Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

El Estado no tiene porqué ser aburrido ¡conoce a gov.co!

¿Sabes que es GOV.CO?

¿Sabes que es GOV.CO? Conócelo aquí

Servicio Geológico Colombiano

Skip Navigation Linksv2ch3
Seleccione su búsqueda
miig

​​

 Volume 2 Chapter 3

Chapter 3

Late Triassic to Jurassic Magmatism in Colombia: Implications for the Evolution of the Northern Margin of South America   

Julián Andrés LÓPEZ–ISAZA and Carlos Augusto ZULUAGA


Citation is suggested as: 
López–Isaza, J.A. & Zuluaga, C.A. 2020. Late Triassic to Jurassic magmatism in Colombia: Implications for the evolution of the northern margin of South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 40 p. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.03

Download chapter  ​​​​​​                      Download supplementary information  

Download EndNote reference​​​​


Abstract 

Volcanic and plutonic rocks that compose the Late Triassic to Jurassic magmatic belt in Colombia result from partial melting of lower crustal rocks mixed with mantle melts in a continental margin setting. Lithologies include quartz monzonites, monzogranites, syenogranites (locally leucocratic), granodiorites, tonalites, diorites, gabbros, and volcaniclastic successions intersected by porphyritic hypabyssal rocks of andesitic, dacitic, and latitic compositions. The elongated geometry of plutons suggests that the accommodation spaces of magmatic pulses were related to transtensional environments in a supra–subduction tectonic framework with mantle interaction, melting of slab sediments, and crustal contamination. The nature of magmatism resulted from interactions between crustal and mantle–derived magmas in a continental margin setting that progressively changed from Late Triassic postcollisional extension (associated with orogenic collapse?) to a predominantly Late Jurassic volcanic arc developed in a supra–subduction regime; the evolution of the magmatic belt is marked spatially from east to west and temporally over a time span of approximately 60 my. The sources of the Late Triassic to Jurassic magmatic belt are varied and associated with melting of the supra–subduction mantle wedge and differentiation of tholeiitic or mildly calc–alkaline basalts and intermediate rocks and include partial melting of pelitic rocks, tonalites, granodiorites, tholeiites, and high–aluminum basalts or andesites.

 

Keywords: high–potassium calc–alkaline rocks, shoshonitic magmatism, active continental margin, postcollisional magmatism, oblique subduction.

Resumen


Las rocas volcánicas y plutónicas que conforman el cinturón magmático del Triásico Tardío–Jurásico en Colombia son el resultado de la fusión parcial de rocas de la corteza inferior mezcladas con fundidos provenientes del manto en un ambiente de margen continental. Las litologías corresponden a cuarzomonzonitas, monzogranitos, sienogranitos (localmente leucocráticos), granodioritas, tonalitas, dioritas, gabros y sucesiones volcanosedimentarias cortadas por rocas hipoabisales porfídicas de composición andesítica, dacítica y latítica. La geometría alargada de los plutones sugiere que los espacios para la acomodación de los pulsos magmáticos se relacionaron con ambientes estructurales transtensivos en un marco tectónico de suprasubducción con interacción del manto, fusión de los sedimentos de la placa subductante y contaminación cortical. La naturaleza del magmatismo es resultado de interacciones entre magmas derivados de la corteza y magmas derivados del manto en un margen continental que cambió progresivamente de extensional poscolisional (¿asociado con colapso orogénico?) durante el Triásico Tardío a un arco volcánico desarrollado en un régimen de suprasubducción durante el Jurásico Tardío predominantemente; la evolución del cinturón magmático se marca espacialmente de este a oeste y temporalmente sobre un lapso de aproximadamente 60 millones de años. Las fuentes del arco magmático del Triásico Tardío–Jurásico son variadas y están asociadas con la fusión de la cuña mantélica de suprasubducción y diferenciación de basaltos y rocas intermedias toleíticas o ligeramente calcoalcalinas e incluye fusión parcial de rocas pelíticas, tonalitas, granodioritas, toleítas y basaltos o andesitas ricas en aluminio.

 

Palabras clave: rocas calcoalcalinas con alto potasio, magmatismo shoshonítico, margen continental activa, magmatismo poscolisional, subducción oblicua.


Abbreviations ​


ASI                                                            Aluminum saturation index

ca.                                                                Circa, about

CA–ID–TIMS                            Chemical abrasion isotope dilution thermal ionization mass spectrometry

CAP                                                        ​Continental arc potassic

cf.                                                              Confer, compare

GCDkit                                            Geochemical Data Toolkit

HREE                                                  Heavy rare earth element

IOP                                                        Initial oceanic arc potassic rocks

KDE                                                          Kernel density estimates

LA–ICP–MS                               Laser ablation inductively coupled plasma mass spectrometer

LA–MC–ICP–MS             Laser ablation multi–collector inductively coupled plasma mass spectrometer

LOI                                                           Loss on ignition

LOP                                                         Late oceanic arc potassic rocks

LREE                                                     Light rare earth element

MALI                                                     Modified alkali–lime index

MASH                                                Melting–assimilation–storage–homogenization

PAP                                                          Postcollisional arc potassic

PDPs                                                     Probability density plots

REE                                                           Rare earth element

SHRIMP                                           Sensitive high–resolution ion microprobe


References

Aggarwal, Y.P. 1983. Seismic slip rates and earthquakes ruptures zones in the southern Caribbean: Implications for plate motions and earthquake hazard in this region. 10th Caribbean Geological Conference. Memoirs, p. 157. Cartagena.

 

Altenberger, U. & Concha, A. 2005. Late Lower to early Middle Jurassic arc magmatism in the northern Ibagué–Batholith/Colombia. Geología Colombiana, 30: 87–97.

 

Álvarez, A.J. 1983. Geología de la cordillera Central y el occidente colombiano y petroquímica de los intrusivos granitoides meso–cenozoicos. Boletín Geológico, 26(2): 1–175.

 

Álvarez, M.J. 2013. Petrologia, geoquímica isotópica e metalogenia dos depósitos de ouro El Silencio e La Gran Colômbia, Distrito Mineiro Segovia–Remedios, Colômbia. Master thesis, Universidade de Brasilia, 178 p. Brasilia.

 

Arango, M.I., Rodríguez, G., Bermúdez, J.G. & Zapata, G. 2015a. Catálogo de unidades litoestratigráficas de Colombia: Cuarzomonzodiorita de Las Minas, cordillera Central. Servicio Geológico Colombiano, 26 p. Bogotá.

 

Arango, M.I., Rodríguez, G., Zapata, G. & Bermúdez, J.G. 2015b. Catálogo de unidades litoestratigráficas de Colombia: Cuarzolatita de Teruel, cordillera Central. Servicio Geológico Colombiano, 25 p. Bogotá.

 

Arango, M.I., Rodríguez, G., Bermúdez, J.G. & Zapata, G. 2015c. Catálogo de unidades litoestratigráficas de Colombia: Cuarzomonzonita de Anchique, cordillera Central. Servicio Geológico Colombiano, 26 p. Bogotá.

 

Arango, M.I., Rodríguez, G., Zapata, G. & Bermúdez, J.G. 2015d. Catálogo de unidades litoestratigráficas de Colombia: Monzogranito de Altamira, cordilleras Oriental y Central. Servicio Geológico Colombiano, 31 p. Bogotá.

 

Arango, M.I., Rodríguez, G., Zapata, G. & Bermúdez, J.G. 2015e. Catálogo de unidades litoestratigráficas de Colombia: Monzogranito de Mocoa, cordillera Oriental. Servicio Geológico Colombiano, 41 p. Bogotá.

 

Arango, M.I., Rodríguez, G., Zapata, G. & Correa–Martínez, A.M. 2016. Catálogo de unidades litoestratigráficas de Colombia: Monzogranito de Rionegro, cordillera Oriental. Servicio Geológico Colombiano, 128 p. Bogotá.

 

Aspden, J.A., McCourt, W.J. & Brook, M. 1987. Geometrical control of subduction–related magmatism: The Mesozoic and Cenozoic plutonic history of western Colombia. Journal of the Geological Society, 144(6): 893–905. https://doi.org/10.1144/gsjgs.144.6.0893

 

Aspden, J.A., Harrison, S.H. & Rundle, C.C. 1992. New geochronological control for the tectono–magmatic evolution of the metamorphic basement, Cordillera Real and El Oro Province of Ecuador. Journal of South American Earth Sciences, 6(1–2): 77–96. https://doi.org/10.1016/0895-9811(92)90019-U

 

Bahajroy, M. & Taki, S. 2014. Study of the mineralization potential of the intrusives around Valis (Tarom–Iran). Earth Sciences Research Journal, 18(2): 123–129. https://doi.org/10.15446/esrj.v18n2.44799

 

Bao, Z., Cai, K., Sun, M., Xiao, W., Wan, B., Wang, Y., Wang, X. & Xia, X. 2018. Continental crust melting induced by subduction initiation of the south Tianshan Ocean: Insight from the latest Devonian granitic magmatism in the southern Yili Block, NW China. Journal of Asian Earth Sciences, 153: 100–117. https://doi.org/10.1016/j.jseaes.2017.04.026

 

Barbarin, B. 1990. Plagioclase xenocrysts and mafic magmatic enclaves in some granites of the Sierra Nevada Batholith, California. Journal of Geophysical Research: Solid Earth, 95(B11): 17747–17756. https://doi.org/10.1029/JB095iB11p17747

 

Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1

 

Batchelor, R.A. & Bowden, P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1–4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8

 

Bayona, G., García, D.F. & Mora, G. 1994. La Formación Saldaña: Producto de la actividad de estratovolcanes continentales en un dominio de retroarco. En: Etayo–Serna, F. (editor), Estudios Geológicos del Valle Superior del Magdalena, Universidad Nacional de Colombia. Capítulo 1, 21 p. Bogotá.

 

Bayona, G., Cardona, A., Vásquez, M. & Montes, C. 2012. Subduction to rift–related evolution of Triassic and Jurassic rocks in the northern Andes. 108th Annual Meeting, Geological Society of America, Cordilleran Section, Abstracts with Programs, 44(3), p. 23. Queretaro. https://gsa.confex.com/gsa/2012CD/webprogram/Paper201809.html

 

Belica, M.E., Tohver, E., Pisarevsky, S.A., Jourdan, F., Denyszyn, S. & George, A.D. 2017. Middle Permian paleomagnetism of the Sydney Basin, eastern Gondwana: Testing Pangaea models and the timing of the end of the Kiaman Reverse Superchron. Tectonophysics, 699: 178–198. https://doi.org/10.1016/j.tecto.2016.12.029

 

Bissig, T., Mantilla–Figueroa, L.C. & Hart, C.J.R. 2014. Petrochemistry of igneous rocks of the California–Vetas mining district, Santander, Colombia: Implications for northern Andean tectonics and porphyry Cu (–Mo, Au) metallogeny. Lithos, 200–201: 355–367. https://doi.org/10.1016/j.lithos.2014.05.003

 

Blevin, P. 2004. Metallogeny of granitic rocks. The Ishihara Symposium: Granites and associated metallogenesis. Geoscience Australia, 37 p. Canberra.

 

Bonin, B. 1990. From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis. Geological Journal, 25(3–4): 261–270. https://doi.org/10.1002/gj.3350250309

 

Bonin, B. 1998. Alkaline rocks and geodynamics. Turkish Journal of Earth Sciences, 7: 105–118.

 

Bonin, B. 2007. A–type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1–2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007

 

Bonin, B., Azzouni–Sekkal, A., Bussy, F. & Ferrag, S. 1998. Alkali–calcic and alkaline post–orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 45(1–4): 45–70. https://doi.org/10.1016/S0024-4937(98)00025-5

 

Bowden, P., Batchelor, R.A., Chappell, B.W., Didier, J. & Lameyre, J. 1984. Petrological, geochemical and source criteria for the classification of granitic rocks: A discussion. Physics of the Earth and Planetary Interiors, 35(1–3): 1–11. https://doi.org/10.1016/0031-9201(84)90029-3

 

Brown, G.C. 1981. Space and time in granite plutonism. Philosophical Transactions of the Royal Society A, 301(1461): 321–336. https://doi.org/10.1098/rsta.1981.0114

 

Brown, G.C., Thorpe, R.S. & Webb, P.C. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society, 141(3): 413–426. https://doi.org/10.1144/gsjgs.141.3.0413

 

Bustamante, C. 2016. Geoquímica e geocronologia do plutonismo de arco Meso–Cenozoico na Cordilheira Central da Colômbia e os processos de acresção crustal nos Andes do Norte. Doctorade thesis, Universidade de São Paulo, 130 p. São Paulo.

 

Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G. & Vervoort, J. 2010. U–Pb LA–ICP–MS geochronology and tectonic correlation of Middle Jurassic intrusive rocks from the Garzón Massif, Upper Magdalena Valley and the Central Cordillera, southern Colombia. Boletín de Geología, 32(2): 93–109.

 

Bustamante, C., Archanjo, C., Cardona, A. & Vervoort, J. 2016. Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long–term arc maturity. Geological Society of America Bulletin, 128(11–12): 1762–1779. https://doi.org/10.1130/B31307.1

 

Cabanis, B. & Lecolle, M. 1989. Le diagramme La/10–Y/15–Nb/8: Un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale. Comptes Rendus l'Académie des Sciences, Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 309: 2023–2029. Paris.

 

Cardona, A., Cordani, U. & MacDonald, W.D. 2006. Tectonic correlations of pre–Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. Journal of South American Earth Sciences, 21(4): 337–354. https://doi.org/10.1016/j.jsames.2006.07.009

 

Cardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J. & Weber, M. 2010. Permian to Triassic I to S–type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography. Journal of South American Earth Sciences, 29(4): 772–783. https://doi.org/10.1016/j.jsames.2009.12.005

 

Castro, A. 2004. The source of granites: Inferences from the Lewisian Complex. Scottish Journal of Geology, 40(1): 49–65. https://doi.org/10.1144/sjg40010049

 

Castro, A. 2014. The off–crust origin of granite batholiths. Geoscience Frontiers, 5(1): 63–75. https://doi.org/10.1016/j.gsf.2013.06.006

 

Castro, A., Moreno–Ventas, I. & De La Rosa, J.D. 1991a. H–type (hybrid) granitoids: A proposed revision of the granite–type classification and nomenclature. Earth–Science Reviews, 31(3–4): 237–253. https://doi.org/10.1016/0012-8252(91)90020-G

 

Castro, A., Moreno–Ventas, I. & De La Rosa, J.D. 1991b. Multistage crystallization of tonalitic enclaves in granitoid rocks (Hercynian belt, Spain): Implications for magma mixing. Geologische Rundschau, 80(1): 109–120. https://doi.org/10.1007/BF01828770

 

Cediel, F., Shaw, R.P. & Cáceres, C. 2003. Tectonic assembly of the northern Andean Block. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 815–848. Tulsa, USA.

 

Chappell, B.W. 1984. Source rocks of I– and S–type granites in the Lachlan fold belt, southeastern Australia. Philosophical Transactions of the Royal Society A, 310(1514): 693–706. https://doi.org/10.1098/rsta.1984.0015

 

Chappell, B.W. 1999. Aluminium saturation in I– and S–type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535–551. https://doi.org/10.1016/S0024-4937(98)00086-3

 

Chappell, B.W. & White, A.J.R. 1974. Two contrasting granite types. Pacific Geology, 8: 173–174.

 

Chappell, B.W. & White, A.J.R. 1992. I– and S–type granites in the Lachlan fold belt. In: Brown, P.E. & Chappell, B.W. (editors), The Second Hutton Symposium on the Origin of Granites and Related Rocks. Geological Society of America, Special Paper 272, p. 1–26. https://doi.org/10.1130/SPE272-p1

 

Chappell, B.W. & White, A.J.R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x

 

Chappell, B.W., Bryant, C.J. & Wyborn, D. 2012. Peraluminous I–type granites. Lithos, 153: 142–153. https://doi.org/10.1016/j.lithos.2012.07.008

 

Chazot, G. & Bertrand. H. 1995. Genesis of silicic magmas during Tertiary continental rifting in Yemen. Lithos, 36(2): 69–83. https://doi.org/10.1016/0024-4937(95)00012-5

 

Chen, L. & Zhao, Z.F. 2017. Origin of continental arc andesites: The composition of source rocks is the key. Journal of Asian Earth Sciences, 145(part A): 217–232. https://doi.org/10.1016/j.jseaes.2017.04.012

 

Clarke, D.B. 1981. The mineralogy of peraluminous granites: A review. Canadian Mineralogist, 19(1): 3–17.

 

Clarke, D.B. 1992. Granitoid rocks. Springer Science & Business Media, 284 p. London.

 

Clavijo, J. 1995a. La Formación Noreán: Nueva evidencia de volcanismo explosivo en la paleocuenca del Magdalena (Colombia) y su relación con otras unidades del Jurásico norandino. IX Congreso Latinoamericano de Geología. Memoirs, 10 p. Caracas, Venezuela.

 

Clavijo, J. 1995b. Memoria explicativa: Mapa geológico de la plancha 75 Aguachica. Scale 1:100 000. Ingeominas, 48 p. Bucaramanga.

 

Clavijo, J., Barbosa, G., Camacho, J.A., Bernal, L.E., Royero, J.M. & Castro, G.E. 1992. Geología de la plancha 75 Aguachica. Scale 1:100 000. Ingeominas. Bogotá.

 

Cobbing, E.J. & Pitcher, W.S. 1972. The Coastal Batholith of central Peru. Journal of the Geological Society, 128(5): 421–451. https://doi.org/10.1144/gsjgs.128.5.0421

 

Cochrane, R.S. 2013. U–Pb thermochronology, geochronology and geochemistry of NW South America: Rift to drift transition, active margin dynamics and implications for the volume balance of continents. Doctorade thesis, University of Geneva, 118 p. Geneva,   Switzerland. https://doi.org/10.13097/archive-ouverte/unige:30029

 

Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B. & Chiaradia, M. 2014a. Permo–Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191: 383–402. https://doi.org/10.1016/j.lithos.2013.12.020

 

Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A. & Chiaradia, M. 2014b. Distinguishing between in–situ and accretionary growth of continents along active margins. Lithos, 202–203: 382–394. https://doi.org/10.1016/j.lithos.2014.05.031

 

Colmenares, F.H., Mesa, A.M., Roncancio, J.H., Arciniegas, E.G., Pedraza, P.E., Cardona, A., Romero, A.J., Silva, C.A., Alvarado, S.I., Romero, O.A. & Vargas, A.F. 2007. Geología de las planchas 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 33, 34 y 40. Proyecto: Evolución geohistórica de la Sierra Nevada de Santa Marta. Invemar–Ingeominas–ICP–Ecopetrol–Geosearch Ltda., 401 p. Bogotá.

 

Correa–Martínez, A.M., Rodríguez, G., Arango, M.I., Zapata, G. & Bermúdez, J.G. 2016. Catálogo de unidades litoestratigráficas de Colombia: Batolito de Mogotes, cordillera Oriental. Servicio Geológico Colombiano, 112 p. Medellín.

 

Correa–Martínez, A.M., Rodríguez, G., Bermúdez, J.G., Arango, M.I. & Zapata, G. 2018. Catálogo de unidades litoestratigráficas de Colombia: Riolitas del Alto Los Cacaos, cordillera Oriental. Servicio Geológico Colombiano, 47 p. Medellín.

 

Correa–Martínez, A.M., Rodríguez, G., Arango, M.I. & Zapata–García, G. 2019. Petrografía, geoquímica y geocronología U–Pb de las rocas volcánicas y piroclásticas de la Formación Noreán al NW del Macizo de Santander, Colombia. Boletín de Geología, 41(1): 29–54. http://dx.doi.org/10.18273/revbol.v41n1-2019002

 

Craddock, J.P., Malone, D.H., Porter, R., Compton, J., Luczaj, J., Konstantinou, A., Day, J.E. & Johnston, S.T. 2017. Paleozoic reactivation structures in the Appalachian–Ouachita–Marathon foreland: Far–field deformation across Pangea. Earth–Science Reviews, 169: 1–34. https://doi.org/10.1016/j.earscirev.2017.04.002

 

Cuadros, F.A. 2012. Caracterização geoquímica e geocronológica do embasamento mesoproterozóico da parte norte da serranía de San Lucas (Colômbia). Master thesis, Universidade de Brasilia, 113 p. Brasilia.

 

Cuadros, F.A., Botelho, N.F., Ordoñez–Carmona, O. & Matteini, M. 2013. Edades U–Pb en zircón por LA–MC–ICP–MS del Gneis de San Lucas y el Batolito de Norosí en la parte septentrional de la serranía de San Lucas. XIV Congreso Colombiano de Geología y Primer Simposio de Exploradores. Memoirs, p. 193–194. Bogotá.

 

Debon, F. & Le Fort, P. 1983. A chemical–mineralogical classification of common plutonic rocks and associations. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 73(3): 135–149. https://doi.org/10.1017/S0263593300010117

 

Debon, F. & Le Fort, P. 1988. A cationic classification of common plutonic rocks and their magmatic associations: Principles, method, applications. Bulletin de Minéralogie, 111: 493–510. https://doi.org/10.3406/bulmi.1988.8096

 

Dera, G., Prunier, J., Smith, P.L., Haggart, J.W., Popov, E., Guzhov, A., Rogov, M., Delsate, D., Thies, D., Cuny, G., Pucéat, E., Charbonnier, G. & Bayon, G. 2015. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea. Gondwana Research, 27(4): 1599–1615. https://doi.org/10.1016/j.gr.2014.02.006

 

De Silva, S.L., Riggs, N.R. & Barth, A.P. 2015. Quickening the pulse: Fractal tempos in continental arc magmatism. Elements, 11(2): 113–118. https://doi.org/10.2113/gselements.11.2.113

 

Dörr, W., Grösser, J.R., Rodríguez, G.I. & Kramm, U. 1995. Zircon U–Pb age of the Paramo Rico tonalite–granodiorite, Santander Massif (cordillera Oriental, Colombia) and its geotectonic significance. Journal of South American Earth Sciences, 8(2): 187–194. https://doi.org/10.1016/0895-9811(95)00004-Y

 

Drummond, M.S. & Defant, M.J. 1990. A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503–21521. https://doi.org/10.1029/JB095iB13p21503

 

Ducea, M.N., Paterson, S.R. & DeCelles, P.G. 2015. High–volume magmatic events in subduction systems. Elements, 11(2): 99–104. https://doi.org/10.2113/gselements.11.2.99

 

Eby, G.N. 1990. The A–type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1–2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z

 

Eby, G.N. 1992. Chemical subdivision of the A–type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

 

El Bouseily, A.M. & El Sokkary, A.A. 1975. The relation between Rb, Ba and Sr in granitic rocks. Chemical Geology, 16(3): 207–219. https://doi.org/10.1016/0009-2541(75)90029-7

 

Elliott, T. 2003. Tracers of the slab. In: Eiler, J. (editor), Inside the subduction factory. Geophysical Monograph Series 138, p. 23–45.

 

Frantz, J.C., Ordoñez, O. & Chemale, F. 2007. Caracterización de ambientes geológicos con mineralizaciones de oro en los Andes Colombianos. VIII Congreso Colombiano de Minería. Memoirs, CD. Medellín.

 

Frost, B.R. & Frost, C.D. 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11): 1955–1969. https://doi.org/10.1093/petrology/egn054

 

Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. & Frost, C.D. 2001. A geochemical classification of granitic rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

 

Frost, C.D., Frost, B.R. & Beard, J.S. 2016. On silica–rich granitoids and their eruptive equivalents. American Mineralogist, 101(6): 1268–1284. https://doi.org/10.2138/am-2016-5307

 

Ganne, J. & Feng, X. 2018. Magmatism: A crustal and geodynamic perspective. Journal of Structural Geology, 114: 329–335. https://doi.org/10.1016/j.jsg.2018.02.002

 

Ganne, J., Schellart, W.P., Rosenbaum, G., Feng, X. & De Andrade, V. 2017. Probing crustal thickness evolution and geodynamic processes in the past from magma records: An integrated approach. In: Bianchini, G., Bodinier, J.L., Braga, R. & Wilson, M. (editors), The crust–mantle and lithosphere–asthenosphere boundaries: Insights from xenoliths, orogenic deep sections, and geophysical studies. Geological Society of America, Special Paper 526, 25 p. https://doi.org/10.1130/2017.2526(01)

 

Gansser, A. 1973. Facts and theories on the Andes. Journal of the Geological Society of London, 129(2): 93–13l. https://doi.org/10.1144/gsjgs.129.2.0093

 

García–Chinchilla, D.A. 2018. Petrogênese e evolução tectônica de rochas graníticas da região de Garzón, Cordilheira Oriental da Colômbia. Doctorade thesis, Universidade de São Paulo, 214 p. São Paulo. https://doi.org/10.11606/T.44.2018.tde-10072018-150324

 

Goldsmith, R., Marvin, R.F. & Mehnert, H.H. 1971. Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. United States Geological Survey, Professional Paper 750, p. D41–D49.

 

Gómez, J. 2002. Catálogo de unidades litoestratigráficas de Colombia: Cuarzomonzonita de Dolores, cordillera Oriental. Ingeominas, 15 p. Bogotá.

 

Gómez, J., Montes, N.E., Alcárcel, F.A. & Ceballos, J.A. 2015. Catálogo de dataciones radiométricas de Colombia en ArcGIS y Google Earth. In: Gómez, J. & Almanza, M.F. (editors), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33, p. 63–419. Bogotá.

 

González, H. & Londoño, A.C. 2002. Catálogo de las unidades litoestratigráficas de Colombia: Diorita de Segovia, cordillera Central. Ingeominas, 17 p. Bogotá.

 

González, H. & Núñez, A. 2002. Catálogo de las unidades litoestratigráficas de Colombia: Monzogranito de Mocoa. Ingeominas, unpublished report, 30 p. Bogotá.

 

González, H., Maya, M., Camacho, J., Cardona, O.D. & Vélez, W. 2015a. Memoria explicativa: Plancha 74 Guaranda. Scale 1:100 000. Servicio Geológico Colombiano, 184 p. Medellín.

 

González, H., Maya, M., García, J.F., Gómez, J.P., Palacio, A.F. & Vélez, W. 2015b. Memoria explicativa: Plancha 84 Los Canelos. Scale 1:100 000. Servicio Geológico Colombiano, 147 p. Medellín.

 

González, H., Maya, M., García, J.F., Gómez, J.P., Palacio, A.F. & Vélez, W. 2015c. Memoria explicativa: Plancha 95 Buenavista. Scale 1:100 000. Servicio Geológico Colombiano. 128 p. Medellín.

 

González, H., Maya, M., Tabares, L.F., Palacio, A.F., Gómez, J.P., Montoya, A. & Vélez, W. 2015d. Memoria explicativa: Plancha 107 Cerro Azul. Scale 1:100 000. Servicio Geológico Colombiano, 167 p. Medellín.

 

González, H., Maya, M., Tabares, L.F., Montoya, A., Palacio, A.F., Sánchez, C., Barajas, A. & Vélez, W. 2015e. Memoria explicativa: Plancha 118 San Francisco. Scale 1:100 000. Servicio Geológico Colombiano, 220 p. Medellín.

 

González, H., Maya, M., García, J.F., Camacho, J.A., Gómez, J.P., Cardona, O.D., Palacio, A.F. & Vélez, W. 2015f. Memoria explicativa: Plancha 94 El Bagre. Scale 1:100 000. Servicio Geológico Colombiano, 196 p. Medellín.

 

González, H., Salinas, R., Cárdenas, J.I., Muñoz, C.M. Dávila, G.C. & Vélez, W. 2015g. Memoria explicativa: Plancha 77 Campo Dos. Scale 1:100 000. Servicio Geológico Colombiano, 234 p. Medellín.

 

Gorton, M.P. & Schandl, E.S. 2000. From continents to island arcs: A geochemical index of tectonic setting for arc–related and within–plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, 38(5): 1065–1073. https://doi.org/10.2113/gscanmin.38.5.1065

 

Goswami, B. & Bhattacharyya, C. 2014. Petrogenesis of shoshonitic granitoids, eastern India: Implications for the late Grenvillian post–collisional magmatism. Geoscience Frontiers, 5(6): 821–843. https://doi.org/10.1016/j.gsf.2013.09.003

 

Grebennikov, A.V. 2014. A–type granites and related rocks: Petrogenesis and classification. Russian Geology and Geophysics, 55(11): 1354–1366. https://doi.org/10.1016/j.rgg.2014.10.011

 

Harris, N.B.W., Pearce, J.A. & Tindle, A.G. 1986. Geochemical characteristics of collision–zone magmatism. In: Coward, M.P. & Ries, A.C. (editors), Collision tectonics. Geological Society of London, Special Publication 19, p. 67–81. https://doi.org/10.1144/GSL.SP.1986.019.01.04

 

Hastie, A.R., Kerr, A.C., Pearce, J.A. & Mitchell, S.F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram. Journal of Petrology, 48(12): 2341–2357. https://doi.org/10.1093/petrology/egm062

 

Hernández, S.A., López, J.A. & Zuluaga, C.A. 2017. Petrografía y geoquímica del Batolito de Rionegro al sur del municipio de Cáchira, Macizo de Santander, Colombia. XVI Congreso Colombiano de Geología. Memoirs, p. 1294–1301. Santa Marta.

 

Hess, P.C. 1989. Origins of igneous rocks. Harvard University Press, 336 p. Cambridge, USA.

 

Ingeominas & Universidad Industrial de Santander. 2006a. Memoria explicativa: Cartografía geológica de la plancha 55 El Banco. Scale 1:100 000. Ingeominas, 192 p. Bogotá.

 

Ingeominas & Universidad Industrial de Santander. 2006b. Memoria explicativa: Cartografía geológica de la plancha 64 Barranco de Loba. Scale 1:100 000. Ingeominas, 201 p. Bogotá.

 

Ingeominas & Universidad Industrial de Santander. 2006c. Memoria explicativa: Cartografía geológica de la plancha 85 Simití. Scale 1:100 000. Ingeominas, 140 p. Bogotá.

 

Ingeominas & Universidad Industrial de Santander. 2006d. Memoria explicativa: Cartografía geológica de la plancha 96 Bocas del Rosario. Scale 1:100 000. Ingeominas, 126 p. Bogotá.

 

Irvine, T.N. & Baragar, W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055

 

Jaillard, E., Soler, P., Carlier, G. & Mourier, T. 1990. Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: A Tethyan model. Journal of the Geological Society, 147(6): 1009–1022. https://doi.org/10.1144/gsjgs.147.6.1009

 

Janoušek, V., Finger, F., Roberts, M., Frýda, J., Pin, C. & Dolejš, D. 2004. Deciphering the petrogenesis of deeply buried granites: Whole–rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1–2): 141–159. https://doi.org/10.1017/S0263593300000985

 

Kay, S.M., Mpodozis, C. & Gardeweg, M. 2013. Magma sources and tectonic setting of Central Andean andesites (25.5–28º S) related to crustal thickening, forearc subduction erosion and delamination. In: Gómez–Tuena, A., Straub, S. M. & Zellmer, G. F. (editors). Orogenic andesites and crustal growth. Geological Society, London, Special Publication 385: 303–334.


 

Keshavarzi, R., Esmaili, D., Kahkhaei, M.R., Mokhtari, M.A.A. & Jabari, R. 2014. Petrology, geochemistry and tectonomagmatic setting of Neshveh Intrusion (NW Saveh). Open Journal of Geology, 4(5): 177–189. https://doi.org/10.4236/ojg.2014.45013

 

Kirsch, M., Paterson, S.R., Wobbe, F., Martínez–Ardila., A.M., Clausen, B.L. & Alasino, P.H. 2016. Temporal histories of cordilleran continental arcs: Testing models for magmatic episodicity. American Mineralogist, 101(10): 2133–2154. https://doi.org/10.2138/am-2016-5718

 

Lameyre, J. 1988. Granite settings and tectonics. Rendiconti della Società Italiana di Mineralogia e Petrologia, 43(2): 215–236.

 

Leal–Mejía, H. 2011. Phanerozoic gold metallogeny in the Colombian Andes: A tectono–magmatic approach. Doctorade thesis, Universitat de Barcelona, 989 p. Barcelona.

 

Leal–Mejía, H., Melgarejo, C. & Shaw, R. 2011. Phanerozoic gold metallogeny in the Colombian Andes. In: Proceedings Let´s talk ore deposits. Society for Geology Applied to Mineral Deposits, SGA Biennial Meeting. Extended abstracts, p. 209–211. Antofagasta, Chile.

 

Leal–Mejía, H., Shaw, R.P. & Melgarejo i Draper, J.C. 2019. Spatial–temporal migration of granitoid magmatism and the Phanerozoic tectono–magmatic evolution of the Colombian Andes. In: Cediel, F. & Shaw, R.P. (editors), Geology and tectonics of northwestern South America: The Pacific–Caribbean–Andean junction. Frontiers in Earth Sciences. Springer, p. 253–410. Cham, Germany. https://doi.org/10.1007/978-3-319-76132-9_5

 

Litherland, M., Aspden, J.A. & Jemielita, R.A. 1994. The metamorphic belts of Ecuador. Overseas Memoir of the British Geological Survey 11, 147 p. Nottingham, England.

 

López, J.A. & Zuluaga, C.A. 2016. Geoquímica de roca total y ambiente geodinámico del magmatismo calcoalcalino de edad Triásico–Jurásico de la Sierra Nevada de Santa Marta y Alta Guajira. The Colombian and Venezuelan Caribbean–Geology Workshop. Abstracts, 2 p. Bogotá.

 

López, J.A., Cuellar, M.A., Aguirre, R., Valencia, M. & Sánchez, C.A. 2007. Evidencias petrográficas y de campo de una intrusión sintectónica en la cordillera Central de Colombia: El caso de la Milonita Granítica del Guacaica. XI Congreso Colombiano de Geología. Memoirs, p. 17. Bucaramanga.

 

López, J.A., Zuluaga, C.A. & Tassinari, C.C.G. 2017. Geoquímica de roca total de la Cuarzomonzonita de Santa Bárbara, Macizo de Santander. XVI Congreso Colombiano de Geología. Memoirs, p. 1326–1332. Santa Marta.

 

MacDonald, W.D. 1964. Geology of the serranía de Macuira area, Guajira Peninsula, Colombia. Doctorade thesis, Princeton University, 237 p. Princeton, USA.

 

Maloney, K.T., Clarke, G.L., Klepeis, K.A. & Quevedo, L. 2013. The Late Jurassic to present evolution of the Andean margin: Drivers and the geological record. Tectonics, 32(5): 1049–1065. https://doi.org/10.1002/tect.20067

 

Maniar, P.D. & Piccoli, P.M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

 

Mantilla–Figueroa, L.C., Bernal, L.E., Clavijo, J., Pinto, J.E., Osorio, J., Ibáñez, D., Castro, E., López, E., Duarte, R., Celada, C.M., Gómez, E., Quintero, I., Pérez, A., Páez, L.A., García, C., Colegial, J.D., Correa, K., Serrano, J., Gaviria, J., Casas, R., Lasso, S., Niz, L., García, M., Nava, G., Martínez, A.M., Silva, A., Prada, D., Calderón, H., Jiménez, G., Cuellar, M., Franco, R. & Caballero, V. 2007. Generalidades sobre la geología de la serranía de San Lucas: Planchas 55, 64, 85 y 96. XI Congreso Colombiano de Geología. Memoirs, p. 14–17. Bucaramanga.

 

Mantilla–Figueroa, L.C., Valencia, V.A., Barra, F., Pinto, J. & Colegial, J. 2009. Geocronología U–Pb del distrito aurífero de Vetas–California (departamento de Santander, Colombia). Boletín de Geología, 31(1): 31–43.

 

Mantilla–Figueroa, L.C., Bissig, T., Valencia, V. & Hart, C.J.R. 2013. The magmatic history of the Vetas–California mining district, Santander Massif, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 45: 235–249. https://doi.org/10.1016/j.jsames.2013.03.006

 

Martini, M. & Ortega–Gutiérrez, F. 2018. Tectono–stratigraphic evolution of eastern Mexico during the break–up of Pangea: A review. Earth–Science Reviews, 183: 38–55. https://doi.org/10.1016/j.earscirev.2016.06.013

 

Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M. & Müller, R.D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146: 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002

 

McDonough, W.F. & Sun, S.S. 1995. The composition of the Earth. Chemical Geology, 120(3–4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

 

Miller, C.F. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? The Journal of Geology, 93(6): 673–689. https://doi.org/10.1086/628995

 

Miller, C.F., McDowell, S.M. & Mapes, R.W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529–532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

 

Mišković, A., Spikings, R.A., Chew, D.M., Košler, J., Ulianov, A. & Schaltegger, U. 2009. Tectonomagmatic evolution of western Amazonia: Geochemical characterization and zircon U–Pb geochronologic constraints from the Peruvian Eastern Cordilleran granitoids. Geological Society of America Bulletin, 121(9–10): 1298–1324. https://doi.org/10.1130/B26488.1

 

Mojica, J. & Kammer, A. 1996. Resumen del Jurásico en Colombia. Contribution International Geological Correlation Programme (IGCP) 322: Jurassic events in South America. Geología Colombiana, 20: 160–162.

 

Mojica, J., Kammer, A. & Ujueta, G. 1996. El Jurásico del sector noroccidental de Suramérica y guía de la excursión al Valle Superior del Magdalena (Nov. 1–4/95), regiones de Payandé y Prado, departamento del Tolima, Colombia. Geología Colombiana, 21: 3–40.

 

Moreno, J.A., Molina, J.F., Montero, P., Abu–Anbar, M., Scarrow, J.H., Cambeses, A. & Bea, F. 2014. Unraveling sources of A–type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post–collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos, 192–195: 56–85. https://doi.org/10.1016/j.lithos.2014.01.010

 

Moyen, J.F., Laurent, O., Chelle–Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A. & Gardien, V. 2017. Collision vs. subduction–related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos, 277: 154–177. https://doi.org/10.1016/j.lithos.2016.09.018

 

Müller, D., Rock, N.M.S. & Groves, D.I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study. Mineralogy and Petrology, 46: 259–289. https://doi.org/10.1007/BF01173568

 

Muttoni, G., Gaetani, M., Kent, D.V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M. & Zanchi, A. 2009. Opening of the Neo–Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia, 14(4): 17–48.

 

Nance, R.D., Murphy, J.B. & Santosh, M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Research, 25: 4–29. https://doi.org/10.1016/j.gr.2012.12.026

 

Nédélec, A. & Bouchez, J.L. 2015. Granites: Petrology, structure, geological setting, and metallogeny. Oxford University Press, 335 p. Oxford. https://doi.org/10.1093/acprof:oso/9780198705611.001.0001

 

Noguera, M.I., Wright, J.E., Urbani, F. & Pindell, J. 2011. U–Pb geochronology of detrital zircons from the Venezuelan passive margin: Implications for an Early Cretaceous proto–Orinoco river system and proto–Caribbean ocean basin paleogeography. Geologica Acta, 9(3–4): 265–272. https://doi.org/10.1344/105.000001698

 

Núñez, A. 2002. Catálogo de unidades litoestratigráficas de Colombia: Batolito de Ibagué, cordillera Central. Ingeominas, 26 p. Bogotá.

 

Núñez, A., Bocanegra, A. & Gómez, J. 1996. Los plutones jurásicos del Valle Superior del Magdalena (Colombia). VII Congreso Colombiano de Geología. Memoirs, II, p. 226–239. Bogotá.

 

Ohta, T. & Arai, H. 2007. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chemical Geology, 240(3–4): 280–297. https://doi.org/10.1016/j.chemgeo.2007.02.017

 

Ordóñez–Calderón, J.C. 2003. Petrology of the granitoid rocks in the Santander Massif, northeast Colombia. Master thesis. Shimane University, 122 p. Shimane, Japan.

 

Ordóñez–Carmona, O., Restrepo, J.J. & Pimentel, M.M. 2006. Geochronological and isotopical review of pre–Devonian crustal basement of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 372–382. https://doi.org/10.1016/j.jsames.2006.07.005

 

Ordóñez–Carmona, O., Frantz, J.C., Chemale, F. & Londoño, C. 2009. Serranía de San Lucas: Mineralizaciones auríferas, intrusiones de 1500 Ma, metamorfismo Grenville y magmatismo jurásico. XII Congreso Colombiano de Geología. Memoirs in CD ROM, T003–R117, 1 p. Paipa, Boyacá.

 

Paterson, S.R. & Ducea, M.N. 2015. Arc magmatic tempos: Gathering the evidence. Elements, 11(2): 91–98. https://doi.org/10.2113/gselements.11.2.91

 

Paul, A.N., Spikings, R.A., Ulianov, A. & Ovtcharova, M. 2018. High temperature (>350 ºC) thermal histories of the long lived (>500 Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U–Pb thermochronology. Geochimica et Cosmochimica Acta, 228: 275–300. https://doi.org/10.1016/j.gca.2018.02.033

 

Pearce, J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (editor), Andesites. John Wiley & Sons, p. 525–548. New York.

 

Pearce, J.A. 1983. Role of sub–continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J. & Nurry, M.J. (editors), Continental basalts and mantle xenoliths. Shiva Publications, p. 230–249. Nantwich, UK.

 

Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016

 

Pearce, J.A., Harris, N.B.W. & Tindle, A.G. 1984. Trace elements discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956

 

Pearce, J.A., Bender, J.F., De Long, S.E., Kidd, W.S.F., Low, P.J., Guner, Y., Saroglu, F., Yilmaz, Y., Moorbath, S. & Mitchell, J.G. 1990. Genesis of collision volcanism in eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1–2): 189–229. https://doi.org/10.1016/0377-0273(90)90018-B

 

Pennington, W.D. 1981. Subduction of eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11): 10753–10770. https://doi.org/10.1029/JB086iB11p10753

 

Pe–Piper, G., Piper, D.J.W., Koukouvelas, I., Dolansky, L.M. & Kokkalas, S. 2009. Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece. Geological Society of America Bulletin, 121(1–2): 39–54. https://doi.org/10.1130/B26317.1

 

Pindell, J.L. 1985. Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and proto–Caribbean. Tectonics, 4(1): 1–39. https://doi.org/10.1029/TC004i001p00001

 

Pindell, J.L. & Dewey, J.F. 1982. Permo–Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics, 1(2): 179–211. https://doi.org/10.1029/TC001i002p00179

 

Pindell, J.L. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 1–55. https://doi.org/10.1144/SP328.1

 

Pinilla–Ocampo, A. 2013. Modelo del ambiente tectónico a partir de estudios petrográficos y geoquímicos de la Riodacita de Ipapure–Cerro La Teta. Master thesis, Universidad Nacional de Colombia, 157 p. Bogotá.

 

Pitcher, W.S. 1988. Andean batholiths and marginal basins. Rendiconti della Società Italiana di Mineralogia e Petrologia, 43(2): 275–280.

 

Pitcher, W.S. 1997. The nature and origin of granite. Chapman & Hall, 387 p. https://doi.org/10.1007/978-94-011-5832-9

 

Quandt, D. 2013. The magmatic evolution of the Sierra Nevada de Santa Marta during the Jurassic. Master thesis, University of Postdam, 190 p. Berlin, Germany.

 

Quandt, D., Trumbull., R.B., Altenberger, U., Cardona, A., Romer, R.L., Bayona, G., Ducea, M., Valencia, V., Vásquez, M., Cortés, E. & Guzman, G. 2018. The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono–magmatic implications. Journal of South American Earth Sciences, 86: 216–230. https://doi.org/10.1016/j.jsames.2018.06.019

 

Quiceno–Colorado, J., Osorio–Ocampo, S., Vallejo–Hincapié, F., Salazar–Ríos, A., Ossa–Meza, C.A., Giraldo–Alzate, L. & Romero–Arboleda, L. 2016. Petrografía y geoquímica del Stock de Payandé y su posible relación con el magmatismo Jurásico al sur de Colombia. Boletín de Geología, 38(2): 39–53.

 

Ramos, V.A. 1999. Plate tectonic setting of the Andean Cordillera. Episodes, 22(3): 183–190.

 

Ramos, V.A. 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Kay, S.M., Ramos, V.A. & Dickinson, W.R. (editors), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Memoirs 204, p. 31–65. https://doi.org/10.1130/2009.1204(02)

 

Restrepo–Pace, P. 1995. Late Precambrian to early Mesozoic tectonic evolution of the Colombian Andes based on new geochronological, geochemical and isotopic date. Doctorade thesis, University of Arizona, 189 p. Tucson.

 

Riel, N., Jaillard, E., Martelat, J.E., Guillot, S. & Braun, J. 2018. Permian – Triassic Tethyan realm reorganization: Implications for the outward Pangea margin. Journal of South American Earth Sciences, 81: 78–86. https://doi.org/10.1016/j.jsames.2017.11.007

 

Ríos–Blandón, P.A. 2016. Petrografía y geoquímica de la Granodiorita de Ipapure y su relación con las rocas encajantes en la Alta Guajira–Colombia. Master thesis, Universidad Nacional de Colombia, 103 p. Bogotá.

 

Rodríguez, G. 2018. Caracterización petrográfica, química y edad Ar–Ar de cuerpos porfídicos intrusivos en la Formación Saldaña. Boletín Geológico, 44: 5–23. https://doi.org/10.32685/0120-1425/boletingeo.44.2018.5

 

Rodríguez, G., Arango, M.I., Bermúdez, J.G. & Zapata, G. 2015a. Catálogo de unidades litoestratigráficas de Colombia: Granito de Garzón, cordillera Oriental. Servicio Geológico Colombiano, 23 p. Medellín.

 

Rodríguez, G., Arango, M.I., Bermúdez, J.G. & Zapata, G. 2015b. Catálogo de unidades litoestratigráficas de Colombia: Cuarzomonzonita de Los Naranjos, cordillera Central. Servicio Geológico Colombiano, 28 p. Medellín.

 

Rodríguez, G., Arango, M.I., Zapata, G. & Bermúdez, J.G. 2015c. Catálogo de unidades litoestratigráficas de Colombia: Cuarzomonzodiorita de El Astillero, serranía de Las Minas. Servicio Geológico Colombiano, 27 p. Medellín.

 

Rodríguez, G., Zapata, G., Arango, M.I. & Bermúdez, J.G. 2015d. Catálogo de unidades litoestratigráficas de Colombia: Monzogranito de Algeciras, cordillera Oriental. Servicio Geológico Colombiano, 36 p. Medellín.

 

Rodríguez, G., Correa, A.M., Zapata, G. & Arango, M.I. 2016a. Catálogo de unidades litoestratigráficas de Colombia: Monzogranito de La Corcova, cordillera Oriental. Servicio Geológico Colombiano, 106 p. Medellín.

 

Rodríguez, G., Arango, M.I., Zapata, G. & Bermúdez, J.G. 2016b. Catálogo de unidades litoestratigráficas de Colombia: Formación Saldaña, cordilleras Central y Oriental. Servicio Geológico Colombiano, 92 p. Medellín.

 

Rodríguez, G., Zapata, G., Correa–Martínez, A.M. & Arango, M.I. 2017a. Caracterización petrográfica, química y geocronológica del magmatismo triásico–jurásico del Macizo de Santander–Colombia. XVI Congreso Colombiano de Geología y III Simposio de Exploradores. Memoirs, p. 1430–1433. Santa Marta.

 

Rodríguez, G., Arango, M.I., Zapata, G. & Correa–Martínez, A.M. 2017b. Catálogo de unidades litoestratigráficas de Colombia: Tonalita de San Martín, cordillera Oriental. Servicio Geológico Colombiano, 56 p. Medellín.

 

Rodríguez, G., Arango, M.I., Zapata, G. & Bermúdez, J.G. 2018a. Petrotectonic characteristics, geochemistry, and U–Pb geochronology of Jurassic plutons in the Upper Magdalena Valley–Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences, 81: 10–30. https://doi.org/10.1016/j.jsames.2017.10.012

 

Rodríguez, G., Zapata, G., Arango, M.I. & Correa, A.M. 2018b. Catálogo de unidades litoestratigráficas de Colombia: Monzogranito de Santa Bárbara, cordillera Oriental. Servicio Geológico Colombiano, 96 p. Medellín.

 

Rodríguez, G., Arango, M.I., Correa, A.M. & Zapata, G. 2018c. Catálogo de unidades litoestratigráficas de Colombia: Riolita de San Joaquín, cordillera Oriental. Servicio Geológico Colombiano, 46 p. Medellín.

 

Rolon, L.F. 2004. Structural geometry of the jura–Cretaceous rift of the Middle Magdalena Valley Basin–Colombia. Master thesis, West Virginia University, 63 p. Morgantown, USA.

 

Ross, P.S. & Bédard, J.H. 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace–element discriminant diagrams. Canadian Journal of Earth Sciences, 46(11): 823–839. https://doi.org/10.1139/E09-054

 

Salazar–Torres, J.C., Agudelo, W.J., Toro–Toro, L.M., Moreno–Sánchez, M. & Gómez–Cruz, A.J. 2013. Petrografía y geoquímica de las rocas volcánicas del cerro La Teta y el arroyo Jurarein, Alta Guajira, colombiana. Boletín de Geología, 35(2): 53–63.

 

Sarmiento–Rojas, L.F. 2001. Mesozoic rifting and Cenozoic Basin inversion history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Doctorade thesis, Vrije Universiteit, 295 p. Amsterdam, the Netherlands.

 

Sarmiento–Rojas, L.F., van Wess, J.D. & Cloetingh, S. 2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4): 383–411. https://doi.org/10.1016/j.jsames.2006.07.003

 

Schandl, E.S. & Gorton, M.P. 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97(3): 629–642. https://doi.org/10.2113/gsecongeo.97.3.629

 

Scotese, C.R. 2014a. Atlas of permo–Triassic paleogeographic maps (Mollweide Projection). Maps 43–52, volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. PALEOMAP Project. Evanston, USA. https://doi.org/10.13140/2.1.2609.9209

 

Scotese, C.R. 2014b. Atlas of Jurassic paleogeographic maps (Mollweide Projection). Maps 32–42, volume 3 of the PALEOMAP Atlas for ArcGIS. PALEOMAP Project. Evanston, USA. https://doi.org/10.13140/2.1.4850.4321

 

Song, S.G., Wang, M.J., Wang, C. & Niu, Y.L. 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective. Science China, Earth Sciences, 58(8):1284–1304. https://doi.org/10.1007/s11430-015-5102-x

 

Spikings, R., Cochrane, R., Villagómez, D., van der Lelij, R., Vallejo, C., Winkler, W. & Beate, B. 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma.). Gondwana Research, 27(1): 95–139. https://doi.org/10.1016/j.gr.2014.06.004

 

Stampfli, G.M., Hochard, C., Vérard, C., Wilhem, C. & von Raurmer, J. 2013. The formation of Pangea. Tectonophysics, 593: 1–19. https://doi.org/10.1016/j.tecto.2013.02.037

 

Tarney, J. & Jones, C.E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society, 151(5): 855–868. https://doi.org/10.1144/gsjgs.151.5.0855

 

Thiéblemont, D. & Cabanis, B. 1990. Utilisation d'un diagramme (Rb/100)–Tb–Ta pour la discrimination géochimique et l'etude pétrogénétique des roches magmatiques acides. Bulletin de la Société Géologique de France, 8–6(1): 23–35. https://doi.org/10.2113/gssgfbull.VI.1.23

 

Thiéblemont, D. & Tégyey, M. 1994. Une discrimination géochimique des roches différenciés témoin de la diversité d'origine et de situation tectonique des magmas calco–alcalins. Comptes Rendus Académie des Sciences, 319 (série II): 87–94. Paris.

 

Thompson, R.N. 1982. Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology, 18(1): 49–107. https://doi.org/10.1144/sjg18010049

 

Tschanz, C.M., Jimeno, A. & Cruz, J. 1969. Geology of the Sierra Nevada de Santa Marta area (Colombia): Preliminary report. Ingeominas, 288 p. Bogotá.

 

Tschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H. & Cebula, G.T. 1974. Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geological Society of America Bulletin, 85(2): 273–284. https://doi.org/10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2

 

Universidad Pedagógica y Tecnológica de Colombia & Ingeominas. 2011. Memoria explicativa: Cartografía geológica de la plancha 133 Puerto Berrío. Scale 1:100 000. Ingeominas, 145 p. Sogamoso.

 

van der Lelij, R. 2013. Reconstructing north–western Gondwana with implications for the evolution of the Iapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study. Doctorade thesis, University of Geneva, 248 p. Geneva. https://doi.org/10.13097/archive-ouverte/unige:31653

 

van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. & Mora, A. 2016. Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31: 271–294. https://doi.org/10.1016/j.gr.2015.01.011

 

van der Meer, D.G., Torsvik, T.H., Spakman, W., van Hinsbergen, D.J.J. & Amaru, M.L. 2012. Intra–Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nature Geoscience, 5: 215–219. https://doi.org/10.1038/ngeo1401

 

Vermeesch, P. 2012. On the visualisation of detrital age distributions. Chemical Geology, 312–313: 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021

 

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003

 

Villaseca, C., Barbero, L. & Herreros, V. 1998. A re–examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 89(2): 113–119. https://doi.org/10.1017/S0263593300007045

 

Vinasco, C.J., Cordani, U.G., González, H., Weber, M. & Peláez, C. 2006. Geochronological, isotopic, and geochemical data from Permo–Triassic granitic gneises and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4): 355–371. https://doi.org/10.1016/j.jsames.2006.07.007

 

Ward, D.E., Goldsmith, R., Cruz, J. & Restrepo, H. 1973. Geología de los cuadrángulos H–12 Bucaramanga y H–13 Pamplona, departamento de Santander. Boletín Geológico, 21(1–3): 132 p.

 

Watson, E.B. & Harrison, T.M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821X(83)90211-X

 

Whalen, J.B., Currie, K.L. & Chappell, B.W. 1987. A–type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/BF00402202

 

Winchester, J.A. & Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2

 

Winter, J. 2014. An introduction to igneous and metamorphic petrology. Prentice Hall Inc., 697 p. Upper Saddle River, USA.

 

Zapata, S., Cardona, A., Bayona, G., Bustamante, C., Mora, A., Silva–Tamayo, J.C. & Valencia, V. 2012. Tracing major changes in middle Mesozoic plate convergence in the northern Andes: Insights from the Jurassic magmatic record of southern Colombia. 108th Annual Meeting, Geological Society of America, Cordilleran Section, Abstracts with programs, 44(3), p. 24. Queretaro. https://gsa.confex.com/gsa/2012CD/webprogram/Paper201832.html

 

Zapata, G., Bermúdez, J.G., Rodríguez, G. & Arango, M.I. 2013. Memoria explicativa: Cartografía geológica de la plancha 83 Nechí. Scale 1: 100 000. Servicio Geológico Colombiano, 93 p. Medellín.

 

Zapata, G., Correa, A.M., Rodríguez, G. & Arango, M.I. 2016a. Catálogo de unidades litoestratigráficas de Colombia: Granito de Pescadero, cordillera Oriental. Servicio Geológico Colombiano, 54 p. Medellín.

 

Zapata, S., Cardona, A., Jaramillo, C., Valencia, V. & Vervoort, J. 2016b. U–Pb LA–ICP–MS geochronology and geochemistry of Jurassic volcanic and plutonic rocks from the Putumayo region (southern Colombia): Tectonic setting and regional correlations. Boletín de Geología, 38(2): 1–38. https://doi.org/10.18273/revbol.v38n2-2016001

 

Zapata, G., Arango, M.I., Rodríguez, G. & Correa–Martínez, A.M. 2018. Catálogo de unidades litoestratigráficas de Colombia: Riolitas El Uvo, cordillera Oriental. Servicio Geológico Colombiano, 39 p. Medellín.

 

Zartman, R.E. & Doe, B.R. 1981. Plumbotectonics–the model. Tectonophysics, 75(1–2): 135–162. https://doi.org/10.1016/0040-1951(81)90213-4

 

Zhao, Z.F., Dai, L.Q. & Zheng, Y.F. 2013. Postcollisional mafic igneous rocks record crust–mantle interaction during continental deep subduction. Scientific Reports, 3(3413): 1–6. https://doi.org/10.1038/srep03413

 

Zhao, S.W., Lai, S.C., Pei, X.Z., Qin, J.F., Zhu, R.Z., Tao, N. & Gao, L. 2019. Compositional variations of granitic rocks in continental margin arc: Constraints from the petrogenesis of Eocene granitic rocks in the Tengchong Block, SW China. Lithos, 326–327: 125–143. https://doi.org/10.1016/j.lithos.2018.12.026

 

Zorpi, M.J., Coulon, C., Orsini, J.B. & Cocirta, C. 1989. Magma mingling, zoning and emplacement in calc–alkaline granitoid plutons. Tectonophysics, 157(4): 315–329. https://doi.org/10.1016/0040-1951(89)90147-9

 

Zuluaga, C.A. & López, J.A. 2019. Ordovician orogeny and Jurassic low–lying orogen in the Santander Massif, northern Andes (Colombia). In: Cediel, F. & Shaw, R.P. (editors), Geology and tectonics of northwestern South America: The Pacific–Caribbean–Andean junction. Frontiers in Earth Sciences. Springer Nature Switzerland, p. 195–250. https://doi.org/10.1007/978-3-319-76132-9_4

 

Zuluaga, C.A., Pinilla, A. & Mann, P. 2015. Jurassic silicic volcanism and associated continental–arc basin in northwestern Colombia (southern boundary of the Caribbean Plate). In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 137–160. https://doi.org/10.1306/13531934M1083640