Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Servicio Geológico Colombiano

Skip Navigation Linksv3ch1
Seleccione su búsqueda
miig

Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño

 Volume 3 Chapter 1

Chapter 1

The Cretaceous/Paleogene Boundary Deposits on Gorgonilla Island   

Hermann Darío BERMÚDEZ, Ignacio ARENILLAS, José Antonio ARZ, Vivi VAJDA, Paul R. RENNE, Vicente GILABERT and José Vicente RODRÍGUEZ

https://doi.org/10.32685/pub.esp.37.2019.01


Citation is suggested as: 

Bermúdez, H.D., Arenillas, I., Arz, J.A., Vajda, V., Renne, P.R., Gilabert, V. & Rodríguez, J.V. 2019. The Cretaceous/Paleogene boundary deposits on Gorgonilla Island. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 19 p.  Bogotá. https://doi.org/10.32685/pub.esp.37.2019.01


Download chapter  

Download EndNote reference 


Abstract 


A ca. 20 mm thick spherule bed representing Chicxulub impact ejecta deposits and marking the Cretaceous/Paleogene (K/Pg) boundary was recently discovered on Gorgonilla Island (Gorgona National Natural Park, Pacific of Colombia). This discovery represents the first confirmed record of the K/Pg event in Colombia, South America and the eastern Pacific Ocean. The deposit consists of extraordinarily well–preserved glass spherules (microtektites and microkrystites) reaching 1.1 mm in diameter. Importantly, the Gorgonilla spherule bed is unique relative to other K/Pg boundary sites in that up to 90% of the spherules are intact and not devitrified, and the bed is virtually devoid of lithic fragments and microfossils. The spherules were deposited in a deep marine environment, possibly below the calcite compensation depth. The preservation, normal size–gradation, presence of fine textures within the spherules, and absence of bioturbation or traction transport indicate that the Gorgonilla spherules settled within a water column with minimal disturbance. The spherule bed, the spherule bed may represent one of the first parautochthonous primary deposits of the Chicxulub impact known to date. 40Ar/39Ar dating and micropaleontological analysis reveal that the Gorgonilla spherule bed resulted from the Chicxulub impact. Intense soft–sediment deformation and bed disruption in Maastrichtian sediments of the Gorgonilla Island K/Pg section provide evidence for seismic activity triggered by the Chicxulub bolide impact, 66 million years ago. It is also notable that the basal deposits of the Danian in the Colombian locality present the first evidence of a recovery vegetation, characterized by ferns from a tropical habitat, shortly following the end–Cretaceous event.


Keywords:   K/Pg boundary, Chicxulub, microtektites, seismites, Gorgonilla Island, Colombia.


Resumen


Una capa de aproximadamente 20 mm de espesor con depósitos de eyecta del impacto de Chicxulub, que marca el límite CretácicoPaleógeno (K/Pg), fue recientemente descubierta en la isla Gorgonilla (Parque Nacional Natural Gorgona, Pacífico colombiano). Este es el primer registro confirmado del evento K/Pg en Colombia, Suramérica y el Pacífico oriental. El depósito consiste en una acumulación de esferulitas de vidrio (microtectitas y microcristitas) de hasta 1,1 mm de diámetro extraordinariamente bien preservadas. La capa de esferulitas de Gorgonilla es única entre los depósitos conocidos de eyecta de Chicxulub; hasta un 90 % de las esférulas está aún completamente vitrificado y la capa está prácticamente desprovista de líticos o microfósiles. Las esferulitas fueron depositadas en un paleoambiente marino de aguas profundas, posiblemente por debajo del nivel de compensación de la calcita. La preservación, gradación normal, presencia de estructuras delicadas dentro de las esférulas y ausencia de evidencias de bioturbación o de transporte indican que la capa de esferulitas de Gorgonilla se asentó a través de la columna de agua con mínima perturbación subsecuente. Esta capa puede representar uno de los primeros depósitos paraautóctonos primarios del impacto de Chicxulub conocidos hasta el momento. Dataciones 40Ar/39Ar y resultados de análisis micropaleontológicos muestran que la capa de esférulas de Gorgonilla fue producida por el impacto del asteroide que formó el cráter de Chicxulub. Adicionalmente, la intensa deformación sinsedimentaria y la perturbación de las capas del Maastrichtiano en la sección K/Pg de la isla Gorgonilla proporcionan evidencia de la actividad sísmica producida por el impacto de Chicxulub hace 66 millones de años. Es también notable que las capas basales del Daniano en la localidad colombiana muestran las primeras evidencias de la recuperación de la vegetación, representada por helechos de un hábitat tropical, justo después del evento del fin del Cretácico.


Palabras clave: límite K/Pg, Chicxulub, microtectitas, sismitas, isla Gorgonilla, Colombia.


Abbreviations 


SEM                   Scanning electron microscope 

CCD                   Carbonate compensation depth 

K/Pg                 Cretaceous/Paleogene


References 


Albertão, G.A. & Martins, P.P. 1996. A possible tsunami deposit at the Cretaceous – Tertiary boundary in Pernambuco, Northeastern Brazil. Sedimentary Geology, 104 (1–4): 189–201. https://doi.org/10.1016/0037-0738(95)00128-X


Albertão, G.A., De Azevedo–Grassi, A., Marini, F., Martins, P.P. & De Ross, L.F. 2004. The K–T boundary in Brazilian marginal sedimentary basins and related spherules. Geochemical Journal, 38(2): 121–128. https://doi.org/10.2343/geochemj.38.121


Alvarez, L.W., Alvarez, W., Asaro, F. & Michel, H.V. 1980. Extraterrestrial cause for the Cretaceous – Tertiary extinction. Science, 208(4448): 1095–1108. https://doi.org/10.1126/science.208.4448.1095


Arenillas, I., Arz, J.A. & Molina, E. 2004. A new high–resolution planktic foraminiferal zonation and subzonation for the lower Danian. Lethaia, 37(1): 79–95. https://doi.org/10.1080/00241160310005097


Arenillas, I., Arz, J.A., Grajales–Nishimura, J.M., Murillo–Muñetón, G., Alvarez, W., Camargo–Zanoguera, A., Molina, E. & Rosales–Domínguez, C. 2006. Chicxulub impact event is Cretaceous/Paleogene boundary in age: New micropaleontological evidence. Earth and Planetary Science Letters, 249(3–4): 241–257. https://doi.org/10.1016/j.epsl.2006.07.020


Arz, J.A., Alegret, L., Arenillas, I., Liesa, C., Molina, E. & Soria, A.R. 2001. Extinción de foraminíferos en el límite Cretácico/Terciario en Coxquihui (México) y su relación con las evidencias de impacto. Revista Española de Micropaleontología, 33(2): 221–236.


Arz, J.A., Alegret, L. & Arenillas, I. 2004. Foraminiferal biostratigraphy and paleoenvironmental reconstruction at the Yaxcopoil–1 drill hole, Chicxulub Crater, Yucatán Peninsula. Meteoritics & Planetary Science, 39(7): 1099–1111. https://doi.org/10.1111/j.1945-5100.2004.tb01131.x

 

Berggren, W.A. & Pearson, P.N. 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Journal of Foraminiferal Research, 35(4): 279–298. https://doi.org/10.2113/35.4.279


Bermúdez, H.D., Stinnesbeck, W., Bolívar, L., Rodríguez, J.V., García, J. & Vega, F.J. 2015. Paleosismitas asociadas al límite K/Pg en la isla de Gorgonilla, Pacífico colombiano. XV Congreso Colombiano de Geología. Abstracts CD ROM, p. 1080. https://doi.org/10.13140/RG.2.1.1692.3367


Bermúdez, H.D., García, J., Stinnesbeck, W., Keller, G., Rodríguez, J.V., Hanel, M., Hopp, J., Schwarz, W., Trieloff, M., Bolívar, L. & Vega, F.J. 2016. The Cretaceous – Paleogene boundary at Gorgonilla Island, Colombia, South America. Terra Nova, 28(1): 83–90. https://doi.org/10.1111/ter.12196


Bermúdez, H.D., Arz, J.A., Renne, P.R., Arenillas, I., Gilabert, V., Rodríguez, J.V., Bolívar, L. & Bolívar, L.S. 2017. Evidence for Chicxulub impact seismicity at Gorgonilla Island K/Pg section, Pacific of Colombia. Geological Society of America Abstracts with Programs, 49(6). https://doi.org/10.1130/abs/2017AM-299005


Boslough, M.B., Chael, E.P., Trucano, T.G., Crawford, D.A. & Campbell, D.L. 1996. Axial focusing of impact energy in the Earth's interior: A possible link to flood basalts and hotspots. In: Ryder, G., Fastovsky, D. & Gartner, S. (editors), The Cretaceous – Tertiary event and other catastrophes in Earth history. Geological Society of America, Special Paper 307, p. 541–550. https://doi.org/10.1130/0-8137-2307-8.541


Bralower, T.J., Paull, C.K. & Leckie, R.M. 1998. The Cretaceous – Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology, 26(4): 331–334. https://doi.org/10.1130/0091-7613(1998)026<0331:TCTBCC>2.3.CO;2


Brinkhuis, H. & Schiøler, P. 1996. Palynology of the Geulhemmerberg Cretaceous/Tertiary boundary section (Limburg, SE Netherlands). Geologie en Mijnbouw, 75(2): 193–213.


Busby, C.J., Yip, G., Blikra, L. & Renne, P. 2002. Coastal landsliding and catastrophic sedimentation triggered by Cretaceous – Tertiary bolide impact: A Pacific margin example? Geology, 30(8): 687–690. https://doi.org/10.1130/0091-7613(2002)030<0687:CLACST>2.0.CO;2


Denne, R.A, Scott, E.D., Eickhoff, D.P., Kaiser, J.S., Hill, R.J. & Spaw, J.M. 2013. Massive Cretaceous – Paleogene boundary deposit, deep–water Gulf of Mexico: New evidence for widespread Chicxulub–induced slope failure. Geology, 41(9): 983–986. https://doi.org/10.1130/G34503.1


Dietrich, V.J., Gansser, A., Sommerauer, J. & Cameron, W.E. 1981. Palaeogene komatiites from Gorgona Island, East Pacific—A primary magma for ocean floor basalts? Geochemical Journal, 15(3): 141–161. https://doi.org/10.2343/geochemj.15.141


Echeverria, L.M. & Aitken, B.G. 1986. Pyroclastic rocks: Another manifestation of ultramafic volcanism on Gorgona Island, Colombia. Contributions to Mineralogy and Petrology, 92(4): 428–436. https://doi.org/10.1007/BF00374425


Gansser, A. 1950. Geological and petrographical notes on Gorgona Island in relation to north–western South America. Schweizerische Mineralogische und Petrographische Mitteilungen, 30: 219–237.


Gansser, A., Dietrich, V.J. & Cameron, W.E. 1979. Palaeogene komatiites from Gorgona Island. Nature, 278: 545–546. https://doi.org/10.1038/278545a0


Gertsch, B., Keller, G., Adatte, T. & Berner, Z. 2013. The Cretaceous – Tertiary boundary (KTB) transition in NE Brazil. Journal of the Geological Society, London, 170(2): 249 –262. https://doi.org/10.1144/jgs2012-029


Glass, B.P. & Simonson, B.M. 2013. Distal impact ejecta layers: A record of large impacts in sedimentary deposits. Springer, 716 p. Berlin. https://doi.org/10.1007/978-3-540-88262-6


Grajales–Nishimura, J.M., Cedillo–Pardo, E., Rosales–Domínguez, M.C., Morán–Zenteno, D.J., Alvarez, W., Claeys, P., Ruiz–Morales, J., García–Hernández, J., Padilla–Ávila, P. & Sánchez–Ríos, A. 2000. Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology, 28(4): 307–310. https://doi.org/10.1130/0091-7613(2000)28<307:CITOOR>2.0.CO;2


Herngreen, G.F.W., Schuurman, H.A.H.M., Verbeek, J.W., Brinkhuis, H., Burnett, J.A., Felder, W.M. & Kedves, M. 1998. Biostratigraphy of Cretaceous/Tertiary boundary strata in the Curfs quarry, the Netherlands. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen (61), 58 p. Haarlem, the Netherlands.


Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo, A., Jacobsen, S.B. & Boynton, W.V. 1991. Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology, 19(9): 867–871. https://doi.org/10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2


Izett, G.A., Dalrymple, G.B. & Snee, L.W. 1991. 40Ar/39Ar age of Cretaceous – Tertiary boundary tektites from Haiti. Science, 252(5012): 1539–1542. https://doi.org/10.1126/science.252.5012.1539


Keller, G. 2011. The Cretaceous – Tertiary mass extinction: Theories and controversies. In: Keller, G. & Adatte, T. (editors), End–Cretaceous mass extinction and the Chicxulub impact in Texas. Society for Sedimentary Geology, Special Publication 100, p. 7–22. Tulsa, USA. https://doi.org/10.2110/sepmsp.100.007


Keller, G., Adatte, T., Stinnesbeck, W., Stüben, D. & Berner, Z. 2001. Age, chemo– and biostratigraphy of Haiti spherule–rich deposits: A multi–event K–T scenario. Canadian Journal of Earth Sciences, 38(2): 197–227. https://doi.org/10.1139/e00-087


Keller, G., Stinnesbeck, W., Adatte, T. & Stüben, D. 2003a. Multiple impacts across the Cretaceous – Tertiary boundary. Earth–Science Reviews, 62(3–4): 327–363. https://doi.org/10.1016/S0012-8252(02)00162-9


Keller, G., Stinnesbeck, W., Adatte, T., Holland, B., Stüben, D., Harting, M., De León, C. & De la Cruz, J. 2003b. Spherule deposits in Cretaceous – Tertiary boundary sediments in Belize and Guatemala. Journal of the Geological Society, 160(5): 783–795. https://doi.org/10.1144/0016-764902-119


Keller, G., Adatte, T., Tantawy, A.A., Berner, Z., Stinnesbeck, W., Stüben, D. & Leanza, H.A. 2007. High stress late Maastrichtian – early Danian palaeoenvironment in the Neuquén Basin, Argentina. Cretaceous Research, 28(6): 939–960. https://doi.org/10.1016/j.cretres.2007.01.006


Keller, G., Khozyem, H., Adatte, T., Malarkodi, N., Spangenberg, J. & Stinnesbeck, W. 2013. Chicxulub impact spherules in the North Atlantic and Caribbean: Age constraints and Cretaceous – Tertiary boundary hiatus. Geological Magazine, 150(5): 885–907. https://doi.org/10.1017/S0016756812001069


Kennan, L. & Pindell, J.L. 2009. Dextral shear, terrane accretion and basin formation in the northern Andes: Best explained by interaction with a Pacific–derived Caribbean Plate? In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 487–531. https://doi.org/10.1144/SP328.20


Kerr, A.C. 2005. La isla de Gorgona, Colombia: A petrological enigma? Lithos, 84(1–2): 77–101. https://doi.org/10.1016/j.lithos.2005.02.006


Kerr, A.C. & Tarney, J. 2005. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33(4): 269–272. https://doi.org/10.1130/G21109.1


Klaus, A., Norris, R.D., Kroon, D. & Smit, J. 2000. Impact–induced mass wasting at the K–T boundary: Blake Nose, western North Atlantic. Geology, 28(4): 319–322. https://doi.org/10.1130/0091-7613(2000)28<319:IMWATK>2.0.CO;2


Koeberl, C. & Sigurdsson, H. 1992. Geochemistry of impact glasses from the K/T boundary in Haiti: Relation to smectites and a new types of glass. Geochimica et Cosmochimica Acta, 56(5): 2113–2129. https://doi.org/10.1016/0016-7037(92)90333-E


MacLeod, K.G., Whitney, D.L., Huber, B.T. & Koeberl, C. 2007. Impact and extinction in remarkably complete Cretaceous – Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Geological Society of America Bulletin, 119(1–2): 101–115. https://doi.org/10.1130/B25955.1


Montenat, C., Barrier, P., Ott–d'Estevou, P. & Hibsch, C. 2007. Seismites: An attempt at critical analysis and classification. Sedimentary Geology, 196(1–4): 5–30. https://doi.org/10.1016/j.sedgeo.2006.08.004


Morgan, J., Lana, C., Kearsley, A., Coles, B., Belcher, C., Montanari, S., Díaz–Martínez, E., Barbosa, A. & Neumann, V. 2006. Analyses of shocked quartz at the global K–P boundary indicate an origin from a single, high–angle, oblique impact at Chicxulub. Earth and Planetary Science Letters, 251(3–4): 264–279. https://doi.org/10.1016/j.epsl.2006.09.009


Norris, R.D. & Firth. J.V. 2002. Mass wasting of Atlantic continental margins following the Chicxulub impact event. In: Koeberl, C. & MacLeod, K.G. (editors), Catastrophic events and mass extinctions: Impacts and beyond. Geological Society of America, Special Paper 356, p. 79–95. https://doi.org/10.1130/0-8137-2356-6.79


Norris, R.D., Huber, B.T. & Self–Trail, J. 1999. Synchroneity of the K–T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic. Geology, 27(5): 419–422. https://doi.org/10.1130/0091-7613(1999)027<0419:SOTKTO>2.3.CO;2


Norris, R.D., Firth, J., Blusztajn, J. & Ravizza, G. 2000. Mass failure of the North Atlantic margin triggered by the Cretaceous – Paleogene bolide impact. Geology, 28(12): 1119–1122. https://doi.org/10.1130/0091-7613(2000)28<1119:mfotna>2.0.co;2


Obermeier, S.F. 1996. Use of liquefaction–induced features for paleoseimic analysis—An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo–earthquakes. Engineering Geology, 44(1–4): 1–76. https://doi.org/10.1016/S0013-7952(96)00040-3


Ocampo, A.C., Pope, K.O. & Fischer, A.G. 1996. Ejecta blanket deposits of the Chicxulub Crater from Albion Island, Belize. In: Ryder, G., Fastovsky, D. & Gartner, S. (editors), The Cretaceous – Tertiary event and other catastrophes in Earth history. Geological Society of America, Special Paper 307, p. 75–88. Boulder, USA. https://doi.org/10.1130/0-8137-2307-8.75


Olsson, R.K., Miller, K.G., Browning, J.V., Habib, D. & Sugarman, P.J. 1997. Ejecta layer at the Cretaceous – Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX). Geology, 25(8): 759–762. https://doi.org/10.1130/0091-7613(1997)025<0759:ELATCT>2.3.CO;2


Pierazzo, E. & Artemieva, N. 2012. Local and global environmental effects of impacts on Earth. Elements, 8(1): 55–60. https://doi.org/10.2113/gselements.8.1.55


Pope, K.O., Ocampo, A.C. & Duller, C.E. 1991. Mexican site for K/T impact crater? Nature, 351: 105. https://doi.org/10.1038/351105a0


Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R. & Min, K. 2011. Response to the comment by W.H. Schwarz et al. on "Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology" by P.R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75(17): 5097–5100. https://doi.org/10.1016/j.gca.2011.06.021


Renne, P.R., Deino, A.L., Hilgen, F.J., Kuiper, K.F., Mark, D.F., Mitchell, W.S., Morgan, L.E., Mundil, R. & Smit, J. 2013. Time scales of critical events around the Cretaceous – Paleogene boundary. Science, 339(6120): 684–687. https://doi.org/10.1126/science.1230492


Renne, P.R., Arenillas, I., Arz, J.A., Gilabert, V. & Bermúdez, H.D. 2017. New 40Ar/39Ar and planktonic foraminiferal data indicate a KPB age for the Chicxulub–linked spherule bed at Gorgonilla Island, Pacific of Colombia. Geological Society of America Abstracts with Programs, 49(6). https://doi.org/10.1130/abs/2017AM-299581


Renne, P.R., Arenillas, I., Arz, J.A., Vajda, V., Gilabert, V. & Bermúdez, H.D. 2018. Multi–proxy record of the Chicxulub impact at the Cretaceous – Paleogene boundary from Gorgonilla Island, Colombia. Geology, 46(6): 547–550. https://doi.org/10.1130/G40224.1


Saito, T., Yamanoi, K. & Kaiho, K. 1986. End–Cretaceous devastation of terrestrial flora in the boreal Far East. Nature, 323: 253–255. https://doi.org/10.1038/323253a0


Scasso, R.A., Concheyro, A., Kiessling, W., Aberhan, M., Hecht, L., Medina, F.A. & Tagle, R. 2005. A tsunami deposit at the Cretaceous/Paleogene boundary in the Neuquén Basin of Argentina. Cretaceous Research, 26(2): 283–297. https://doi.org/10.1016/j.cretres.2004.12.003


Schulte, P., Deutsch, A., Salge, T., Berndt, J., Kontny, A., MacLeod, K.G., Neuser, R.D. & Krumm, S. 2009. A dual–layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous – Paleogene (K–Pg) boundary, Demerara Rise, western Atlantic. Geochimica et Cosmochimica Acta, 73(4): 1180–1204. https://doi.org/10.1016/j.gca.2008.11.011


Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales–Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kiessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo–Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia–Fucugauchi, J., Vajda, V., Whalen, M.T. & Willumsen, P.S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous – Paleogene boundary. Science, 327(5970): 1214–1218. https://doi.org/10.1126/science.1177265


Schulte, P., Smit, J., Deutsch, A., Salge, T., Friese, A. & Beichel, K. 2012. Tsunami backwash deposits with Chicxulub impact ejecta and dinosaur remains from the Cretaceous – Palaeogene boundary in the La Popa Basin, Mexico. Sedimentology, 59(3): 737–765. https://doi.org/10.1111/j.1365-3091.2011.01274.x


Seilacher, A. 1969. Fault–graded beds interpreted as seismites. Sedimentology, 13(1–2): 155–159. https://doi.org/10.1111/j.1365-3091.1969.tb01125.x


Serrano, L., Ferrari, L., López–Martínez, M., Petrone, C.M. & Jaramillo, C. 2011. An integrative geologic, geochronologic and geochemical study of Gorgona Island, Colombia: Implications for the formation of the Caribbean Large Igneous Province. Earth and Planetary Science Letters, 309(3–4): 324–336. https://doi.org/10.1016/j.epsl.2011.07.011


Shoemaker, E.M., Wolfe, R.F. & Shoemaker, C.S. 1990. Asteroid and comet flux in the neighborhood of Earth. In: Sharpton, V.L. & Ward, P.D. (editors), Global catastrophes in Earth history: An interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America, Special Paper 247, p. 155–170. https://doi.org/10.1130/SPE247-p155


Smit, J., Montanari, A., Swinburne, N.H.M., Alvarez, W., Hildebrand, A., Margolis, S.V., Claeys, P., Lowrie, W. & Asaro, F. 1992. Tektite–bearing, deep–water clastic unit at the Cretaceous – Tertiary boundary in northeastern Mexico. Geology, 20(2): 99–103. https://doi.org/10.1130/0091-7613(1992)020<0099:TBDWCU>2.3.CO;2


Smit, J., Roep, T.B., Alvarez, W., Montanari, A., Claeys, P., Grajales–Nishimura, J.M. & Bermúdez, J. 1996. Coarse–grained, clastic sandstone complex at the K/T boundary around the Gulf of Mexico: Deposition by tsunami waves induced by the Chicxulub impact? In: Ryder, G., Fastovsky, D. & Gartner, S. (editors), The Cretaceous – Tertiary event and other catastrophes in Earth history. Geological Society of America, Special Paper 307, p. 151–182. https://doi.org/10.1130/0-8137-2307-8.151


Soria, A.R., Liesa, C.L., Mata, M.P., Arz, J.A., Alegret, L., Arenillas, I. & Meléndez, A. 2001. Slumping and a sandbar deposit at the Cretaceous – Tertiary boundary in the El Tecolote section (northeastern Mexico): An impact–induced sediment gravity flow. Geology, 29(3): 231–234. https://doi.org/10.1130/0091-7613(2001)029<0231:SAASDA>2.0.CO;2


Stinnesbeck, W. & Keller, G. 1996. K/T boundary coarse–grained siliciclastic deposits in northeastern Mexico and northeastern Brazil: Evidence for mega–tsunami or sea–level changes? In: Ryder, G., Fastovsky, D. & Gartner, S. (editors), The Cretaceous – Tertiary event and other catastrophes in Earth history. Geological Society of America, Special Paper 307, p. 197–209. https://doi.org/10.1130/0-8137-2307-8.197


Stinnesbeck, W., Keller, G., De la Cruz, J., De León, C., MacLeod, N. & Whittaker, J.E. 1997. The Cretaceous – Tertiary transition in Guatemala–limestone breccia deposits from the South Petén Basin. Geologische Rundschau, 86(3): 686–709. https://doi.org/10.1007/s005310050171


Stinnesbeck, W., Keller, G., Schulte, P., Stüben, D., Berner, Z., Kramar, U. & López–Oliva, J.G. 2002. The Cretaceous – Tertiary (K/T) boundary transition at Coxquihui, state of Veracruz, Mexico: Evidence for an early Danian impact event? Journal of South American Earth Sciences, 15(5): 497–509. https://doi.org/10.1016/S0895-9811(02)00079-2


Stoffer, P.W., Messina, P., Chamberlain, J.A., Jr. & Terry, D.O., Jr. 2001. The Cretaceous – Tertiary boundary interval in Badlands National Park, South Dakota. U.S. Geological Survey, open–file report 01–56, 49 p. https://doi.org/10.3133/ofr0156


Vajda, V. 1999. Miospores from Upper Cretaceous – Paleocene strata in northwestern Bolivia. Palynology, 23(1): 181–196. https://doi.org/10.1080/01916122.1999.9989527


Vajda, V. & Bercovici, A. 2014. The global vegetation pattern across the Cretaceous – Paleogene mass extinction interval: A template for other extinction events. Global and Planetary Change, 122: 29–49. https://doi.org/10.1016/j.gloplacha.2014.07.014


Vajda, V. & McLoughlin, S. 2004. Fungal proliferation at the Cretaceous – Tertiary boundary. Science, 303(5663): 1489. https://doi.org/10.1126/science.1093807


Vajda, V. & McLoughlin, S. 2005. A new Maastrichtian – Paleocene Azolla species from of Bolivia, with a comparison of the global record of coeval Azolla microfossils. Alcheringa: An Australasian Journal pf Palaeontology, 29(2): 305–329. https://doi.org/10.1080/03115510508619308

 

Vajda, V., Raine, J.I. & Hollis, C. 2001. Indication of global deforestation at the Cretaceous – Tertiary boundary by New Zealand fern spike. Science, 294(5547): 1700–1702. https://doi.org/10.1126/science.1064706


Vajda, V., Ocampo, A., Ferrow, E. & Bender–Koch, C. 2015. Nano particles as the primary cause for long–term sunlight suppression at high southern latitudes following the Chicxulub impact—Evidence from ejecta deposits in Belize and Mexico. Gondwana Research, 27(3): 1079–1088. https://doi.org/10.1016/j.gr.2014.05.009


Wigforss–Lange, J., Vajda, V. & Ocampo, A. 2007. Trace element concentrations in the Mexico–Belize ejecta layer: A link between the Chicxulub impact and the global Cretaceous – Paleogene boundary. Meteoritics & Planetary Science, 42(11): 1871–1882. https://doi.org/10.1111/j.1945-5100.2007.tb00546.x