Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Skip Navigation Linksv2ch1
Seleccione su búsqueda
miig

​​​

 Volume 2 Chapter 1

Chapter 1

The Permian – Triassic History of Magmatic Rocks of the Northern Andes (Colombia and Ecuador): Supercontinent Assembly and Disassembly   

Richard SPIKINGS and Andre PAUL

https://doi.org/10.32685/pub.esp.36.2019.01


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 2: 978-958-52959-3-3

ISBN digital Vol. 2: 978-958-52959-8-8

Citation is suggested as: 

Spikings, R. & Paul, A. 2019. The Permian – Triassic history of magmatic rocks of the northern Andes (Colombia and Ecuador): Supercontinent assembly and disassembly. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 1–43. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.01



Abstract 

Northwestern South America and its conjugate margins record the Permian assembly of Pangaea, its Triassic fragmentation and opening of the proto–Caribbean ocean, and the onset of the Andean cycle at ca. 209 Ma. We review Permian and Triassic magmatic rocks exposed in the cordilleras and dispersed inliers in Colombia and Ecuador and present a large geochronological, geochemical, isotopic, and thermochronological database. These data are used to develop a model for the evolution of rocks within Colombia and Ecuador during the formation and destruction of Pangaea. Similar data has been assembled from studies of the southern North American and western Caribbean plates, as well as Venezuela and further south within South America, and a large–scale reconstruction for western Pangaea is provided. Permian magmatic rocks in Colombia and Ecuador (288–253 Ma) formed within a continental arc system which extended from at least southern North America to southern Perú. The Permian arc within northwestern South America was dismembered during Cenozoic interactions with the Caribbean Plate, causing some blocks to be transferred eastwards. Compression and regional metamorphism at ca. 250 Ma is best recorded in the Sierra Nevada de Santa Marta, and represents the final stages of amalgamation and thickening of western Pangaea. Continental rifting prevailed within southern North America and the entire western margin of South America during 245–216 Ma. Significant back–arc extension in northwestern South America leads to a rift–to–drift transition in Colombia and Ecuador, forming oceanic lithosphere of the proto–Caribbean. Rifting failed south of the Huancabamba Deflection and is preserved as Triassic basins in Perú, western Argentina, and Chile. Triassic rifting represents the early fragmentation of western Pangaea, and the attenuation of its margin may be a prelude to complete the separation by enhancing mantle upwelling, inducing a Large Igneous Province, and weakening the crust within a tensile regime.

 

Keywords: Permian – Triassic, Pangaea, supercontinent, continental rift, anatexis.​



Resumen 

El noroccidente de Suramérica y sus márgenes conjugados registran la formación de Pangea durante el Pérmico, su fragmentación durante el Triásico y la apertura del océano proto–Caribe, así como el comienzo del ciclo andino hace ca. 209 Ma. En este capítulo presentamos una revisión de las rocas magmáticas del Pérmico y Triásico que afloran como fragmentos dispersos en las cordilleras de Colombia y Ecuador; además, presentamos una amplia base de datos geocronológica, geoquímica, isotópica y termocronológica. Estos datos se utilizan para desarrollar un modelo de la evolución de las rocas en Colombia y Ecuador durante la formación y la separación de Pangea. Otros estudios en el sur de la Placa de Norteamérica y en el occidente de la Placa del Caribe, así como en Venezuela y más al sur dentro de Suramérica, han sido también tenidos en cuenta para este análisis. Adicionalmente, se preparó una reconstrucción a gran escala del occidente de Pangea. Las rocas magmáticas del Pérmico de Colombia y Ecuador (288–253 Ma) se formaron en un ambiente de arco continental que se extendió al menos desde el sur de Norteamérica hasta el sur de Perú. En el noroccidente de Suramérica, este arco pérmico se separó durante las interacciones con la Placa del Caribe en el Cenozoico, de forma que algunos bloques fueron transferidos hacia el oriente. La compresión y el metamorfismo regional que ocurrieron hace ca. 250 Ma se observan claramente en la Sierra Nevada de Santa Marta y representan los estados finales de la amalgamación y engrosamiento del occidente de Pangea. El rift continental continuó en el sur de Norteamérica y todo el margen occidental de Suramérica durante 245–216 Ma. La extensión en el retroarco en Suramérica fue muy importante y llevó a una transición rift–drift en Colombia y Ecuador, lo que causó la formación de la litósfera oceánica del proto–Caribe. El rift fue abortado al sur de la deflexión de Huancabamba, pero se preservó como cuencas triásicas en Perú, el occidente de Argentina y Chile. Este rift triásico representa una separación temprana del occidente de Pangea y la atenuación de su margen podría ser el preludio de la separación completa de los continentes, ya que potencia el ascenso del manto y esto induce a la formación de una Gran Provincia Ígnea, debilitando la corteza en un régimen de extensión.

 

Palabras clave: andino, esfuerzo activo, deformación, mecanismo focal, velocidades GPS.



Abbreviations

BABB                                                Back–arc basin basalts
CHUR                                              Chondritic uniform   reservoir 
HP/LT                                               High–pressure/low–temperature
ID–TIMS                                       Isotope   dilution   thermal   ionisation   mass   spectrometry 
ISMMB                                              Inner   Santa   Marta   Metamorphic   Belt 
LA–ICP–MS                          Laser ablation inductively   clouped   plasma   mass   spectrometry 
LA–MC–ICP–MS           Laser ablation multi –collector   inductively   coupled   plasma   mass   spectrometry
LILE                                                        Light –ion   lithophile   elements 
MP–HT                                           Medium pressure–high   temperature 
N–MORB                                    Normal   mid–ocean   ridge   basalts
REE                                                       Rare   earth   element 
SHRIMP                                       Sensitive   high–resolution   ion   microprobe
SIMS                                                     Secondary   ion   mass   spectrometry 


References 

Arvizu, H.E., Iriondo, A., Izaguirre, A., Chávez–Cabello, G., Kamenov, G.D., Solís–Pichardo, G., Foster, D.A. & Lozano–Santa Cruz, R. 2009. Rocas graníticas pérmicas en la Sierra Pinta, NW de Sonora, México: Magmatismo de subducción asociado al inicio del margen continental activo del SW de Norteamérica. Revista Mexicana de Ciencias Geológicas, 26(3): 709–728.

 

Aspden, J.A. & Litherland, M. 1992. The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics, 205(1–3): 187–204. https://doi.org/10.1016/0040-1951(92)90426-7

 

Aspden, J.A. & McCourt, W.J. 1986. Mesozoic oceanic terrane in the central Andes of Colombia. Geology, 14(5): 415–418. https://doi.org/10.1130/0091-7613(1986)14<415:MOTITC>2.0.CO;2

 

Aspden, J.A., McCourt, W.J. & Brook, M. 1987. Geometrical control of subduction–related magmatism: The Mesozoic and Cenozoic plutonic history of western Colombia. Journal of the Geological Society, 144(6): 893–905. https://doi.org/10.1144/gsjgs.144.6.0893

 

Aspden, J.A., Bonilla, W. & Duque, P. 1995. The El Oro Metamorphic Complex, Ecuador: Geology and economic mineral deposits. British Geological Survey, Overseas Geology and Mineral Resources 67, 63 p. Nottingham, United Kingdom.

 

Bahlburg, H., Vervoort, J.D., Du Frane, S.A., Bock, B., Augustsson, C. & Reimann, C. 2009. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America. Earth–Science Reviews, 97(1–4): 215–241. https://doi.org/10.1016/j.earscirev.2009.10.006

 

Barredo, S., Chemale, F., Marsicano, C., Ávila, J.N., Ottone, E.G. & Ramos, V.A. 2012. Tectono–sequence stratigraphy and U–Pb zircon ages of the Rincón Blanco depocenter, northern Cuyo Rift, Argentina. Gondwana Research, 21(2–3): 624–636. https://doi.org/10.1016/j.gr.2011.05.016

 

Bartok, P. 1993. Prebreakup geology of the Gulf of Mexico–Caribbean: Its relation to Triassic and Jurassic rift systems of the region. Tectonics, 12(2): 441–459. https://doi.org/10.1029/92TC01002

 

Batchelor, R.A. & Bowden, P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1–4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8

 

Bayona, G., Rapalini, A. & Costanzo–Álvarez, V. 2006. Paleomagnetism in Mesozoic rocks of the northern Andes and its implications in Mesozoic tectonics of northwestern South America. Earth, Planets and Space, 58(10): 1255–1272. https://doi.org/10.1186/BF03352621

 

Bayona, G., Jiménez, G., Silva, C., Cardona, A., Montes, C., Roncancio, J. & Cordani, U. 2010. Paleomagnetic data and K–Ar ages from Mesozoic units of the Santa Marta Massif: A preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences, 29(4): 817–831. https://doi.org/10.1016/j.jsames.2009.10.005

 

Beutel, E.K. 2009. Magmatic rifting of Pangaea linked to onset of South American Plate motion. Tectonophysics, 468(1–4): 149–157. https://doi.org/10.1016/j.tecto.2008.06.019

 

Bouvier, A., Vervoort, J.D. & Patchett, P.J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2): 48–57. https://doi.org/10.1016/j.epsl.2008.06.010

 

Buiter, S.J.H. & Torsvik, T.H. 2014. A review of Wilson cycle plate margins: A role for mantle plumes in continental break–up along sutures? Gondwana Research, 26(2): 627–653. https:/ doi.org/10.1016/j.gr.2014.02.007

 

Bustamante, A., Juliani, C., Essene, E.J., Hall, C.M. & Hyppolito, T. 2012. Geochemical constraints on blueschist– and amphibolite–facies rocks of the Central Cordillera of Colombia: The Andean Barragán region. International Geology Review, 54(9): 1013–1030. https://doi.org/10.1080/00206814.2011.594226

 

Bustamante, C., Archanjo, C.J., Cardona, A., Bustamante, A. & Valencia, V.A. 2017. U–Pb ages and Hf isotopes in zircons from parautochthonous Mesozoic terranes in the western margin of Pangea: Implications for the terrane configurations in the northern Andes. The Journal of Geology, 125(5): 487–500. https://doi.org/10.1086/693014

 

Cardona, A., Cordani, U. & Sánchez, A. 2007. Metamorphic, geochronological and geochemical constraints from the pre–Permian basement of the eastern Peruvian Andes (10° S): A Paleozoic extensional–accretionary orogen? 20th Colloquium on Latin American Earth Sciences, p. 29–30. Kiel, Germany.

 

Cardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J. & Weber, M. 2010a. Permian to Triassic I to S–type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography. Journal of South American Earth Sciences, 29(4): 772–783. https://doi.org/10.1016/j.jsames.2009.12.005

 

Cardona, A., Valencia, V., Bustamante, C., García–Casco, A., Ojeda, G., Ruiz, J., Saldarriaga, M. & Weber, M. 2010b. Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent. Journal of South American Earth Sciences, 29(4): 784–804. https://doi.org/10.1016/j.jsames.2009.08.012

 

Centeno–García, E. & Keppie, J.D. 1999. Latest Paleozoic – early Mesozoic structures in the central Oaxaca Terrane of southern Mexico: Deformation near a triple junction. Tectonophysics, 301(3–4): 231–242. https://doi.org/10.1016/S0040-1951(98)00213-3

 

Chappell, B.W. & White, A.J.R. 1974. Two contrasting granite types. Pacific Geology, 8: 173–174.

 

Charrier, R., Pinto, L. & Rodríguez, M.P. 2007. Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno, T. & Gibbons, W. (editors), The geology of Chile. The Geological Society, p. 21–114. London. https://doi.org/10.1144/GOCH.3

 

Cherniak, D.J., Lanford, W.A. & Ryerson, F.J. 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta, 55(6): 1663–1673. https://doi.org/10.1016/0016-7037(91)90137-T

 

Chew, D.M., Schaltegger, U., Košler, J., Whitehouse, M.J., Gutjahr, M., Spikings, R. & Mišković, A. 2007. U–Pb geochronologic evidence for the evolution of the Gondwanan margin of north–central Andes. Geological Society of America Bulletin, 119(5–6): 697–711. https://doi.org/10.1130/B26080.1

 

Chew, D.M., Magna, T., Kirkland, C.L., Mišković, A., Cardona, A., Spikings, R. & Schaltegger, U. 2008. Detrital zircon fingerprint of the proto–Andes: Evidence for a Neoproterozoic active margin? Precambrian Research, 167(1–2): 186–200. https://doi.org/10.1016/j.precamres.2008.08.002

 

Clift, P.D. & Hartley, A.J. 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology, 35(6): 503–506. https://doi.org/10.1130/G23584A.1

 

Cochrane, R. 2013. U–Pb thermochronology, geochronology and geochemistry of NW South America: Rift to drift transition, active margin dynamics and implications for the volume balance of continents. Doctoral thesis, University of Geneva, 191 p. Geneva, Switzerland. https://doi.org/10.13097/archive-ouverte/unige:30029

 

Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A. & Chiaradia, M. 2014a. Distinguishing between in–situ and accretionary growth of continents along active margins. Lithos, 202–203: 382–394. https://doi.org/10.1016/j.lithos.2014.05.031

 

Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B. & Chiaradia, M. 2014b. Permo–Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191: 383–402. https://doi.org/10.1016/j.lithos.2013.12.020

 

Cochrane, R., Spikings, R., Chew, D., Wotzlaw, J.F., Chiaradia, M., Tyrrell, S., Schaltegger, U. & van der Lelij, R. 2014c. High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta, 127: 39–56. https://doi.org/10.1016/j.gca.2013.11.028

 

Cocks, L.R.M. & Torsvik, T.H. 2002. Earth geography from 500 to 400 million years ago: A faunal and palaeomagnetic review. Journal of the Geological Society, 159(6): 631–644. https://doi.org/10.1144/0016-764901-118

 

Collins, W.J. & Richards, S.W. 2008. Geodynamic significance of S–type granites in circum–Pacific orogens. Geology, 36(7): 559–562. https://doi.org/10.1130/G24658A.1

 

Collins, W.J., Belousova, E.A., Kemp, A.I.S. & Murphy, J.B. 2011. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nature Geoscience, 4: 333–337.

 

Colmenares, F.H., Mesa, A.M., Roncancio, J.H., Arciniegas, E.G., Silva, C.A., Romero, A.J., Pedraza, P.E., Alvarado, S.I., Romero, O.A., Vargas, A.F., Santamaría, J.C. & Cardona, A. 2007a. Geologic map of the Sierra Nevada de Santa Marta. Scale 1:200 000. Ingeominas–Invemar–Ecopetrol–ICP–Geosearch Ltda. Bogotá.

 

Colmenares, F.H., Mesa, A.M., Roncancio, J.H., Arciniegas, E.G., Pedraza, P.E., Cardona, A., Romero, A.J., Silva, C.A., Alvarado, S.I., Romero, O.A. & Vargas, A.F. 2007b. Geología de las planchas 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 33, 34 y 40. Proyecto: Evolución geohistórica de la Sierra Nevada de Santa Marta. Invemar–Ingeominas–ICP–Ecopetrol–Geosearch Ltda., 401 p. Bogotá.

 

Colony, R.J. & Sinclair, J.H. 1932. Metamorphic and igneous rocks of eastern Ecuador. Annals of the New York Academy of Sciences, 34(1): 1–53. https://doi.org/10.1111/j.1749-6632.1932.tb56973.x

 

Cordani, U.G., Brito–Neves, B.B. & D'Agrella, M.S. 2003. From Rodinia to Gondwana: A review of the available evidence from South America. Gondwana Research, 6(2): 275–283. https://doi.org/10.1016/S1342-937X(05)70976-X

 

Correa–Martínez, A.M. 2007. Petrogênese e evolução do Ofiolito de Aburrá, Cordilhera Central dos Andes colombianos. Doctoral thesis, Universidade de Brasília, 204 p. Brasilia.

 

Dasch, L.E. 1982. U–Pb geochronology of the Sierra de Perijá, Venezuela. Master thesis, Case Western Reserve University, 183 p. Cleveland, USA.

 

Davies, J.H.F.L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M. & Schaltegger, U. 2017. End–Triassic mass extinction started by intrusive CAMP activity. Nature Communications, 8(15996): 1–8. https://doi.org/10.1038/ncomms15596

 

Dickinson, W.R. & Lawton, T.F. 2001. Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geological Society of America Bulletin, 113(9): 1142–1160. https://doi.org/10.1130/0016-7606(2001)113<1142:CTCAAF>2.0.CO;2

 

Ducea, M.N., Gehrels, G.E., Shoemaker, S., Ruiz, J. & Valencia, V.A. 2004. Geologic evolution of the Xolapa Complex, southern Mexico: Evidence from U–Pb zircon geochronology. Geological Society of America Bulletin, 116(7–8): 1016–1025. https://doi.org/10.1130/B25467.1

 

Elías–Herrera, M. & Ortega–Gutiérrez, F. 2002. Caltepec Fault zone: An early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán Complexes, southern Mexico, and regional tectonic implications. Tectonics, 21(3): 4-1–4-18. https://doi.org/10.1029/2000TC001278

 

Feininger, T., Barrero, D. & Castro, N. 1972. Geología de parte de los departamentos de Antioquia y Caldas (sub–zona II–B). Boletín Geológico, 20(2): 1–173.

 

Franzese, J.R. & Spalletti, L.A. 2001. Late Triassic – Early Jurassic continental extension in southwestern Gondwana: Tectonic segmentation and pre–break–up rifting. Journal of South American Earth Sciences, 14(3): 257–270. https://doi.org/10.1016/S0895-9811(01)00029-3

 

Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. & Frost, C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

 

Gerdes, A.G., Montero, P.M., Bea, F.B., Fershater, G.F., Borodina, N.B., Osipova, T.O. & Shardakova, G.S. 2002. Peraluminous granites frequently with mantle–like isotope compositions: The continental–type Murzinka and Dzhabyk Batholiths of the eastern Urals. International Journal of Earth Sciences, 91(1): 3–19. https://doi.org/10.1007/s005310100195

 

Gómez, J., Nivia, Á., Montes, N.E., Jiménez, D.M., Tejada, M.L., Sepúlveda, M.J., Osorio, J.A., Gaona, T., Diederix, H., Uribe, H. & Mora, M., compilers. 2007. Geological Map of Colombia 2007. Scale 1:1 000 000. Ingeominas, 2 sheets. Bogotá.

 

González, H. 1980. Geología de las planchas 167 Sonsón y 187 Salamina. Scale 1:100 000. Ingeominas, Internal report 1760, 262 p. Medellín.

 

Hall, R.B., Álvarez, J. & Rico, H. 1972. Geología de parte de los departamentos de Antioquia y Caldas (sub–zona II–A). Boletín Geológico, 20(1): 1–85.

 

Harris, C., Faure, K., Diamond, R.E. & Scheepers, R. 1997. Oxygen and hydrogen isotope geochemistry of S– and I–type granitoids: The Cape Granite Suite, South Africa. Chemical Geology, 143(1–2): 95–114. https://doi.org/10.1016/S0009-2541(97)00103-4

 

Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J. & Heizler, M.T. 2009. Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta, 73(4): 1039–1051. https://doi.org/10.1016/j.gca.2008.09.038

 

Hartmann, L.A. & Santos, J.O.S. 2004. Predominance of high Th/U, magmatic zircon in Brazilian Shield sandstones. Geology, 32(1): 73–76. https://doi.org/10.1130/G20007.1

 

Hastie, A.R., Kerr, A.C., Pearce, J.A. & Mitchell, S.F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram. Journal of Petrology, 48(12): 2341–2357. https://doi.org/10.1093/petrology/egm062

 

Hatcher, R.D. 2002. Alleghanian (Appalachian) Orogeny, a product of zipper tectonics: Rotational transpressive continent–continent collision and closing of ancient oceans along irregular margins. In: Martínez, J.R., Hatcher, R.D., Arenas, R. & Díaz–García, F. (editors), Variscan–Appalachian dynamics: The building of the late Paleozoic basement. Geological Society of America, Special Paper 364, p. 199–208. https://doi.org/10.1130/0-8137-2364-7.199

 

Helbig, M., Keppie, J.D., Murphy, J.B. & Solari, L.A. 2012. U–Pb geochronological constraints on the Triassic – Jurassic Ayú Complex, southern Mexico: Derivation from the western margin of Pangea–A. Gondwana Research, 22(3–4): 910–927. https://doi.org/10.1016/j.gr.2012.03.004

 

Hervé, F., Fanning, C.M., Calderón, M. & Mpodozis, C. 2014. Early Permian to Late Triassic batholiths of the Chilean Frontal Cordillera (28°–31° S): SHRIMP U–Pb zircon ages and Lu–Hf and O isotope systematics. Lithos, 184–187: 436–446. https://doi.org/10.1016/j.lithos.2013.10.018

 

Horton, B.K., Saylor, J.E., Nie, J., Mora, A., Parra, M., Reyes–Harker, A. & Stockli, D.F. 2010. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U–Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10): 1423–1442. https://doi.org/10.1130/B30118.1

 

Jaillard, E., Soler, P., Carlier, G. & Mourier, T. 1990. Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: A Tethyan model. Journal of the Geological Society, 147(6): 1009–1022. https://doi.org/10.1144/gsjgs.147.6.1009

 

Jaillard, E., Sempere, T., Soler, P., Carlier, G. & Marocco, R. 1995. The role of Tethys in the evolution of the northern Andes between late Permian and late Eocene times. In: Nairn, A.E.M., Ricou, L.E., Vrielynck, B., Dercourt, J., (editors), The ocean basins and margins: The Tethys Ocean. Springer Science+Business Media, p. 463–492. New York. https://doi.org/10.1007/978-1-4899-1558-0_15

 

John, T., Scherer, E.E., Schenk, V., Herms, P., Halama, R. & Garbe–Schönberg, D. 2010. Subducted seamounts in an eclogite–facies ophiolite sequence: The Andean Raspas Complex, SW Ecuador. Contributions to Mineralogy and Petrology, 159(2): 265–284. https://doi.org/10.1007/s00410-009-0427-0

 

Kay, S.M. 1993. Late Paleozoic tectonics in southern South America: A global perspective. Douzième Congrés International de laStratigraphie et Géologie du Carbonifére et Permien. Comptes Rendus, I, p. 109–122.

 

Kay, S.M., Ramos, V.A., Mpodozis, C. & Sruoga, P. 1989. Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: Analogy to the middle Proterozoic in North America? Geology, 17(4): 324–328. https://doi.org/10.1130/0091-7613(1989)017<0324:LPTJSM>2.3.CO;2

 

Kennan, L. & Pindell, J.L. 2009. Dextral shear, terrane accretion and basin formation in the northern Andes: Best explained by interaction with a Pacific–derived Caribbean Plate? In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 487–531. https://doi.org/10.1144/SP328.20

 

Keppie, J.D., Sandberg, C.A., Miller, B.V., Sánchez–Zavala, J.L., Nance, R.D. & Poole, F.G. 2004. Implications of latest Pennsylvanian to middle Permian paleontological and U–Pb SHRIMP data from the Tecomate Formation to re–dating tectonothermal events in the Acatlán Complex, southern Mexico. International Geology Review, 46(8): 745–753. https://doi.org/10.2747/0020-6814.46.8.745

 

Keppie, J.D., Dostal, J., Miller, B.V., Ortega–Rivera, A., Roldán–Quintana, J. & Lee, J.W.K. 2006. Geochronology and geochemistry of the Francisco Gneiss: Triassic continental rift tholeiites on the Mexican margin of Pangea metamorphosed and exhumed in a Tertiary core complex. International Geology Reviews, 48(1): 1–16. https://doi.org/10.2747/0020-6814.48.1.1

 

Kerr, A.C., Marriner, G.F., Tarney, J., Nivia, Á., Saunders, A.D., Thirlwall, M.F. & Sinton, C.W. 1997. Cretaceous basaltic terranes in western Colombia: Elemental, chronological and Sr–Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6): 677–702. https://doi.org/10.1093/petrology/38.6.677

 

Kerr, A.C., Aspden, J.A., Tarney, J. & Pilatasig, L.F. 2002. The nature and provenance of accreted oceanic terranes in western Ecuador: Geochemical and tectonic constraints. Journal of the Geological Society, 159(5): 577–594. https://doi.org/10.1144/0016-764901-151

 

Kirsch, M., Keppie, J.D., Murphy, J.B. & Solari, L.A. 2012. Permian – Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico. Geological Society of America Bulletin, 124(9–10): 1607–1628. https://doi.org/10.1130/B30649.1

 

Laubacher, G. 1978. Géologie des Andes Péruviennes. Géologie de la Cordillère Orientale et de l'Altiplano au nord et nord–ouest du lac Titicaca, Pérou. ORSTOM, 217 p. Paris.

 

Laya, J.C. & Tucker, M.E. 2012. Facies analysis and depositional environments of Permian carbonates of the Venezuelan Andes: Palaeogeographic implications for northern Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 331–332: 1–26. https://doi.org/10.1016/j.palaeo.2012.02.011

 

Litherland, M., Aspden, J.A. & Jemielita, R.A. 1994. The metamorphic belts of Ecuador. Overseas Memoir of the British Geological Survey 11, 147 p. Nottingham, England.

 

Luppo, T., López de Luchi, M.G., Rapalini, A.E., Martínez–Dopico, C.I. & Fanning, C.M. 2018. Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian – Triassic boundary. Journal of South American Earth Sciences, 82: 346–355. https://doi.org/10.1016/j.jsames.2018.01.003

 

Luzieux, L.D.A., Heller, F., Spikings, R., Vallejo, C.F. & Winkler, W. 2006. Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1° N and 3° S: Paleomagnetic, radiometric and fossil evidence. Earth and Planetary Science Letters, 249(3–4): 400–414. https://doi.org/10.1016/j.epsl.2006.07.008

 

MacDonald, W.D. & Hurley, P.M. 1969. Precambrian gneisses from northern Colombia, South America. Geological Society of America Bulletin, 80(9): 1867–1872. https://doi.org/10.1130/0016-7606(1969)80[1867:PGFNCS]2.0.CO;2

 

Maksaev, V., Munizaga, F. & Tassinari, C. 2014. Timing of magmatism of the paleo–Pacific border of Gondwana: U–Pb geochronology of late Paleozoic to early Mesozoic igneous rocks of the north Chilean Andes between 20° and 31° S. Andean Geology, 41(3): 447–506. https://doi.org/10.5027/andgeoV41n3-a01

 

Maniar, P.D. & Piccoli, P.M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

 

Martens, U., Restrepo, J.J., Ordóñez–Carmona, O. & Correa–Martínez, A.M. 2014. The Tahamí and Anacona Terranes of the Colombian Andes: Missing links between South American and Mexican Gondwana margins. The Journal of Geology, 122(5): 507–530. https://doi.org/10.1086/677177

 

Martínez, R.N., Sereno, P.C., Alcober, O.A., Colombi, C.E., Renne, P.R., Montañez, I.P. & Currie, B.S. 2011. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea. Science, 331(6014): 206–210. https://doi.org/10.1126/science.1198467

 

Martin–Gombojav, N. & Winkler, W. 2008. Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: Implications for orogenic development of the northern Andes. Terra Nova, 20(1): 22–31. https://doi.org/10.1111/j.1365-3121.2007.00782.x

 

Maya, M. & González, H. 1995. Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2–3): 43–57.

 

McCourt, W.J., Aspden, J.A. & Brook, M. 1984. New geological and geochronological data from the Colombian Andes: Continental growth by multiple accretion. Journal of the Geological Society, 141(5): 831–845. https://doi.org/10.1144/gsjgs.141.5.0831

 

Mégard, F. 1978. Etude géologique des Andes du Pérou central. ORSTOM, 310 p. Paris.

 

Mišković, A. & Schaltegger, U. 2009. Crustal growth along a non–collisional cratonic margin: A Lu–Hf isotopic survey of the eastern cordilleran granitoids of Peru. Earth and Planetary Science Letters, 279(3–4): 303–315. https://doi.org/10.1016/j.epsl.2009.01.002

 

Mišković, A., Spikings, R.A., Chew, D.M., Košler, J., Ulianov, A. & Schaltegger, U. 2009. Tectonomagmatic evolution of western Amazonia: Geochemical characterization and zircon U–Pb geochronologic constraints from the Peruvian eastern cordilleran granitoids. Geological Society of America Bulletin, 121(9–10): 1298–1324. https://doi.org/10.1130/B26488.1

 

Mitouard, P., Kissel, C. & Laj, C. 1990. Post–Oligocene rotations in southern Ecuador and northern Peru and the formation of the Huancabamba Deflection in the Andean Cordillera. Earth and Planetary Science Letters, 98(3–4): 329–339. https://doi.org/10.1016/0012-821X(90)90035-V

 

Mojica, J. & Kammer, A. 1995. Eventos jurásicos en Colombia. Geología Colombiana, 19: 165–172.

 

Mojica, J. & Prinz–Grimm, P. 2000. La fauna de amonitas del Triásico Tardío en el Miembro Chicalá (parte baja de la Formación Saldaña) en Payandé, Tolima, Colombia. Geología Colombiana, 25: 13–23.

 

Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V. & Jaramillo, C. 2010. Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato–San Jorge and Cesar–Ranchería Basins. Journal of South American Earth Sciences, 29(4): 832–848. https://doi.org/10.1016/j.jsames.2009.07.010

 

Nivia, Á., Marriner, G.F., Kerr, A.C. & Tarney, J. 2006. The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 423–436. https://doi.org/10.1016/j.jsames.2006.07.002

 

Noble, D.C., Silberman, M.L., Megard, F. & Bowman, H.R. 1978. Comendite (peralkaline rhyolite) and basalt in the Mitu Group, Peru: Evidence of Permian – Triassic lithospheric extension in the central Andes. U.S. Geological Survey Journal of Research, 6(4): 453–457.

 

Noble, S.R., Aspden, J.A. & Jemielita, R. 1997. Northern Andean crustal evolution: New U–Pb geochronological constraints from Ecuador. Geological Society of America Bulletin, 109(7): 789–798. https://doi.org/10.1130/0016-7606(1997)109<0789:NACENU>2.3.CO;2

 

Omarini, R.H., Sureda, R.J., Götze, H.J., Seilacher, A. & Pflüger, F. 1999. Puncoviscana folded belt in northwestern Argentina: Testimony of late Proterozoic Rodinia fragmentation and pre–Gondwana collisional episodes. International Journal of Earth Sciences, 88(1): 76–97. https://doi.org/10.1007/s005310050247

 

Ordóñez–Carmona, O. & Pimentel, M.M. 2002. Rb–Sr and Sm–Nd isotopic study of the Puquí Complex, Colombian Andes. Journal of South American Earth Sciences, 15(2): 173–182. https://doi.org/10.1016/S0895-9811(02)00017-2

 

Ordóñez–Carmona, O., Restrepo, J.J. & Pimentel, M.M. 2006. Geochronological and isotopical review of pre–Devonian crustal basement of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 372–382. https://doi.org/10.1016/j.jsames.2006.07.005

 

Ortega–Obregón, C., Solari, L., Gómez–Tuena, A., Elías–Herrera, M., Ortega–Gutiérrez, F. & Macías–Romo, C. 2014. Permian – Carboniferous arc magmatism in southern Mexico: U–Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana. International Journal of Earth Sciences, 103(5): 1287–1300. https://doi.org/10.1007/s00531-013-0933-1

 

Pankhurst, R.J., Rapela, C.W. & Fanning, C.M. 2000. Age and origin of coeval TTG, I– and S–type granites in the Famatinian belt of NW Argentina. Transactions of the Royal Society of Edinburgh: Earth and Environmental Sciences, 91(1–2): 151–168. https://doi.org/10.1017/S0263593300007343

 

Parada, M.A., López–Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderón, M., Aguirre, L., Féraud, G., Espinoza, F., Moreno, H., Figueroa, O., Muñoz–Bravo, J., Troncoso–Vásquez, R. & Stern, C.R. 2007. Andean magmatism. In: Moreno, T. & Gibbons, W. (editors), The geology of Chile. The Geological Society, p. 115–146. London. https://doi.org/10.1144/GOCH.4

 

Parson, L.M. & Wright, I.C. 1996. The Lau–Havre–Taupo back–arc basin: A southward–propagating, multi–stage evolution from rifting to spreading. Tectonophysics, 263(1–4): 1–22. https://doi.org/10.1016/S0040-1951(96)00029-7

 

Paul, A. 2017. Advancing U–Pb high–temperature thermochronology by combining single grain and intra–grain dating. Doctoral thesis, University of Geneva. Geneva, 201 p., Switzerland. https://doi.org/10.13097/archive-ouverte/unige:102601

 

Paul, A., Spikings, R., Ulianov, A. & Ovtcharova, M. 2018. High temperature (>350 °C) thermal histories of the long lived (>500 Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U–Pb thermochronology. Geochimica et Cosmochimica Acta, 228: 275–300. https://doi.org/10.1016/j.gca.2018.02.033

 

Peacock, M.A. 1931. Classification of igneous rock series. The Journal of Geology, 39(1): 54–67.

 

Peccerillo, A. & Taylor, S.R. 1976. Geochemistry of Eocene calc–alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/BF00384745

 

Pindell, J.L. 1985. Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and proto–Caribbean. Tectonics, 4(1): 1–39. https://doi.org/10.1029/TC004i001p00001

 

Pindell, J. & Barrett, S.F. 1990. Geological evolution of the Caribbean region; a plate–tectonic perspective. In: Dengo, G. & Case, J.E. (editors), The Caribbean region. Geological Society of America, p. 405–432. https://doi.org/10.1130/DNAG-GNA-H.405

 

Pindell, J. & Dewey, J.F. 1982. Permo–Triassic reconstruction of western Pangaea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics, 1(2): 179–211. https://doi.org/10.1029/TC001i002p00179

 

Pindell, J.L. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 1–55. https://doi.org/10.1144/SP328.1

 

Pindell, J.L., Higgs, R. & Dewey, J.F. 1998. Cenozoic palinspastic reconstruction, paleogeographic evolution and hydrocarbon setting of the northern margin of South America. In: Pindell, J.L. & Drake, C. (editors), Paleogeographic evolution and non–glacial eustasy, northern South America. Society for Sedimentary Geology, Special Publication 58, p. 45–85. https://doi.org/10.2110/pec.98.58.0045

 

Piraquive, A. 2017. Structural framework, deformation and exhumation of the Santa Marta Schists: Accretion and deformational history of a Caribbean Terrane at the north of the Sierra Nevada de Santa Marta. Doctoral thesis, Université Grenoble Alpes and Universidad Nacional de Colombia, 393 p. Grenoble–Bogotá.

 

Pratt, W.T., Duque, P. & Ponce, M. 2005. An autochthonous geological model for the eastern Andes of Ecuador. Tectonophysics, 399(1–4): 251–278. https://doi.org/10.1016/j.tecto.2004.12.025

 

Ramos, V.A. 1988. The tectonics of the central Andes; 30° to 33° S latitude. In: Clark Jr., S.P., Burchfiel, B.C. & Suppe, J. (editors), Processes in continental lithospheric deformation. Geological Society of America, Special Paper 218, p. 31–54. https://doi.org/10.1130/SPE218-p31

 

Ramos, V.A. 1994. Terranes of southern Gondwanaland and their control in the Andean structure (30°–33° S latitude). In: Reutter, K.J., Scheuber, E. & Wigger, P.J. (editors), Tectonics of the southern central Andes. Springer–Verlag, p. 249–261. Heidelberg. https://doi.org/10.1007/978-3-642-77353-2_18

 

Ramos, V.A. 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Kay, S.M., Ramos, V.A. & Dickinson, W.R. (editors), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Memoirs 204, p. 31–65. https://doi.org/10.1130/2009.1204(02)

 

Ramos, V.A. & Kay, S.M. 1991. Triassic rifting and associated basalts in the Cuyo Basin, central Argentina. In: Harmon, R. & Rapela, C. (editors), Andean magmatism and its tectonic setting. Geological Society of America, Special Paper 265, p. 79–92. https://doi.org/10.1130/SPE265-p79

 

Ratschbacher, L., Franz, L., Min, M., Bachmann, R., Martens, U., Stanek, K., Stübner, K., Nelson, B.K., Herrmann, U., Weber, B., López–Martínez, M., Jonckheere, R., Sperner, B., Tichomirowa, M., Mcwilliams, M.O., Gordon, M., Meschede, M. & Bock, P. 2009. The North American–Caribbean Plate boundary in Mexico–Guatemala–Honduras. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 219–293. https://doi.org/10.1144/SP328.11

 

Reitsma, M.J. 2012. Reconstructing the late Paleozoic: Early Mesozoic plutonic and sedimentary record of south–east Peru: Orphaned back–arcs along the western margin of Gondwana. Doctoral thesis, University of Geneva, 226 p. Geneva. https://doi.org/10.13097/archive-ouverte/unige:23095

 

Restrepo, J.J. & Toussaint, J.F. 1982. Metamorfismos superpuestos en la cordillera Central de Colombia. V Congreso Latinoamericano de Geología, p. 505–512. Buenos Aires, Argentina.

 

Restrepo, J.J. & Toussaint, J.F. 1988. Terranes and continental accretion in the Colombian Andes. Episodes, 11(3): 189–193. https://doi.org/10.18814/epiiugs/1988/v11i3/006

 

Restrepo, J.J., Toussaint, J.F., González, H., Cordani, U., Kawashita, K., Linares, E. & Parica, C. 1991. Precisiones geocronológicas sobre el occidente colombiano. Simposio sobre magmatismo andino y su marco tectónico. Memoirs, I, p. 1–22. Manizales.

 

Restrepo, J.J., Ordóñez–Carmona, O., Armstrong, R. & Pimentel, M.M. 2011. Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. Journal of South American Earth Sciences, 32(4): 497–507. https://doi.org/10.1016/j.jsames.2011.04.009

 

Restrepo–Pace, P.A. & Cediel, F. 2010. Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. Journal of South American Earth Sciences, 29(4): 764–771. https://doi.org/10.1016/j.jsames.2010.06.002

 

Restrepo–Pace, P.A., Ruiz, J., Gehrels, G. & Cosca, M. 1997. Geochronology and Nd isotopic data of Grenville–age rocks in the Colombian Andes: New constraints for late Proterozoic – early Paleozoic paleocontinental reconstructions of the Americas. Earth and Planetary Science Letters, 150(3–4): 427–441. https://doi.org/10.1016/S0012-821X(97)00091-5

 

Riel, N., Guillot, S., Jaillard, E., Martelat, J.E., Paquette, J.L., Schwartz, S., Goncalves, P., Duclaux, G., Thebaud, N., Lanari, P., Janots, E. & Yuquilema, J. 2013. Metamorphic and geochronological study of the Triassic El Oro Metamorphic Complex, Ecuador: Implications for high–temperature metamorphism in a forearc zone. Lithos, 156–159: 41–68. https://doi.org/10.1016/j.lithos.2012.10.005

 

Rogers, R.R., Swisher, C.C., Sereno, P.C., Monetta, A.M., Forster, C.A. & Martínez, R.N. 1993. The Ischigualasto tetrapod assemblage (Late Triassic, Argentina) and 40Ar/39Ar dating of dinosaur origins. Science, 260(5109): 794–797. https://doi.org/10.1126/science.260.5109.794

 

Romero, D., Valencia, K., Alarcón, P., Peña, D. & Ramos, V.A. 2013. The offshore basement of Perú: Evidence for different igneous and metamorphic domains in the forearc. Journal of South American Earth Sciences, 42: 47–60. https://doi.org/10.1016/j.jsames.2012.11.003

 

Rosas, S., Fontboté, L. & Tankard, A. 2007. Tectonic evolution and paleogeography of the Mesozoic Pucará Basin, central Peru. Journal of South American Earth Sciences, 24(1): 1–24. https://doi.org/10.1016/j.jsames.2007.03.002

 

Ruiz, J., Tosdal, R.M., Restrepo, P.A. & Murillo–Muñetón, G. 1999. Pb isotope evidence for Colombia–southern México connections in the Proterozoic. In: Ramos, V.A. & Keppie, J.D. (editors), Laurentia–Gondwana connections before Pangea. Geological Society of America, Special Paper 336, p. 183–197. https://doi.org/10.1130/0-8137-2336-1.183

 

Russell, S.M. & Whitmarsh, R.B. 2003. Magmatism at the west Iberia non–volcanic rifted continental margin: Evidence from analyses of magnetic anomalies. Geophysical Journal International, 154(3): 706–730. https://doi.org/10.1046/j.1365-246X.2003.01999.x

 

Schlische, R.W. 2002. Progress in understanding the structural geology, basin evolution, and tectonic history of the eastern North American rift system. In: LeTourneau, P.M. & Olsen, P.E. (editors), The Great Rift valleys of Pangaea in eastern North America, 1. Columbia University Press, p. 21–64. New York. https://doi.org/10.7312/leto11162-003

 

Senff, M. 1995. Sedimentologie, fauna und fazies des präkretazischen Mesozoikum im Oberen Magdalenatal von zentralkolumbien unter besonderer berüecksichtigung der obertriassischen Payande Formation. Doctoral thesis, Univeristät Giessen, 114 p. Germany.

 

Shervais, J.W. 1982. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101–118. https://doi.org/10.1016/0012-821X(82)90120-0

 

Sinton, C.W., Duncan, R.A., Storey, M., Lewis, J. & Estrada, J.J. 1998. An oceanic flood basalt province within the Caribbean Plate. Earth and Planetary Science Letters, 155(3–4): 221–235. https://doi.org/10.1016/S0012-821X(97)00214-8

 

Solari, L.A., Dostal, J., Ortega–Gutiérrez, F. & Keppie, J.D. 2001. The 275 Ma arc–related La Carbonera stock in the northern Oaxacan Complex of southern Mexico: U–Pb geochronology and geochemistry. Revista Mexicana de Ciencias Geológicas, 18(2): 149–161.

 

Solari, L., Gómez–Tuena, A., Ortega–Gutiérrez, F. & Ortega–Obregón, C. 2011. The Chuacús Metamorphic Complex, central Guatemala: Geochronological and geochemical constraints on its Paleozoic – Mesozoic evolution. Geologica Acta, 9(3–4): 329–350. https://doi.org/10.1344/105.000001695

 

Spalletti, L.A., Fanning, C.M. & Rapela, C.W. 2008. Dating the Triassic continental rift in the southern Andes: The Potrerillos Formation, Cuyo Basin, Argentina. Geologica Acta, 6(3): 267–283. https://doi.org/10.1344/105.000000256

 

Spikings, R., Seward, D., Winkler, W. & Ruiz, G.M. 2000. Low–temperature thermochronology of the northern Cordillera Real, Ecuador: Tectonic insights from zircon and apatite fission track analysis. Tectonics, 19(4): 649–668. https://doi.org/10.1029/2000TC900010

 

Spikings, R., Winkler, W., Seward, D. & Handler, R. 2001. Along–strike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust. Earth and Planetary Science Letters, 186(1): 57–73. https://doi.org/10.1016/S0012-821X(01)00225-4

 

Spikings, R., Crowhurst, P.V., Winkler, W. & Villagómez, D. 2010. Syn– and post–accretionary cooling history of the Ecuadorian Andes constrained by their in–situ and detrital thermochronometric record. Journal of South American Earth Sciences, 30(3–4): 121–133. https://doi.org/10.1016/j.jsames.2010.04.002

 

Spikings, R., Cochrane, R., Villagómez, D., van der Lelij, R., Vallejo, C., Winkler, W. & Beate, B. 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1): 95–139. https://doi.org/10.1016/j.gr.2014.06.004

 

Spikings, R., Reitsma, M.J., Boekhout, F., Mišković, A., Ulianov, A., Chiaradia, M., Gerdes, A. & Schaltegger, U. 2016. Characterization of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Research, 35: 124–143. https://doi.org/10.1016/j.gr.2016.02.008

 

Stacey, J.S. & Kramers, J.D. 1975. Approximation of terrestrial lead isotope evolution by a two–stage model. Earth and Planetary Science Letters, 26(2): 207–221. https://doi.org/10.1016/0012-821X(75)90088-6

 

Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (editors), Magmatism in the ocean basins. Geological Society of London, Special Publication 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

 

Taylor, S.R. & McLennan, S.M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241–265. https://doi.org/10.1029/95RG00262

 

Torres, R., Ruiz, J., Patchett, P.J. & Grajales–Nishimura, J.M. 1999. Permo–Triassic continental arc in eastern Mexico: Tectonic implications for reconstructions of southern North America. In: Bartolini, C., Wilson, J.L. & Lawton, T.F. (editors), Mesozoic sedimentary and tectonic history of north–central Mexico. Geological Society of America, Special Paper 340, p. 191–196. Wiesbaden, Germany. https://doi.org/10.1130/0-8137-2340-X.191

 

Toussaint, J.F. & Restrepo, J.J. 1994. The Colombian Andes during Cretaceous times. In: Salfity, J.A. (editor), Cretaceous tectonics of the Andes. Earth Evolution Sciences. Vieweg + Teubner Verlag, p. 61–100. Wiesbaden, Germany. https://doi.org/10.1007/978-3-322-85472-8_2

 

Tschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H. & Cebula, G.T. 1974. Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geological Society of America Bulletin, 85(2): 273–284. https://doi.org/10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2

 

Vallejo, C., Spikings, R., Luzieux, L., Winkler, W., Chew, D. & Page, L. 2006. The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nova, 18(4): 264–269. https://doi.org/10.1111/j.1365-3121.2006.00688.x

 

Vallejo, C., Winkler, W., Spikings, R.A., Luzieux, L., Heller, F. & Bussy, F. 2009. Mode and timing of terrane accretion in the forearc of the Andes in Ecuador. In: Kay, S.M., Ramos, V.A. & Dickinson, W.R. (editors), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Memoirs 204, p. 197–216. https://doi.org/10.1130/2009.1204(09)

 

van der Lelij, R. 2013. Reconstructing north–western Gondwana with implications for the evolution of the Iapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study. Doctoral thesis, University of Geneva, 248 p. Geneva. https://doi.org/10.13097/archive-ouverte/unige:31653

 

van der Lelij, R., Spikings, R., Kerr, A.C., Kounov, A., Cosca, M., Chew, D. & Villagómez, D. 2010. Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone. Tectonics, 29(6): 1–30. https://doi.org/10.1029/2009TC002654

 

van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. & Mora, A. 2016. Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31: 271–294. https://doi.org/10.1016/j.gr.2015.01.011

 

Vilas, J.F. & Valencio, D.A. 1978. Palaeomagnetism and K–Ar age of the Upper Ordovician Alcaparrosa Formation, Argentina. Geophysical Journal International, 55(1): 143–154. https://doi.org/10.1111/j.1365-246X.1978.tb04753.x

 

Villagómez, D. & Spikings, R. 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous – Tertiary evolution of the northern Andes. Lithos, 160–161: 228–249. https://doi.org/10.1016/j.lithos.2012.12.008

 

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003

 

Vinasco, C.J., Cordani, U.G., González, H., Weber, M. & Peláez, C. 2006. Geochronological, isotopic, and geochemical data from Permo–Triassic granitic gneisses and granitoids of the Colombian central Andes. Journal of South American Earth Sciences, 21(4): 355–371. https://doi.org/10.1016/j.jsames.2006.07.007

 

Viscarret, P., Wright, J. & Urbani, F. 2009. New U–Pb zircon ages of El Baúl Massif, Cojedes state, Venezuela. Revista Técnica de la Facultad de Ingeniería, Universidad del Zulia, 32(3): 210–221.

 

Weber, B. & Köhler, H. 1999. Sm–Nd, Rb–Sr and U–Pb geochronology of a Grenville Terrane in southern Mexico: Origin and geologic history of the Guichicovi Complex. Precambrian Research, 96(3–4): 245–262. https://doi.org/10.1016/S0301-9268(99)00012-1

 

Weber, B., Cameron, K.L., Osorio, M. & Schaaf, P. 2005. A late Permian tectonothermal event in Grenville crust of the southern Maya Terrane: U–Pb zircon ages from the Chiapas Massif, southeastern Mexico. International Geology Review, 47(5): 509–529. https://doi.org/10.2747/0020-6814.47.5.509

 

Weber, B., Iriondo, A., Premo, W.R., Hecht, L. & Schaaf, P. 2007. New insights into the history and origin of the southern Maya Block, SE México: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas Massif. International Journal of Earth Sciences, 96(2): 253–269. https://doi.org/10.1007/s00531-006-0093-7

 

Weber, M., Cardona, A., Valencia, V., García–Casco, A., Tobón, M. & Zapata, S. 2010. U/Pb detrital zircon provenance from Late Cretaceous metamorphic units of the Guajira Peninsula, Colombia: Tectonic implications on the collision between the Caribbean Arc and the South American margin. Journal of South American Earth Sciences, 29(4): 805–816. https://doi.org/10.1016/j.jsames.2009.10.004

 

Winchester, J.A. & Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2

 

Xu, H., Ma, C. & Ye, K. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie Orogen, eastern China: SHRIMP zircon U–Pb dating and geochemistry. Chemical Geology, 240(3–4): 238–259. https://doi.org/10.1016/j.chemgeo.2007.02.018

 

Yañez, P., Ruiz, J., Patchett, P.J., Ortega–Gutiérrez, F. & Gehrels, G.E. 1991. Isotopic studies of the Acatlan Complex, southern Mexico: Implications for Paleozoic North American tectonics. Geological Society of America Bulletin, 103(6): 817–828. https://doi.org/10.1130/0016-7606(1991)103<0817:ISOTAC>2.3.CO;2

 

Zerfass, H., Chemale, F., Schultz, C.L. & Lavina, E. 2004. Tectonics and sedimentation in southern South America during Triassic. Sedimentary Geology, 166(3–4): 265–292. https://doi.org/10.1016/j.sedgeo.2003.12.008


Servicio Geológico Colombiano

Sede Principal

Dirección: Diagonal 53 N0. 34 - 53 Bogotá D.C. Colombia

Código Postal: 111321

Horario de Atención Sedes SGC: Lunes a viernes 8.00 a.m. a 5 p.m.

Horario de Atención Museo Geológico Nacional:
Martes a viernes de 9:00 a.m. a 4:00 p.m. y último sábado de cada mes de 10:00 a.m. a 4:00 p.m.

Teléfono conmutador: (601) 220 0200 - (601) 220 0100 - (601) 222 1811

Línea anticorrupción y de atención al ciudadano y denuncias: 01 - 8000 - 110842

Línea de atención 24 horas para emergencias radiológicas: +57 ​317 366 2793

Correo Institucional: radicacioncorrespondencia@sgc.gov.co

Correo de notificaciones judiciales: notificacionesjudiciales@sgc.gov.co

Correo información relacionada con medios de comunicación:
medios@sgc.gov.co

logo_footer