Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

El Estado no tiene porqué ser aburrido ¡conoce a gov.co!

¿Sabes que es GOV.CO?

¿Sabes que es GOV.CO? Conócelo aquí

Servicio Geológico Colombiano

Skip Navigation Linksv4ch17
Seleccione su búsqueda
miig

​​Volcán Tabor, Ibagué, Tolima

 Volume 4 Chapter 17

Chapter 17

Integrated Perspective of the Present–Day Stress and Strain Regime in Colombia from Analysis of Earthquake Focal Mechanisms and Geodetic Data​   

Mónica ARCILA and Alfonso MUÑOZ–MARTÍN

https://doi.org/10.32685/pub.esp.38.2019.17


Citation is suggested as: 

Arcila, M. & Muñoz–Martín, A. 2020. Integrated perspective of the present–day stress and strain regime in Colombia from analysis of earthquake focal mechanisms and geodetic data. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Qua­ternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 21 p. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.17


Download chapter  ​                    Download supplementary information​  ​​

Download EndNote reference​



Abstract


Focal mechanism analysis is a powerful tool for analyzing the geodynamic context of broad and complex regions, such northwestern South America. In this zone, a complex ​tectonic   convergence occurs among the Caribbean, Nazca, and South American Plates. The orientations of the maximum horizontal shortening and the values of the brittle strain/stress regime (k' ratio) are obtained based on the analysis of  617 centroid–moment tensors reported from 1976 to 2017 in the Global Centroid–Moment Tensor Project. These results are complemented with an analysis of GPS velocities, which can be used to determine the surficial deformation and to compare it with the crustal deformation to define the stress field in Colombia, and to formulate a seismotectonic model. This model is characterized by the slow southeastwards displacement of the Caribbean Plate, the convergence of the Andean, Coiba, and Panamá Blocks in northwestern Colombia, and the westwards convergence of the Nazca Plate below the South American overriding Plate. The strain/stress regime maps also show different tectonic environments and large–scale geological heterogeneities.

 

Keywords: Andean, active stress, strain, focal mechanism, GPS velocities.



Resumen


El análisis de mecanismos focales es una herramienta poderosa para analizar el contexto geodinámico de regiones extensas y complejas, como la esquina noroccidental de Suramérica. En esta zona se produce una compleja convergencia tectónica entre las placas del Caribe, de Nazca y de Suramérica. Los valores para la dirección de máximo acortamiento horizontal y el régimen frágil de esfuerzo/deformación (k') son obtenidos para el análisis de 617 tensores de momento sísmico reportados desde 1976 hasta 2017 en el Global Centroid–Moment–Tensor Project. Estos resultados se complementan con un análisis de las velocidades GPS, que permite analizar la deformación superficial, y compararla con la deformación de la corteza, para definir el campo de esfuerzos en Colombia y formular un modelo sismotectónico. Este modelo está caracterizado por un lento desplazamiento hacia el sureste de la Placa del Caribe, la convergencia de los bloques Andino, Coiba y Panamá en el noroeste de Colombia y la convergencia hacia el oeste de la Placa de Nazca por debajo de la Placa de Suramérica cabalgante. Los mapas de régimen de esfuerzo/deformación también muestran diferentes ambientes tectónicos y heterogeneidades geológicas de gran escala.​

 

Palabras clave: andino, esfuerzo activo, deformación, mecanismo focal, velocidades GPS.

​ 


Abbreviations


CMT                                                  Centroid–moment tensor

Dey                                                    Maximum horizontal shortening

Ey                                                         Axis of maximum horizontal shortening

Ez                                                         Axis of vertical strain

DGFI–TUM                         Deutsches Geodätisches Forschungsinstitut der Technischen Universität München

GMT                                               Generic Mapping Tools

GNSS                                            Global Navigation Satellite System

GPS                                                  Global Positioning System

IGb08                                        IGS terrestrial reference frame

k'                                                           Ellipsoid shape factor

Mw                                                    Coment magnitude

P                                                            Compression axis

R                                                            Rake

SIR15P01                           Solución multianual

SIRGAS                                    Sistema de Referencia Geocéntrico para las Américas

SIRGAS–CON                SIRGAS network of continuous operation

T                                                             Tension axis

THD                                                  Total horizontal gradient

UCM                                               Universidad Complutense de Madrid

Ε                                                              Strain tensor

Φ                                                            Internal friction angle



References​

 

Anderson, E.M. 1951. The dynamics of faulting and dike formation: With applications to Britain. Oliver and Boyd, 1913 p. Edinburgh, Scotland.

 

Angelier, J. 1994. Fault slip analysis and paleostress reconstruction. In: Hancock, P. (editor), Continental Deformation. Pergamon Press, p. 53–100. New York.

 

Arcila, M., Muñoz–Martín, A. & De Vicente, G. 2000a. Mapa de esfuerzos actuales en el bloque norte de l​os Andes. 2ª Asamblea Hispano Portuguesa de Geodesia y Geofísica. Extended abstract, S03–21, p. 151–152. Lagos, Portugal.

 

Arcila, M., Muñoz–Martín, A. & De Vicente, G. 2000b. Marco geotectónico para el noroeste de Suramérica y sur de Centroamérica. Geotemas, 1(2): 279–283.

 

Arcila, M., Muñoz–Martín, A. & De Vicente, G. 20​02. Análisis sismotectónico de la convergencia Caribe, Nazca, Suramérica. Primer Simposio Colombiano de Sismología. Memoirs in CD ROM, 16 p. Bogotá.

 

Audemard, F.E. & Audemard, F.A. 2002. Structure of the Mérida Andes, Venezuela: Relations with the South America–Caribbean geodynamic interaction. Tectonophysics, 345(1–4): 299–327. https://doi.org/10.1016/S0040-1951(01)00218-9

 

Bott, M.H.P. 1959. The mechanism of oblique slip faulting. Geological Magazine, 96(2): 109–117. https://doi.org/10.1017/S0016756800059987

 

Capote, R., De Vicente, G. & González–Casado, J.M. 1991. An application of the slip model of brittle deformation to focal mechanism analysis in three different plate tectonic situations. Tectonophysics, 191(3–4): 399–409. https://doi.org/10.1016/0040-1951(91)90070-9

 

Cardona, C., Salcedo, E.deJ. & Mora, H. 2005. Caracterización sismotectónica y geodinámica de la fuente sismogénica de Murindó, Colombia. Boletín de Geología, 27(44): 115–132.​

 

Castillo, J.E. & Mojica, J. 1990. Determinación de la orientación de esfuerzos actuales a partir de deformaciones tectónicas (“breakouts") en algunos pozos petroleros de los Llanos Orientales y del Valle Medio del Magdalena, Colombia. Geología Colombiana, (17): 123–132.

 

Colmenares, L. & Zoback, M.D. 2003. Stress field and seismotectonics of northern South America. Geology, 31(8): 721–724. https://doi.org/10.1130/G19409.1

 

Corredor, F. 2003. Seismic strain rates and distributed continental deformation in the northern Andes and three–dimensional seismotectonics of northwestern South America. Tectonophysics, 372(3–4): 147–166. https://doi.org/10.1016/S0040-1951(03)00276-2

 

Delvaux, D. & Sperner B. 2003. New aspects of tectonic stress inversion with reference to the TENSOR program. In: Nieuwland, D.A. (editor), New insights into structural interpretation and modelling. Geological Society of London, Special Publication 212, p. 75–100. https://doi.org/10.1144/GSL.SP.2003.212.01.06

 

DeMets, C., Gordon, R.G. & Argus, D.F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1): 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

 

De Vicente, G. 1988. Análisis poblacional de fallas: El sector de enlace Sistema Central–cordillera Ibérica. Doctorade thesis, Universidad Complutense de Madrid, 317 p. Madrid.

 

De Vicente, G., Cloetingh, S., Muñoz–Martín, A., Olaiz, A., Stich, D., Vegas, R., Galindo–Zaldivar, J. & Fernández–Lozano, J. 2008. Inversion of moment tensor focal mechanisms for active stresses around the microcontinent Iberia: Tectonic implications. Tectonics, 27(1): 1–22. https://doi.org/10.1029/2006TC002093

 

Dimaté, C., Rivera, L., Taboada, A., Delouis, B., Osorio, A., Jiménez, E., Fuenzalida, A., Cisternas, A. & Gomez, I. 2003. The 19 January 1995 Tauramena (Colombia) earthquake: Geometry and stress regime. Tectonophysics, 363(3–4): 159–180. https://doi.org/10.1016/S0040-1951(02)00670-4

 

Dziewonski, A.M., Chou, T.A. & Woodhouse, J.H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4): 2825–2852. https://doi.org/10.1029/JB086iB04p02825

 

Egbue, O., Kellogg, J., Aguirre, H. & Torres, C. 2014. Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 58: 8–21. https://doi.org/10.1016/j.jsg.2013.10.004

 

Ekström, G., Nettles, M. & Dziewonski, A.M. 2012. The global CMT project 2004–2010: Centroid–moment tensors for 13 017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201: 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

 

Engdahl, E.R., van der Hilst, R. & Buland, R. 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3): 722–743.

 

Freymueller, J. T., Kellogg, J. N. & Vega V. 1993. Plate motions in the North Andean region. Journal of Geophysical Research: Solid Earth, 98 (B12), 21853–21863 https://doi.org/10.1029/93JB00520

 

Frohlich, C. & Davis, S. D. 1999. How well constrained are well–constrained T, B, and P axes in moment tensor catalogs? Journal of Geophysical Research: Solid Earth, 104(B3): 4901–4910. https://doi.org/10.1029/1998JB900071

 

Global Volcanism Program. 2013. Volcanoes of the world. In: Venzke, E. (editor), Smithsonian Institution, version 4.7.1 (consulted in July 2018). https://doi.org/10.5479/si.GVP.VOTW4-2013

 

Haines, A.J. & Holt, W.E. 1993. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. Journal of Geophysical Research: Solid Earth, 98(B7): 12057–12082. https://doi.org/10.1029/93JB00892

 

Haines, A.J., Dimitrova, L.L., Wallace, L.M. & Williams, C.A. 2015. Enhanced surface imaging of crustal deformation: Obtaining tectonic force fields using GPS data. Springer Briefs in Earth Sciences, 99 p. https://doi.org/10.1007/978-3-319-21578-5

 

Heidbach, O., Rajabi, M., Reiter, K.  & Ziegler, M, WSM Team. 2016. World Stress Map Database Release 2016. GFZ Data Services. http://doi.org/10.5880/WSM.2016.001

 

International Seismological Centre. 2019. ISC–EHB dataset. https://doi.org/10.31905/PY08W6S3

 

Kellogg, J.N.  ​ & Vega, V. 1995. Tectonic development of Panamá, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In: Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 75–90. Boulder, USA. https://doi.org/10.1130/SPE295-p75

 

Kreemer, C., Blewitt, G. & Klein, E.C. 2014. A geodetic plate motion and global strain rate model. Geochemistry, Geophysics, Geosystems, 15(10): 3849–3889. https://doi.org/10.1002/2014GC005407

 

McKenzie, D.P. 1969. The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2): 591–601.

 

Muñoz–Martín, A., Cloetingh, S., De Vicente, G. & Andeweg, B. 1998. Finite–element modeling​ of tertiary paleostress fields in the eastern part of the Tajo Basin (central Spain). Tectonophysics, 300(1–4): 47–62. https://doi.org/10.1016/S0040-1951(98)00233-9

 

Olaiz, A.J., Muñoz–Martín, A., De Vicente, G., Vegas, R. & Cloetingh, S. 2009. European continuous active tectonic strain–stress map. Tectonophysics, 474(1–2): 33–40. https://doi.org/10.1016/j.tecto.2008.06.023

 

Reches, Z. 1978. Analysis of faulting in three–dimensional strain fields. Tectonophysics, 47(1–2): 109–129. https://doi.org/10.1016/0040-1951(78)90154-3

 

Reches, Z. 1983. Faulting of rocks in three–dimensional strain fields II. Theoretical analysis. Tectonophysics, 95(1–2): 133–156. https://doi.org/10.1016/0040-1951(83)90264-0

 

Reches, Z., Baer, G. & Hatzor, Y. 1992. Constraints on the strength of the upper crust from stress inversion of fault slip data. Journal of Geophysical Research: Solid Earth, 97(B9): 12481–12493. https://doi.org/10.1029/90JB02258

 

Rivera, L.A. 1989. Inversion du tenseur des contraintes et des mécanismes au foyer à partir des données de polarité pour une population de séismes: Application a l'etude du foyer de sismicite intermediaire de Bucaramanga (Colombie). Doctorade thesis, Université Louis–Pasteur de Strasbourg, 266 p. Strasbourg, France.

 

Salcedo–Hurtado, E. 1995. Deformación sísmica en las zonas sismoactivas de Chocó y el “nido" de Bucaramanga. Boletín Geológico, 35(1): 51–66.

 

Sánchez, L. & Drewes, H. 2016a. Crustal deformation and surface kinematics after the 2010 earthquakes in Latin America. Journal of Geodynamics, 102: 1–23. https://doi.org/10.1016/j.jog.2016.06.005

 

Sánchez, L. & Drewes, H. 2016b. Crustal deformation and surface kinematics after the 2010 earthquakes in Latin America. PANGAEA, Data publisher for Earth & environmental science. https://doi.org/10.1594/PANGAEA.863132

 

Sandwell, D.T. & Wessel, P. 2016. Interpolation of 2–D vector data using constraints from elasticity. Geophysical Research Letters, 43(20): 10703–10709. https://doi.org/10.1002/2016GL070340

 

Sébrier, M., Mercier, J.L., Mégard, F., Laubacher, G. & Carey–Gailhardis, E. 1985. Quaternary normal and reverse faulting and the state of stress in the Central Andes of south Peru. Tectonics, 4(7): 739–780. https://doi.org/10.1029/TC004i007p00739

 

SIRGAS. 2007. Red de referencia. http://www.sirgas.org/es/sirgas-con-network/ (consulted in November 2019)

 

Shen, Z.K., Wang, M., Zeng, Y. & Wang, F. 2015. Optimal interpolation of spatially discretized geodetic data. Bulletin of the Seismological Society of America, 105(4): 2117–2127. https://doi.org/10.1785/0120140247

 

Stephan, J.F. 1982. Évolution géodynamique du domaine Caraïbe, Andes et chaîne Caraïbe, sur la tranversale de Barquisimeto (Venezuela). Doctorade thesis, University Pierre y Marie Curie, 512 p. Paris

 

Stephan, J.F., Blanchet, R.     & De Lepinay, B. M. 1986. Northern and southern Caribbean festoons (Panamá, Colombia–Venezuela and Hispa–Niola–Puerto Rico), interpreted as pseudosubductions induced by the east–west shortening of the pericaribbean continental frame. In: Wezel, F.C. (editor) The Origin of Arcs. Developments in Geotectonics, 21: p. 401–422. https://doi.org/10.1016/b978-0-444-42688-8.50022-9

 ​

Trenkamp, R., Kellogg, J.N., Freymueller, J.T. & Mora, H. 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2): 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4

 

Vargas, C.A., Pujades, L.G., Ugalde, A. & Canas, J.A. 2002. Estado de deformación y esfuerzos en el territorio colombiano. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 26(100): 373–391.

 

Veloza, G., Styron R., Taylor, M. & Mora, A. (2012). Open–source archive of active faults for northwest South America. Geological Society of America Today, 22 (10): 4–10, https://doi.org/10.1130/GSAT-G156A.1

 

Wessel, P. & Smith W.H.F. 1991. Free software helps map and display data. EOS, Transactions American Geophysical Union, 72(41): 441–445. https://doi.org/10.1029/90EO00319

 

Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J. & Wobbe, F. 2013. Generic mapping tools: Improved version released. EOS, Transactions American Geophysical Union, 94(45): 409–410. https://doi.org/10.1002/2013EO450001

 

Weston, J., Engdahl, ER., Harris, J., Di Giacomo, D. & Storchak, D.A. 2018. ISC–EHB: Reconstruction of a robust earthquake data set. Geophysical Journal International, 214(1): 474–484. https://doi.org/10.1093/gji/ggy155

 

Zoback, M.L. 1992. First– and second–order patterns of stress in the lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97(B8): 11703–11728. https://doi.org/10.1029/92JB00132

 

Zoback, M.L., Zoback, M.D., Adams, J., Assumpçao, M., Bell, S., Bergman, E.A., Blümling, P., Brereton, N.R., Denham, D., Ding, J., Fuchs, K., Gay, N., Gregersen, S., Gupta, H.K., Gvishiani, A., Jacob, K., Klein, R., Knoll, P., Magee, M., Mercier, J.L., Müller, B.C., Paquin, C., Rajendran, K., Stephansson, O., Suarez, G., Suter, M., Udias, A., Xu, Z.H. & Zhizhin, M. 1989. Global patterns of tectonic stress. Nature, 341(6240): 291–298. https://doi.org/10.1038/341291a0