Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Servicio Geológico Colombiano

Skip Navigation Linksv2ch9
Seleccione su búsqueda
miig

 Volume 2 Chapter 9

Chapter  9

Biomicrite, Marlstone, and Shale Properties. Exploration of Non–conventional Hydrocarbons from the Cretaceous Colombian Back–Arc Basin   

Javier GUERRERO, Alejandra MEJÍA–MOLINA, and José OSORNO

https://doi.org/10.32685/pub.esp.36.2019.09

ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 2: 978-958-52959-3-3

ISBN digital Vol. 2: 978-958-52959-8-8​



Citation is suggested as: 
Guerrero, J., Mejía–Molina, A. & Osorno, J. 2020. Biomicrite, marlstone, and shale properties: Exploration of nonconventional hydrocarbons in the Cretaceous Colombian back–arc basin. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 299–333. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.09

Download chapter  ​     

Abstract 

The nonconventional hydrocarbon potential of the Cretaceous Colombian back–arc basin is explored taking into consideration the properties of fine–grained units, including biomicrite, marlstone, and shale, in terms of total organic carbon content, gas content, vitrinite reflectance, porosity, permeability, pyrolysis, and organic geochemistry of samples collected from outcrop sections and wells in several localities in the core of the Eastern Cordillera, Middle Magdalena Valley, and Catatumbo. The best properties are from the Turonian to Santonian limestones of La Luna Formation and time–equivalent units, but other limestones of Albian and Campanian ages, including the Hilo Formation and the Oliní Group, have potential. La Luna Formation was deposited during a transgressive and relatively high sea level interval; it is composed of biomicrites of planktonic foraminifera, with minor interbedding of marlstones. Diagenetic cherts resulting from replacement of calcite by quartz are also present. The average total organic carbon values of the formation are excellent, between 4.9 and 11.6% for sections in the area of Aguachica, 5.4 to 8.6% in the area of Barichara, and 6.1 to 7.2% in the area of Cúcuta. These high values of total organic carbon are systematically associated with moderate values of thermal maturity, between 0.8 and 1.3% Ro; the interval contains mainly type II kerogen, with minor mixtures of types II–III.

 

Keywords: Cretaceous, back–arc, nonconventional hydrocarbons, limestones.​


Resumen 


El potencial de hidrocarburos no convencionales de la Cuenca Cretácica Colombiana de back–arc se explora teniendo en cuenta las propiedades de unidades de grano fino, incluyendo biomicrita, marga y lodolita, en términos de contenido de carbono orgánico total, contenido de gas, reflectancia de vitrinita, porosidad, permeabilidad, pirólisis y geoquímica orgánica de muestras recolectadas de secciones de afloramiento y pozos en varias localidades del núcleo de la cordillera Oriental, Valle Medio del Magdalena y Catatumbo. Las mejores propiedades provienen de las calizas del Turoniano al Santoniano de la Formación La Luna y unidades equivalentes en tiempo, pero otras calizas de edades albianas y campanianas, incluyendo la Formación Hilo y el Grupo Oliní, tienen potencial. La Formación La Luna se depositó durante un intervalo transgresivo y relativamente alto del nivel del mar; está compuesta por biomicritas de foraminíferos planctónicos, con intercalaciones menores de margas. Cherts diagenéticos resultantes del reemplazo de calcita por cuarzo también están presentes. Los valores promedio de carbono orgánico total de la formación son excelentes, entre 4,9 y 11,6 % para secciones en el área de Aguachica, 5,4 a 8,6 % en el área de Barichara y 6,1 a 7,2 % en el área de Cúcuta. Estos altos valores de carbono orgánico total se asocian sistemáticamente con valores moderados de madurez térmica, entre 0,8 y 1,3 % Ro; el intervalo contiene principalmente kerógeno tipo II, con mezclas menores de los tipos II–III.

 

Palabras clave: Cretácico, back–arc, hidrocarburos no convencionales, calizas.​


Abbreviations 


ANH                             Agencia Nacional de Hidrocarburos

HC                                   Hydrocarbon

HI                                       Hydrogen index

HST                                Highstand systems tract

ICP–MS                  Inductively coupled plasma mass spectrometry

MMV                           Middle Magdalena Valley

MORB                        Mid–ocean ridge basalt

PI                                       Production index

Ro                                   Thermal maturity

RST                               Regressive systems tract

SEM                             Scanning Electron Microscope

Tmax                           Temperature of maximum hydrocarbon generation

TOC                              Total organic carbon

TST                               Transgressive systems tract

UMV                            Upper Magdalena Valley

XRD                              X–ray diffraction​


References


Aguilera, R.C., Sotelo, V.A., Burgos, C.A., Arce, C., Gómez, C., Mojica, J., Castillo, H., Jiménez, D. & Osorno, J. 2010. Organic Geochemistry Atlas of Colombia. Earth Sciences Research Journal, Special Edition 14, 174 p.

 

Casadiego, E. & Rios, C. 2016. Lithofacies analysis and depositional environment of the Galembo Member of La Luna Formation. Ciencia, Tecnología y Futuro, 4(1): 37–56.

 

Cerón, M.R., Walls, J.D. & Diaz, E. 2013. Comparison of reservoir quality from La Luna, Gacheta, and Eagle Ford Shale Formations using digital rock physics. Search and Discovery Article 50875. 15 p.

 

Galvis–Portilla, H.A., Higuera–Diaz, I., Cespedes, S., Ballesteros, C., Forero, S., Marfisi, N., Cantisano, M., Pineda, E., Pachon, Z., Slatt, R.M., Ramirez, R., Guzman, G. & Torres, A. 2014. Regional sequence stratigraphy of the Upper Cretaceous La Luna Formation in the Magdalena Valley Basin, Colombia. Unconventional Resources Technology Conference, paper 1934959, 10 p. Denver. https://doi.org/10.15530/URTEC-2014-1934959

 

Guerrero, J. 2002a. A proposal on the classification of systems tracts: Application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 1: Berriasian to Hauterivian. Geología Colombiana, (27): 3–25.

 

Guerrero, J. 2002b. A proposal on the classification of systems tracts: Application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian. Geología Colombiana, (27): 27–49.

 

Guerrero, J., Sarmiento, G. & Navarrete, R. 2000. The stratigraphy of the W side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of selected areas and type localities including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana, (25): 45–110.

 

Guerrero, J., Mejía–Molina, A. & Osorno, J. 2020. Detrital U–Pb provenance, mineralogy, and geochemistry of the Cretaceous Colombian back–arc basin. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 261–297. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.08

 

Kennedy, R., Luo, L.X. & Kuuskra, V. 2016. The unconventional basins and plays–North America, the rest of the world, and emerging basins. In: Ahmed, U. & Meehan, D.N. (editors), Unconventional oil and gas resources: Exploitation and development. CRC Press, p. 76–111. Boca Raton, USA.

 

Liborius, A. & Slatt, R. 2014. Geological characterization of La Luna Formation as an unconventional resource in Lago de Maracaibo Basin, Venezuela. Unconventional Resources Technology Conference, paper 2461968. 20 p. Denver, CO, USA. https://doi.org/10.15530/urtec-2016-2461968

 

Mastalerz, M., Karayigit, A.I., Hampton, L. & Drobniak, A. 2016. Variations in gas content in organic matter–rich low maturity shale; example from the New Albany Shale in the Illinois Basin. Jacobs Journal of Petroleum and Natural Gas, 1: 1−16.

 

Morales, L.G., Podesta, D., Hatfield, W., Tanner, H.H., Jones, S.H., Barker, M.H.S., O'Donoghue, D.J., Mohler, C.E., Dubois, E.P., Jacobs, C. & Goss, C.R. 1958. General geology and oil occurrences of Middle Magdalena Valley, Colombia: South America. In: Weeks, L.G. (editor), Habitat of Oil Symposium. American Association of Petroleum Geologists, p. 641–695. Tulsa, USA.

 

Nuñez–Betelu, L. & Baceta, J.I. 1994. Basics and application of rock–eval/TOC pyrolysis: An example from the uppermost Paleocene/lowermost Eocene in the Basque Basin, Western Pyrenees. Natur Zientziak, (46): 43–62.

 

Peters, K.E. & Moldowan, J.M. 1993. The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, 699 p. New Jersey.

 

Rangel, A., Osorno, J.F., Ramirez, J.C., De Bedout, J., González, J.L. & Pabón, J.M. 2017. Geochemical assessment of the Colombian oils based on bulk petroleum properties and biomarker parameters. Marine and Petroleum Geology, 86: 1291–1309. https://doi.org/10.1016/j.marpetgeo.2017.07.010

 

Torres, E.J., Slatt, R., Philp, P., O'Brien, N.R.O. & Rodriguez, H.L. 2015. Unconventional resources assessment of La Luna Formation in the Middle Magdalena Valley Basin, Colombia. Search and Discovery Article 80469. Denver, CO, USA.

 

Veiga, R. & Dzelalija, F. 2014. A regional overview of the La Luna Formation and the Villeta Group as shale gas/shale oil in the Catatumbo, Magdalena Valley and Eastern Cordillera Regions, Colombia. Search and Discovery Article 10565. Cartagena.

 

Walls, J.D., Cerón, M.R. & Anderson, J. 2014. Characterizing unconventional resource potential in Colombia; a digital rock physics project. Unconventional Resources Technology Conference, paper 1913256, 9 p. Denver. https://doi.org/10.15530/urtec-2014-1913256

 

Zumberge, J. 1984. Source rocks of the La Luna Formation (Upper Cretaceous) in the Middle Magdalena Valley, Colombia. In: Palacas, J. (editor), Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. American Association of Petroleum Geologists, Special volumes, 18, p. 127–133.