Omitir los comandos de cinta
Saltar al contenido principal

Servicio Geológico Colombiano

Skip Navigation Linksv3ch16
Seleccione su búsqueda

​​​​​​​Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño

 Volume 3 Chapter 16

Chapter 16

Zircon U–Pb and Fission–Track Dating Applied to Resolving Sediment Provenance in Modern Rivers Draining the Eastern and Central Cordilleras, Colombia   


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 3: 978-958-52959-4-0

ISBN digital Vol. 3: 978-958-53131-0-1​

Citation is suggested as: 

Urueña–Suárez, C.L., Peña–Urueña, M.L., Muñoz–Rocha, J.A., Rayo–Rocha, L.P., Villamizar–Escalante, N., Amaya–Ferreira, S., Ibañez–Mejia, M. & Bernet, M. 2020. Zircon U–Pb and fission–track dating applied to resolving sediment provenance in modern rivers draining the Eastern and Central Cordilleras, Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 469–490. Bogotá.

Download chapter  ​      Download supplementary information  

Download EndNote reference​ 



Determining the crystallization and cooling ages of detrital zircons from ancient sedimentary rocks or modern river sediments is a powerful method for tracing the sediment provenance and exhumation of orogenic mountain belts. Here, we present a study of the U–Pb and fission–track dating of detrital zircons from: (1) the sedimentary cover units of the Eastern Cordillera between Bogotá and Villavicencio and (2) the modern river sediments of the Guatiquía and Guayuriba Rivers, which drain the eastern flank of the Eastern Cordillera, and those of the Magdalena River at Girardot, which drains the western flank of the Eastern Cordillera and the eastern part of the Central Cordillera. We use our data to highlight the advantages and limitations of using zircon U–Pb and fission–track dating in provenance studies, including the identification of original source areas, sediment recycling and the difficulty of detecting amagmatic orogens in the detrital zircon record. The data obtained in this study allow us to better understand the association between the exhumation of sources and their detrital zircon signatures in the modern rivers that drain part of the Eastern Cordillera.


Keywords: Detrital zircon, Eastern Cordillera of Colombia, Exhumation, Provenance.


La determinación de edades de cristalización y de enfriamiento de circones detríticos en rocas sedimentarias antiguas o sedimentos de ríos actuales es un poderoso método para trazar la proveniencia del sedimento y la exhumación de cinturones orogénicos. Aquí presentamos un estudio de dataciones U–Pb y trazas de fisión en circones de (1) las unidades sedimentarias de la cordillera Oriental entre Bogotá y Villavicencio y (2) sedimentos fluviales actuales de los ríos Guatiquía y Guayuriba, los cuales drenan el flanco oriental de la cordillera Oriental, y sedimentos del río Magdalena en Girardot, que drena el flanco occidental de la cordillera Oriental y la parte oriental de la cordillera Central. Usamos nuestros datos para resaltar las ventajas y limitaciones de usar dataciones U–Pb y trazas de fisión para estudios de proveniencia, incluyendo la identificación de áreas fuente originales, el reciclaje de sedimentos y la dificultad de detectar orógenos no magmáticos en el registro de circones detríticos. Los datos obtenidos en este estudio nos permitieron entender mejor la asociación entre la exhumación de fuentes y sus firmas detríticas en ríos actuales que drenan parte de la cordillera Oriental.


Palabras clave: circón detrítico, cordillera Oriental de Colombia, exhumación, proveniencia.


CA–ID–TIMS                         Chemical abrasion thermal ionization mass spectrometry isotopic dilution

CL                                                              Cathodoluminescence

ID–TIMS                                          Thermal ionization mass spectrometry isotopic dilution

LA–ICP–MS                             Laser ablation inductively coupled plasma mass spectrometry

LA–SC–ICP–MS               Laser ablation single–cell inductively coupled plasma mass spectrometry

SEM                                                       Scanning electron microscope

SGC                                                       Servicio Geológico Colombiano

ZFT                                                        Zircon fission–track


Amaya, S., Zuluaga, C.A. & Bernet, M. 2017. New fission–track age constraints on the exhumation of the central Santander Massif: Implications for the tectonic evolution of the northern Andes, Colombia. Lithos, 282–283: 388–402.


Bande, A., Horton, B.K., Ramírez, J.C., Mora, A., Parra, M. & Stockli, D.F. 2012. Clastic deposition, provenance, and sequence of Andean thrusting in the frontal Eastern Cordillera and Llanos foreland Basin of Colombia. Geological Society of America Bulletin, 124(1–2): 59–76.


Bernet, M. 2013. Detrital zircon fission–track thermochronology of the present–day Isère River drainage system in the western Alps: No evidence for increasing erosion rates at 5 Ma. Geosciences, 3(3): 528–542.


Bernet, M. & Garver, J.I. 2005. Fission–track analysis of detrital zircon. Reviews in Mineralogy & Geochemistry, 58(1): 205–237.


Bernet, M. & Spiegel, C. 2004. Introduction: Detrital thermochronology. In Bernet, M. & Spiegel, C. (editors), Detrital thermochronology–Provenance analysis, exhumation, and landscape evolution of mountain belts. Geological Society of America, Special Paper 378, p. 1–6. Boulder, Colorado.


Bernet, M., Zattin, M., Garver, J.I., Brandon, M.T. & Vance, J.A. 2001. Steady–state exhumation of the European Alps. Geology, 29(1): 35–38.<0035:SSEOTE>2.0.CO;2


Bernet, M., Brandon, M.T., Garver, J.I. & Molitor, B.R. 2004. Fundamentals of detrital zircon fission–track analysis for provenance and exhumation studies with examples from the European Alps. In: Bernet, M. & Spiegel, C. (editors), Detrital thermochronology—Provenance analysis, exhumation, and landscape evolution of mountain belts. Geological Society of America, Special Paper 378, p. 25–36. Boulder, Colorado.


Bernet, M., van der Beek, P., Pik, R., Huyghe, P., Mugnier, J.L., Labrinn, E. & Szulc, A. 2006. Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission–track and U/Pb analysis of Siwalik sediments, western Nepal. Basins Research, 18(4): 393–412.


Bernet, M., Brandon, M., Garver, J., Balestieri, M.L., Ventura, B. & Zattin, M. 2009. Exhuming the Alps through time: Clues from detrital zircon fission–track thermochronology. Basin Research, 21(6): 781–798.


Bernet, M., Urueña, C., Amaya, S. & Peña, M.L. 2016. New thermo and geochronological constraints on the Pliocene–Pleistocene eruption history of the Paipa–Iza Volcanic Complex, Eastern Cordillera, Colombia. Journal of Volcanology and Geothermal Research, 327: 299–309.


Brandon, M.T. 1996. Probability density plot for fission–track grain–age samples. Radiation Measurements, 26(5): 663–676.


Brandon, M.T., Roden–Tice, M.K. & Garver, J.I. 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin, 110(8): 985–1009.<0985:LCEOTC>2.3.CO;2


Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G. & Vervoort, J. 2010. U–Pb LA–ICP–MS geochronology and regional correlation of Middle Jurassic intrusive rocks from the Garzón Massif, Upper Magdalena Valley and Central Cordillera, southern Colombia. Boletín de Geología, 32(2): 93–109.


Bustamante, C., Archanjo, C.J., Cardona, A. & Vervoort, J.D. 2016. Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long–term arc maturity. Geological Society of America Bulletin, 128(11–12): 1762–1779.


Caricchi, L., Simpson, G. & Schaltegger, U. 2014. Zircons reveal magma fluxes in the Earth's crust. Nature, 511(7510): 457–461.


Carter, A. & Bristow, C.S. 2000. Detrital zircon geochronology: Enhancing the quality of sedimentary source information through improved methodology and combined U–Pb and fission–track techniques. Basin Research, 12(1): 47–57.


Carter, A. & Bristow, C.S. 2003. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: A study of the Khorat Plateau Basin, eastern Thailand. Basin Research, 15(2): 271–285.


Carter, A. & Moss, S.J. 1999. Combined detrital–zircon fission–track and U–Pb dating: A new approach to understanding hinterland evolution. Geology, 27(3): 235–238.<0235:CDZFTA>2.3.CO;2


Cerveny, P.F., Naeser, N.D., Zeitler, P.K., Naeser, C.W. & Johnson, N.M. 1988. History of uplift and relief of the Himalaya during the past 18 million years: Evidence from fission–track ages of detrital zircons from sandstones of the Siwalik Group. In: Kleinspehn, K.L. & Paola, C. (editors), New perspectives in basin analysis: Frontiers in sedimentary geology. Springer–Verlag, p. 43–61. New York.


Chang, Z., Vervoort, J.D., McClelland, W.C. & Knaack, C. 2006. U–Pb dating of zircon by LA–ICP–MS. Geochemistry, Geophysics, Geosystems, 7(5): 1–14.


Colleta, B., Hebrard, F., Letouzey, J., Werner, P. & Rudkiewicz, J.L. 1990. Tectonic style and crustal structure of the Eastern Cordillera (Colombia) from a balanced cross section. In: Letouzey, J. (editor), Petroleum and tectonics in mobile belts. Editions Technip, p. 81–100. Paris.


Cooper, M.A., Addison, F.T., Álvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martínez, J., Naar, J., Penas, R., Pulham, A.J. & Taborda, A. 1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10): 1421–1442.


Davis, S.J., Dickinson, W.R., Gehrels, G.E., Spencer, J.E., Lawton, T.F. & Carroll, A.R. 2010. The Paleogene California River: Evidence of Mojave–Uinta paleodrainage from U–Pb ages of detrital zircons. Geology, 38(10): 931–934.


Dengo, C. & Covey, M.C. 1993. Structure of the Eastern Cordillera of Colombia: Implications for trap styles and regional tectonics. American Association of Petroleum Geologists Bulletin, 77(8): 1315–1337.


Dickinson, W.R. & Gehrels, G.E. 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2): 115–125.


Ehlers, T.A., Chaudhri, T., Kumar, S., Fuller, C.W., Willett, S.D., Ketcham, R.A., Brandon, M.T., Belton, D.X., Kohn, B.P., Gleadow, A.J.W., Dunai, T.J. & Fu, F.Q. 2005. Computational tools for low–temperature thermochronometer interpretation. Reviews in Mineralogy and Geochemistry, 58(1): 589–622.


Fabre, A. & Delaloye, M. 1983. Intrusiones básicas cretácicas en las sedimentitas de la parte central de la cordillera Oriental. Geología Norandina, (6): 19–28.


Frei, D. & Gerdes, A. 2009. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA–SF–ICP–MS. Chemical Geology, 261(3–4): 261–270.


Galbraith, R.F. & Green, P.F. 1990. Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentations. Part D. Nuclear Tracks and Radiation Measurements, 17(3): 197–206.


Galbraith, R.F. & Laslett, G.M. 1993. Statistical models for mixed fission track ages. Nuclear tracks and radiation measurements, 21(4): 459–470.


García–Ramírez, C.A., Rey–León, V. & Valencia, V.A. 2017. Orthogneisses from the Silos–Babega strip, Santander Massif, Colombia: Evidences of Famatinian Orogeny in the north Andes. Andean Geology, 44(3): 307–327.


Garver, J.I. & Kamp, P.J.J. 2002. Integration of zircon color and zircon fission–track zonation patterns in orogenic belts: Application to the southern Alps, New Zealand. Tectonophysics, 349(1–4): 203–219.


Gehrels, G.E. 2011. Detrital zircon U–Pb geochronology: Current methods and new opportunities. In: Busby, C. & Azor, A. (editors), Tectonics of sedimentary basins: Recent advances. Blackwell Publishing Ltd, p. 47–62.


Gehrels, G.E. & Pecha, M. 2014. Detrital zircon U–Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere, 10(1): 49–65.


Gómez, J., Montes, N.E., Nivia, Á. & Diederix, H., compilers. 2015. Geological Map of Colombia 2015. Scale 1:1 000 000. Servicio Geológico Colombiano, 2 sheets. Bogotá.


Horton, B.K., Saylor, J.E., Nie, J., Mora, A., Parra, M., Reyes–Harker, A. & Stockli, D.F. 2010. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U–Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10): 1423–1442.


Ibañez–Mejia, M. & Cordani, U.G. 2020. Zircon U–Pb geochronology and Hf–Nd–O isotope geochemistry of the Paleoproterozoic to Mesoproterozoic basement in the westernmost Guiana Shield. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 65–90. Bogotá.


Ibañez–Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E. & Mora, A.R. 2011. The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research, 191(1–2): 58–77.


Ibañez–Mejia, M., Pullen, A., Arenstein, J., Gehrels, G.E., Valley, J., Ducea, M.N., Mora, A.R., Pecha, M. & Ruiz, J. 2015. Unraveling crustal growth and reworking processes in complex zircons from orogenic lower–crust: The Proterozoic Putumayo Orogen of Amazonia. Precambrian Research, 267: 285–310.


Jiménez–Triana, C. 2016. Caracterización petrológica y geoquímica de la unidad Ortogneis, Macizo de Santander, Colombia. Master thesis, Universidad Nacional de Colombia, 106 p. Bogotá.


Jourdan, S., Bernet, M., Tricart, P., Hardwick, E., Paquette, J.L., Guillot, S., Dumont, T. & Schwartz, S. 2013. Short–lived, fast erosional exhumation of the internal western Alps during the late early Oligocene: Constraints from geothermochronology of pro– and retro–side foreland basin sediments. Lithosphere, 5(2): 211–225.


Kosler, J. & Sylvester, P.J. 2003. Present trends and the future of zircon in geochronology: Laser ablation ICPMS. Reviews in Mineralogy and Geochemistry, 53(1): 243–275.


Leal–Mejía, H. 2011. Phanerozoic gold metallogeny in the Colombian Andes: A tectono–magmatic approach. Doctoral thesis, Universitat de Barcelona, 989 p. Barcelona.


Ludwig, K.R. 2012. User´s manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 5, 75 p. Berkeley, USA.


Mark, C., Cogné, N. & Chew, D. 2016. Tracking exhumation and drainage divide migration of the western Alps: A test of the apatite U–Pb thermochronometer as a detrital provenance tool. Geological Society of America Bulletin, 128(9–10): 1439–1460.


Moecher, D.P. & Samson, S.D. 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth and Planetary Science Letters, 247(3–4): 252–266.


Montgomery, D.R. & Brandon, M.T. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201(3–4): 481–489.


Mora, A., Parra, M., Strecker, M.R., Kammer, A., Dimaté, C. & Rodríguez, F. 2006. Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25(2): 1–19.


Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V. & Vallejo–Jaramillo, J. 2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120(7–8): 930–949.


Mora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L.I., Reyes, G. & Strecker, M.R. 2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: A reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21(1): 111–137.


Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., García, D. & Stockli, D.F. 2010. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. American Association of Petroleum Geologists Bulletin, 94(10): 1543–1580.


Moreno–Murillo, J.M., Concha–Perdomo, A.E. & Lozano, E.L. 2007. Petrogénesis y geoquímica del cuerpo ígneo de Pajarito, Boyacá, Colombia. Geología Colombiana, 32: 111–126.


Naylor, M., Sinclair, H.D., Bernet, M., van der Beek, P. & Kirstein, L.A. 2015. Bias in detrital fission track grain–age populations: Implications for reconstructing changing erosion rates. Earth and Planetary Science Letters, 422: 94–104.


Nie, J., Horton, B.K., Mora, A., Saylor, J.E., Housh, T.B., Rubiano, J. & Naranjo, J. 2010. Tracking exhumation of Andean ranges bounding the Middle Magdalena Valley Basin, Colombia. Geology, 38(5): 451–454.


Parra, M., Mora, A., Sobel, E.R., Strecker, M.R. & González, R. 2009a. Episodic orogenic–front migration in the northern Andes: Constraints from low–temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4): 1–27.


Parra, M., Mora, A., Jaramillo, C., Strecker, M.R., Sobel, E.R., Quiroz, L., Rueda, M. & Torres, V. 2009b. Orogenic wedge advance in the northern Andes: Evidence from the Oligocene – Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 121(5–6): 780–800.


Parra, M., Mora, A., López, C., Rojas, L.E. & Horton, B.K. 2012. Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology, 40(2): 175–178.


Pullen, A., Ibañez–Mejia, M., Gehrels, G.E., Ibañez–Mejia, J.C. & Pecha, M. 2014. What happens when n=1000? Creating large–n geochronological datasets with LA–ICP–MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29(6): 971–980.


Rahl, J.M., Reiners, P.W., Campbell, I.H., Nicolescu, S. & Allen, C.M. 2003. Combined single–grain (U–Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 31(9): 761–764.


Reiners, P.W. & Brandon, M.T. 2006. Using thermochronology to understand orogenic erosion. Annual Review Earth Planetary Sciences, 34: 419–466.


Reiners, P.W., Campbell, I.H., Nicolescu, S., Allen, C.M., Hourigan, J.K., Garver, J.I., Mattinson, J.M. & Cowan, D.S. 2005. (U–Th)/ (He–Pb) double–dating of detrital zircons. American Journal of Science, 305(4): 259–311.


Restrepo–Moreno, S.A., Foster, D.A., Stockli, D.F. & Parra–Sánchez, L.N. 2009. Long–term erosion and exhumation of the “Altiplano Antioqueño", northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and Planetary Science Letters, 278(1–2): 1–12.


Restrepo–Pace, P. 1995. Late Precambrian to early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological, geochemical and isotopic data. Doctoral thesis, University of Arizona, 194 p.


Rodríguez, G., Zapata, G., Arango, M.I. & Bermúdez, J.G. 2017. Caracterización petrográfica, geoquímica y geocronología de rocas granitoides pérmicas al occidente de La Plata y Pacarní, Huila, Valle Superior del Magdalena, Colombia. Boletín de Geología, 39(1): 41–68.


Sarmiento–Rojas, L.F., van Wess, J.D. & Cloetingh, S. 2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4): 383–411.


Saylor, J.E., Knowles, J.N., Horton, B.K., Nie, J. & Mora, A. 2013. Mixing of source populations recorded in detrital zircon U–Pb age spectra of modern river sands. The Journal of Geology, 121(1): 17–33.


Schaltegger, U., Schmitt, A.K. & Horstwood, M.S.A. 2015. U–Th–Pb zircon geochronology by ID–TIMS, SIMS, and laser ablation ICP–MS: Recipes, interpretations, and opportunities. Chemical Geology, 402: 89–110.


Slama, J., Kosler, J., Condon, D., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N. & Whitehouse, M.J. 2008. Plešovice zircon–A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2): 1–35.


Spiegel, C., Kuhlemann, J., Dunkl, I., Frisch, W., von Eynatten, H. & Balogh, K. 2000. The erosion history of the central Alps: Evidence from zircon fission–track data of the foreland basin sediments. Terra Nova, 12(4): 163–170.


Stewart, R.J. & Brandon, M.T. 2004. Detrital–zircon fission–track ages for the “Hoh Formation": Implications for late Cenozoic evolution of the Cascadia subduction wedge. GSA Bulletin, 116(1–2): 60–75.


van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. & Mora, A. 2016. Paleozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific oceans. Gondwana Research, 31: 271–294.


Vásquez, M., Altenberger, U., Romer, R.L., Sudo, M. & Moreno–Murillo, J.M. 2010. Magmatic evolution of the Andean Eastern Cordillera of Colombia during the Cretaceous: Influence of previous tectonic processes. Journal of South American Earth Sciences, 29(2): 171–186.


Vermeesch, P. 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters, 224(3–4): 441–451.


Vermeesch, P. 2009. RadialPlotter: A Java application for fission–track, luminescence and other radial plots. Radiation measurements, 44(4): 409–410.


Vermeesch, P. 2012. On the visualization of detrital age distributions. Chemical Geology, 312–313: 190–194.


Wetherill, G.W. 1956. Discordant uranium–lead ages, I. Eos, Transactions American Geophysical Union, 37(3): 320–326.


Zapata, S., Cardona, A., Jaramillo, C., Valencia, V. & Vervoort, J. 2016. U–Pb LA–ICP–MS geochronology and geochemistry of Jurassic volcanic and plutonic rocks from the Putumayo region (southern Colombia): Tectonic setting and regional correlations. Boletín de Geología, 38(2): 21–38.