose precise magnitude and time constraints remain unknown.

 

Keywords: Sierra Nevada de Santa Marta, Caribbean Plate, thermochronology, sediment provenance.



Resumen

 

El mayor relieve topográfico costero de la Tierra ocurre en la Sierra Nevada de Santa Marta en el norte de Colombia. Con una elevación promedio de ca. 4 km y picos de hasta ca. 5,8 km, esta pequeña cordillera yace tan solo 85 km al sur de una llanura abisal de ca. 3,5 km de profundidad en el mar Caribe. La compilación de los pocos datos existentes de termocronología de baja temperatura, tanto de roca del basamento como detríticos; nuevos datos detríticos de trazas de fisión y (U–Th)/He en apatitos en sedimentos activos y el estudio estratigráfico de cuencas marginales miocenas–pliocenas adyacentes documentan una evolución tectónica episódica de la Sierra Nevada de Santa Marta. La colisión paleocena de corteza oceánica contra el margen occidental de Colombia desencadenó el levantamiento inicial y el basculamiento monoclinal hacia el oeste de un cinturón contiguo formado por la cordillera Central y el Macizo de Santa Marta. El posterior desmembramiento de estas dos cordilleras en el Eoceno tardío (ca. 35 Ma) ocurrió asociado a la translación dextrolateral de la Placa del Caribe a lo largo del margen continental noroccidental de Colombia. Este episodio marcó el inicio de historias contrastantes de desarrollo orogénico, caracterizadas por bajas tasas de denudación y desarrollo de pedimento en la cordillera Central y exhumación rápida y episódica en la Sierra Nevada de Santa Marta, asociada a fallamiento normal y apertura de cuencas extensionales en su margen suroccidental. Múltiples métodos para calcular tasas de exhumación a partir de termocronología, incluyendo modelado 1D y 3D, sugieren que tras un episodio de levantamiento rápido en el Eoceno tardío–Mioceno temprano se presentó exhumación asimétrica en la Sierra Nevada. En el margen suroccidental, la exhumación moderada a rápida favoreció la progradación de abanicos aluviales sobre depósitos marinos someros y facies de deltas en abanico. Por el contrario, una disminución en las tasas de levantamiento generó un patrón de apilamiento estratigráfico opuesto en el margen norte, en donde las facies retrogradaron, lo que causó la acumulación de facies marinas someras sobre depósitos de abanicos aluviales y deltas en abanico. Las edades termocronométricas de las rocas aflorantes obtenidas en sedimentos activos de barras fluviales revelan un pulso muy reciente (<2 Ma) de exhumación, posiblemente asociado a la remoción de corteza inferior, y cuya magnitud y temporalidad precisas aún están por descubrir.


Palabras clave: Sierra Nevada de Santa Marta, Placa del Caribe, termocronología, procedencia sedimentaria.

 


Abbreviations 


AFT                                                Apatite fission–track

AHe                                             (U–Th)/He in apatites

CAPES                                     Coordination for the Improvement of Higher Education Personnel

ESR                                              Equivalent–sphere radius

eU                                                  Effective uranium content

IEE–USP                             Institute of Energy and Environment, Universidade de São Paulo

IGc–USP                              Institute of Geosciences, Universidade de São Paulo

IPEN–USP                     Institute of Energy and Nuclear Research, Universidade de São Paulo

LLH                                           Log–likelihood function

LMB                                          Lower Magdalena Basin

ND                                             Number of induced tracks counted in the mica for estimating Rho–D

NI                                                  Number of induced tracks counted for estimating Rho–I

NS                                                Number of spontaneous tracks counted for estimating Rho–S

Rho–D                                 Induced track density

Rho–I                                     Induced tracks density measured

Rho–S                                   Spontaneous tracks density measured

SNSM                                     Sierra Nevada de Santa Marta

SRTM                          90                          Shuttle Radar Topography Mission – Resolution 90 meters

TRMM                                   Tropical Rainfall Measuring Mission

ZFT                                              Zircon fission–track

ZHe                                            (U–Th)/He in zircons​



References 


Agencia Nacional de Hidrocarburos. 2010. Mapa de Anomalía de Bouguer Total de la República de Colombia. Scale 1: 2 500 000. Bogotá. https://www.anh.gov.co/Informacion-eologica-y-Geofisica/Pais/Documents/ANOMALIA_DE_BOUGUER_TOTAL_DE_LA_REPUBLICA_DE_COLOMBIA%202010.pdf (consulted in June 2017).

 

Allen, P.A. & Allen, J.R. 2005. Basin Analysis: Principles and Applications. Blackwell Publishing company, 549 p. Oxford.

 

Ayala, R.C., Bayona, G., Ojeda, C., Cardona, A., Valencia, V., Padron, C., Yoris, F., Mesa, J. & Garcia, A. 2009. Estratigrafía y procedencia de las unidades comprendidas entre el Campaniano y el Paleógeno en la Subcuenca de Cesar: Aportes a la evolución tectónica del área. Geología Colombiana, (34): 3–33.

 

Ayala, R.C., Bayona, G., Cardona, A., Ojeda, C., Montenegro, O.C., Montes, C., Valencia, V. & Jaramillo, C. 2012. The Paleogene synorogenic succession in the northwestern Maracaibo Block: Tracking intraplate uplifts and changes in sediment delivery systems. Journal of South American Earth Sciences, 39: 93–111. https://doi.org/10.1016/j.jsames.2012.04.005

 

Bayona, G., Lamus–Ochoa, F., Cardona, A., Jaramillo, C., Montes, C. & Tchegliakova, N. 2007. Procesos orogénicos del Paleoceno para la Cuenca de Ranchería (Guajira, Colombia) y áreas adyacentes definidos por análisis de procedencia. Geología Colombiana, (32): 21–46.

 

Bayona, G., Jiménez, G., Silva, C., Cardona, A., Montes, C., Roncancio, J. & Cordani, U. 2010. Paleomagnetic data and K–Ar ages from Mesozoic units of the Santa Marta Massif: A preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences, 29(4): 817–831. https://doi.org/10.1016/j.jsames.2009.10.005

 

Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O. & Ibañez–Mejia, M. 2012. Early Paleogene magmatism in the northern Andes: Insights on the effects of oceanic plateau–continent convergence. Earth and Planetary Science Letters, 331–332: 97–111. https://doi.org/10.1016/j.epsl.2012.03.015

 

Bernal–Olaya, R., Mann, P. & Escalona, A. 2015. Cenozoic tectonostratigraphic evolution of the Lower Magdalena Basin, Colombia: An Example of an under–to overfilled forearc basin. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 345–398. https://doi.org/10.1306/13531943M1083645

 

Braun, J. 2002. Quantifying the effect of recent relief changes on age–elevation relationships. Earth and Planetary Science Letters, 200(3–4): 331–343. https://doi.org/10.1016/S0012-821X(02)00638-6

 

Braun, J. 2003. Pecube: A new finite–element code to solve the 3D heat transport equation including the effects of a time–varying, finite amplitude surface topography. Computers & Geosciences, 29(6): 787–794. https://doi.org/10.1016/S0098-3004(03)00052-9

 

Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon–Labric, T. & Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524–525: 1–28. https://doi.org/10.1016/j.tecto.2011.12.035

 

Burke, K., Cooper, C., Dewey, J.F., Mann, P. & Pindell, J.L. 1984. Caribbean tectonics and relative plate motions. In: Bonini, W.E., Hargraves, R.B. & Shagam, R. (editors), The Caribbean–South American plate boundary and regional tectonics. Geological Society of America, Memoir 162, p. 31–63. https://doi.org/10.1130/MEM162-p31

 

Caballero, V., Parra, M., Mora, A., López, C., Rojas, L.E. & Quintero, I. 2013a. Factors controlling selective abandonment and reactivation in thick–skin orogens: A case study in the Magdalena Valley, Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 343–367. London. https://doi.org/10.1144/SP377.4

 

Caballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L.E., López, C., Sánchez, N., Horton, B.K., Stockli, D. & Duddy, I. 2013b. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo Syncline, Middle Magdalena Valley, Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 315–342. London. https://doi.org/10.1144/SP377.12

 

Cadena, A.F., & Slatt, R.M. 2013. Seismic and sequence stratigraphic interpretation of the area of influence of the Magdalena submarine fan, offshore northern Colombia. Interpretation, 1(1): SA53–SA74. https://doi.org/10.1190/INT-2013-0028.1

 

Cardona, A., Cordani, U.G. & MacDonald, W.D. 2006. Tectonic correlations of pre–Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. Journal of South American Earth Sciences, 21(4): 337–354. https://doi.org/10.1016/j.jsames.2006.07.009

 

Cardona, A., Chew, D., Valencia, V.A., Bayona, G., Mišković, A. & Ibañez–Mejia, M. 2010a. Grenvillian remnants in the northern Andes: Rodinian and Phanerozoic paleogeographic perspectives. Journal of South American Earth Sciences, 29(1): 92–104. https://doi.org/10.1016/j.jsames.2009.07.011

 

Cardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J. & Weber, M. 2010b. Permian to Triassic I to S–type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography. Journal of South American Earth Sciences, 29(4): 772–783. https://doi.org/10.1016/j.jsames.2009.12.005

 

Cardona, A., Valencia, V., Bustamante, C., García–Casco, A., Ojeda, G., Ruiz, J., Saldarriaga, M. & Weber, M. 2010c. Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent. Journal of South American Earth Sciences, 29(4): 784–804. https://doi.org/10.1016/j.jsames.2009.08.012

 

Cardona, A., Valencia, V., Weber, M., Duque, J., Montes, C., Ojeda, G.Y., Reiners, P., Domanik, K., Nicolescu, S. & Villagómez, D. 2011a. Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U–Th/He thermochronological constraints from Eocene plutonic rocks in the Santa Marta Massif and serranía de Jarará, northern Colombia. Geologica Acta, 9(3): 445–466. https://doi.org/10.1344/105.000001739

 

Cardona, A., Valencia, V., Bayona, G., Duque, J., Ducea, M., Gehrels, G., Jaramillo, C., Montes, C., Ojeda, G. & Ruiz, J. 2011b. Early–subduction–related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Ranchería Basin, northern Colombia. Terra Nova, 23(1): 26–34. https://doi.org/10.1111/j.1365-3121.2010.00979.x

 

Case, J.E., & MacDonald, W.D. 1973. Regional gravity anomalies and crustal structure in northern Colombia. Geological Society of America Bulletin, 84(9): 2905–2916. https://doi.org/10.1130/0016-7606(1973)84<2905:RGAACS>2.0.CO;2

 

Catuneanu, O., Beaumont, C. & Waschbusch, P. 1997. Interplay of static loads and subduction dynamics in foreland basins: Reciprocal stratigraphies and the “missing" peripheral bulge. Geology, 25(12): 1087–1090. https://doi.org/10.1130/0091-7613(1997)025<1087:IOSLAS>2.3.CO;2

 

Cediel, F., Shaw, R.P. & Cáceres, C. 2003. Tectonic assembly of the northern Andean Block. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 815–848. Tulsa, USA.

 

Ceron, J.F. 2008. Crustal structure of the Colombian Caribbean Basin and margins. Doctoral thesis, University of South Carolina, 181 p. Columbia.

 

Ceron, J.F., Kellogg, J.N. & Ojeda, G.Y. 2007. Basement configuration of the northwestern South America–Caribbean margin from recent geophysical data. Ciencia, Tecnología y Futuro, 3(3): 25–49.

 

Colmenares, F.H., Mesa, A.M., Roncancio, J.H., Arciniegas, E.G., Pedraza, P.E., Cardona, A., Romero, A.J., Silva, C.A., Alvarado, S.I., Romero, O.A. & Vargas, A.F. 2007. Geología de las planchas 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 33, 34 y 40. Proyecto: Evolución geohistórica de la Sierra Nevada de Santa Marta. Invemar–Ingeominas–ICP–Ecopetrol–Geosearch Ltda., 401 p. Bogotá.

 

Cordani, U.G., Cardona, A., Jiménez, D.M., Liu, D. & Nutman, A.P. 2005. Geochronology of Proterozoic basement inliers in the Colombian Andes: Tectonic history of remnants of a fragmented Grenville belt. In: Vaughan, A.P.M., Leat, P.T. & Pankhurst, R.J. (editors), Terrane processes at the margins of Gondwana. Geological Society of London, Special Publication 246, p. 329–346. London. https://doi.org/10.1144/GSL.SP.2005.246.01.13

 

Dodson, M.H. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3): 259–274. https://doi.org/10.1007/BF00373790

 

Donelick, R.A., O'Sullivan, P.B. & Ketcham, R.A. 2005. Apatite fission–track analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49–94. https://doi.org/10.2138/rmg.2005.58.3

 

Duque–Caro, H. 1984. Structural style, diapirism, and accretionary episodes of the Sinú–San Jacinto terrane, southwestern Caribbean bordeland. In: Bonini, W.E., Hargraves, R.B. & Shagam, R. (editors), The Caribbean–South American plate boundary and regional tectonics. Geological Society of America, Memoir 162, p. 303–316. https://doi.org/10.1130/MEM162-p303

 

Duque, J.F. 2010. Geocronología (U/Pb y 40Ar/39Ar) y geoquímica de los intrusivos paleógenos de la Sierra Nevada de Santa Marta y sus relaciones con la tectónica del Caribe y el arco magmático circun–caribeño. Master thesis, Universidad Nacional Autónoma de México, 189 p. México D. F.

 

Echeverri, S. 2019. Cenozoic tectonic evolution of the Sierra Nevada of Santa Marta, northern Colombia: A record of strike–slip tectonics along the southern Caribbean Plate. Doctoral Thesis, Universidade de São Paulo, 350 p. Brasil.

 

 

Echeverri, S., Parra, M., Sobel, E., Pardo, A., Trejos, R., Vallejo, F. & Patiño, A.M. 2017. Registro de exhumación cenozoica de la Sierra Nevada de Santa Marta, Colombia: Entendiendo la interacción entre tectónica y sedimentación a partir de datos de proveniencia y termocronología de baja temperatura. XVI Congreso Colombiano de Geología. Memoirs, p. 1495–1500. Santa Marta.

 

Farley, K.A. 2002. (U–Th)/He Dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47(1): 819–844. https://doi.org/10.2138/rmg.2002.47.18

 

Flowers, R.M., Ketcham, R.A., Shuster, D.L. & Farley, K.A. 2009. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73(8): 2347–2365. https://doi.org/10.1016/j.gca.2009.01.015

 

Galbraith, R.F. 1981. On statistical models for fission track counts. Journal of the International Association for Mathematical Geology, 13(6): 471–478

 

Gallagher, K., Brown, R. & Johnson, C. 1998. Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26(1): 519–572. https://doi.org/10.1146/annurev.earth.26.1.519

 

Gautheron, C., Tassan–Got, L., Barbarand, J. & Pagel, M. 2009. Effect of alpha–damage annealing on apatite (U–Th)/He thermochronology. Chemical Geology, 266(3–4): 157–170. https://doi.org/10.1016/j.chemgeo.2009.06.001

 

Gómez, E., Jordan, T., Allmendinger, R., Hegarty, K., Kelley, S. & Heizler, M. 2003. Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Geological Society of America Bulletin, 115(2): 131–147. https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2

 

Gorney, D., Escalona, A., Mann, P., Magnani, M.B., Levander, A., Christeson, G., Mann, P., Zelt, C.A., Magnani, M.B., Schmitz, M., Clark, S., Guedez, M.C., Bezada, M., Arogunmati, Y., Gorney, D., Aitken, T. & Beardsley, A. 2007. Chronology of Cenozoic tectonic events in western Venezuela and the Leeward Antilles based on integration of offshore seismic reflection data and on–land geology. American Association of Petroleum Geology Bulletin, 91(5): 653–684. https://doi.org/10.1306/11280606002

 

Green, P.F. 1981. A new look at statistics in fission–track dating. Nuclear Tracks, 5(1–2): 77–86. https://doi.org/10.1016/0191-278X(81)90029-9

 

 

Harrison, T.M. & Zeitler, P.K. 2005. Fundamentals of noble gas thermochronology. In: Reiners, P.W. & Ehlers, T.A. (editors), Low temperature thermochronology: Techniques, interpretations, and applications. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry 58, p. 123–149. Washington D.C.

 

Hernández, M., Maldonado, I., González, J., Martínez, H., Clavijo, J. & Reyes, G. 2003. Memoria explicativa: Geología de las planchas 25 Fundación, 32 Monterrubio y 39 El Difícil. Scale 1:100 000. Ingeominas, 74 p. Bogotá.

 

Idárraga–García, J. & Romero, J. 2010. Neotectonic study of the Santa Marta Fault System, western foothills of the Sierra Nevada de Santa Marta, Colombia. Journal of South American Earth Sciences, 29(4): 849–860. https://doi.org/10.1016/j.jsames.2009.11.004

 

Jaramillo, C., Rueda, M. & Torres, V. 2011. A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia. Palynology, 35(1): 46–84. https://doi.org/10.1080/01916122.2010.515069

 

Kellogg, J.N. 1984. Cenozoic tectonic history of the sierra de Perijá, Venezuela–Colombia, and adjacent basins. In: Bonini, W.E., Hargraves, R.B. & Shagam, R. (editors), The Caribbean–South American Plate boundary and regional tectonics. Geological Society of America, Memoir 162, p. 239–261. https://doi.org/10.1130/MEM162-p239

 

Kellogg, J.N. & Bonini, W.E. 1982. Subduction of the Caribbean Plate and basement uplifts in the overriding South American Plate. Tectonics, 1(3): 251–276. https://doi.org/10.1029/TC001i003p00251

 

Mann, P., Escalona, A. & Castillo, M.V. 2006. Regional geologic and tectonic setting of the Maracaibo supergiant Basin, western Venezuela. American Association of Petroleum Geologists Bulletin, 90(4): 445–477. https://doi.org/10.1306/10110505031

 

McMahon, C. 2000. Evaluation of the effects of oblique collision between the Caribbean and South American Plates using geochemistry from igneous and metamorphic bodies of northern Venezuela. Doctoral Thesis, University of Notre Dame, 277 p. Paris.

 

Montes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V. & Jaramillo, C. 2010. Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato–San Jorge and Cesar–Ranchería Basins. Journal of South American Earth Sciences, 29(4): 832–848. https://doi.org/10.1016/j.jsames.2009.07.010

 

Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez–Ángel, L.C., Rodríguez–Parra, L.A., Ramírez, V. & Niño, H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348(6231): 226–229. https://doi.org/10.1126/science.aaa2815

 

Mora–Bohórquez, J.A., Ibañez–Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A. & Serna, L. 2017. Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection–seismic and U–Pb–Hf insights into the termination of the central Andes against the Caribbean Basin. Journal of South American Earth Sciences, 74: 1–26. https://doi.org/10.1016/j.jsames.2017.01.001

 

Mora, J.A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V. & de Freitas, M. 2018. Controls on forearc basin formation and evolution: Insights from Oligocene to recent tectono–stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Marine and Petroleum Geology, 97: 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032

 

Mulligan, M. 2006. Global gridded 1km TRMM rainfall climatology and derivatives, version 1.0 Database: http://www.ambiotek.com/1kmrainfall (consulted in November 2017).

 

Ordóñez–Carmona, O. & Pimentel, M.M. 2002. Rb–Sr and Sm–Nd isotopic study of the Puquí Complex, Colombian Andes. Journal of South American Earth Sciences, 15(2): 173–182. https://doi.org/10.1016/S0895-9811(02)00017-2

 

Parra, M., Mora, A., López, C., Rojas, L.E. & Horton, B.K. 2012. Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology, 40(2): 175–178. https://doi.org/10.1130/G32519.1

 

Parra, M., Echeverri, J.S., Perez–Consuegra, N. & Senatore, C.A. 2016. Episodic uplift patterns of the Sierra Nevada de Santa Marta in northern Colombia. 10th South American Symposium on Isotope Geology. Program and Abstracts, 1, p. 72. Puerto Vallarta, México.

 

Patiño, A.M. 2018. Cenozoic exhumation patterns in the eastern Sierra Nevada de Santa Marta, northern Colombia: A detrital thermochronometry study. Master thesis, Universidade de São Paulo, 115 p. São Paulo. https://doi.org/10.11606/D.44.2018.tde-17072018-144314

 

Pindell, J.L., Higgs, R. & Dewey, J.F. 1998. Cenozoic palinspastic reconstruction, paleogeographic evolution and hydrocarbon setting of the northern margin of South America. In: Pindell, J.L. & Drake, C. (editors), Paleogeographic evolution and non–glacial eustasy, northern South America. Society for Sedimentary Geology, Special Publication 58, p. 45–85. https://doi.org/10.2110/pec.98.58.0045

 

Pindell, J.L. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 1–55. https://doi.org/10.1144/SP328.1

 

Pinzón–Rodríguez, E.M. 2014. Caracterización litológica y sedimentológica de una unidad conglomerática en cercanías de Aracataca y su significado para el levantamiento de la Sierra Nevada de Santa Marta (SNSM). Bachelor thesis, Universidad Nacional de Colombia, 21 p. Bogotá.

 

Piraquive, A., Pinzón, E., Kammer, A., Bernet, M. & von Quadt, A. 2017. Early Neogene unroofing of the Sierra Nevada de Santa Marta, as determined from detrital geothermochronology and the petrology of clastic basin sediments. Geological Society of America Bulletin, 130(3–4): 355–380. https://doi.org/10.1130/B31676.1

 

Reiners, P.W., & Brandon, M.T. 2006. Using thermochronology to understand orogenic erosion. Annual Review Earth Planetary Sciences, 34: 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202

 

Restrepo–Moreno, S.A., Foster, D.A., Stockli, D.F. & Parra–Sánchez, L.N. 2009. Long–term erosion and exhumation of the “Altiplano Antioqueño," northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and Planetary Science Letters, 278(1–2): 1–12. https://doi.org/10.1016/j.epsl.2008.09.037

 

Restrepo–Pace, P.A., Ruiz, J., Gehrels, G. & Cosca, M. 1997. Geochronology and Nd isotopic data of Grenville–age rocks in the Colombian Andes: New constraints for late Proterozoic – early Paleozoic paleocontinental reconstructions of the Americas. Earth and Planetary Science Letters, 150(3–4): 427–441. https://doi.org/10.1016/S0012-821X(97)00091-5

 

Restrepo, J.J., Ordóñez–Carmona, O., Armstrong, R. & Pimentel, M.M. 2011. Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. Journal of South American Earth Sciences, 32(4): 497–507. https://doi.org/10.1016/j.jsames.2011.04.009

 

Reyes, H.A., Montenegro, B.M. & Gómez, P.D. 2004. Tectonoestratigrafía y evolución del Valle Inferior del Magdalena. Boletín de Geología, 26(42): 19–38.

 

Rincón, D.A., Arenas, J.E., Cuartas, C.H., Cárdenas, A.L., Molinares, C.E., Caicedo, C. & Jaramillo, C. 2007. Eocene–Pliocene planktonic foraminifera biostratigraphy from the continental margin of the southwest Caribbean. Stratigraphy, 4(4): 261–311.

 

Ruiz, G.M.H., Seward, D. & Winkler, W. 2004. Detrital thermochronology – a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador. Basin Research, 16(3): 413–430. https://doi.org/10.1111/j.1365-2117.2004.00239.x

 

Salazar, C.A., Bustamante, C. & Archanjo, C.J. 2016. Magnetic fabric (AMS, AAR) of the Santa Marta Batholith (northern Colombia) and the shear deformation along the Caribbean Plate margin. Journal of South American Earth Sciences, 70: 55–68. https://doi.org/10.1016/j.jsames.2016.04.011

 

Sánchez, J. & Mann, P. 2015. Integrated structural and basinal analysis of the Cesar–Ranchería Basin, Colombia: Implications for its tectonic history and petroleum systems. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean Margin. American Association of Petroleum Geologists, Memoirs 108, p. 431–470. https://doi.org/10.1306/13531945M1083648

 

Tagami, T. & O'Sullivan, P.B. 2005. Fundamentals of fission–track thermochronology. In: Reiners, P.W. & Ehlers, T.A. (editors), Low temperature thermochronology: Techniques, interpretations, and applications. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry 58, p. 19–47. Washington.

 

Trenkamp, R., Kellogg, J.N., Freymueller, J.T. & Mora, H. 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2): 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4

 

Tschanz, C.M., Jimeno, A. & Cruz, J. 1969. Geology of the Sierra Nevada de Santa Marta area (Colombia): Preliminary report. Ingeominas, 288 p. Bogotá.

 

Tschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H. & Cebula, G.T. 1974. Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geological Society of America Bulletin, 85(2): 273–284. https://doi.org/10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2

 

Vermeesch, P. 2012. On the visualization of detrital age distributions. Chemical Geology, 312–313: 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021

 

Villagómez, D. & Spikings, R. 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous – Tertiary evolution of the northern Andes. Lithos, 160–161: 228–249. https://doi.org/10.1016/j.lithos.2012.12.008

 

Villagómez, D., Spikings, R., Mora, A., Guzmán, G., Ojeda, G., Cortés, E. & van der Lelij, R. 2011. Vertical tectonics at a continental crust–oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30(4): 1–18. https://doi.org/10.1029/2010TC002835

 

Vinasco, C.J., Cordani, U.G., González, H., Weber, M. & Peláez, C. 2006. Geochronological, isotopic, and geochemical data from Permo – Triassic granitic gneisses and granitoids of the Colombian central Andes. Journal of South American Earth Sciences, 21(4): 355–371. https://doi.org/10.1016/j.jsames.2006.07.007

 

Weber, M., Cardona, A., Paniagua, F., Cordani, U., Sepúlveda, L. & Wilson, R. 2009. The Cabo de la Vela mafic–ultramafic complex, northeastern Colombian Caribbean region: A record of multistage evolution of a Late Cretaceous intra–oceanic arc. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 549–568. https://doi.org/10.1144/SP328.22

 

Yarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D. & Ordoñez–Carmona, O. 2014. Seismological observations in northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics, 637: 57–67. https://doi.org/10.1016/j.tecto.2014.09.006


Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: relacionciudadana@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer