Home
Aumentar fuente
Aumentar contraste
Lengua de señas
The Putumayo Orogen of Amazonia: A Synthesis
Mauricio IBAÑEZ–MEJIA
https://doi.org/10.32685/pub.esp.35.2019.06
ISBN impreso obra completa: 978-958-52959-1-9
ISBN digital obra completa: 978-958-52959-6-4
ISBN impreso Vol. 1: 978-958-52959-2-6
ISBN digital Vol. 1: 978-958-52959-7-1
Citation is suggested as:
Ibañez–Mejia, M. 2020. The Putumayo Orogen of Amazonia: A synthesis. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 101–131. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.06
Download chapter
Download EndNote reference
Abstract
Meso– and Neoproterozoic paleogeographic reconstructions indicate that Amazonia played an important role in the assembly of Rodinia, and that its incorporation into this supercontinent led to continent–continent collision(s) with the Grenville Orogen of Laurentia and the Sveconorwegian Orogen of Baltica. The Sunsás–Aguapeí belt of SW Amazonia has traditionally been regarded as the geological evidence of such interactions, although it is becoming increasing clear that the metamorphic and tectonic history of this margin does not match the grade and timing that would be expected from interactions with the (near)–Adirondian margin of the Grenville, or with the Sveconorwegian margin of Fennoscandia. Massifs of amphibolite– to granulite–facies basement of late Proterozoic age have been known to exist in the northern Andes for many decades, but an autochthonous late Meso– to early Neoproterozoic orogenic belt in the western Guiana Shield that is un–remobilized by Andean tectonics, remained unknown. The recent discovery of such a belt, hidden under the Putumayo Foreland Basin, allowed, for the first time, to directly link the basement inliers of the Colombian Andes with the western Guiana Shield. Furthermore, the improved geochronologic database of some cordilleran inliers and Putumayo Basin basement, using high–spatial–resolution U–Pb methods, has permitted a more complete reconstruction of their evolution. This orogenic belt, which owing to its geographical location obtained the name 'Putumayo Orogen', holds key information about Amazonia's Meso– to early Neoproterozoic tectonics and is of great geodynamic significance in understanding the role played by this craton during amalgamation of the Rodinia supercontinent. This chapter provides a brief overview of the currently available geochronologic data and hypothesized tectonic evolution of the Putumayo Orogenic Cycle, with particular emphasis on its reconstruction within a dynamic framework of Laurentia–Amazonia–Baltica interactions in the second half of the Proterozoic Eon and during Rodinia supercontinent accretion.
Keywords: Amazonia, Putumayo Orogen, Rodinia, Proterozoic tectonics, collisional orogenesis.
Resumen
Reconstrucciones paleogeográficas de los periodos Meso‒ y Neoproterozoico indican que Amazonia jugó un papel importante durante la amalgamación de Rodinia, y que su incorporación al núcleo de este supercontinente involucró colisiones continente‒continente con el Orógeno Grenville de Laurentia y el Orógeno Sueco–Noruego de Báltica. El cinturón orogénico Sunsás‒Aguapeí en la margen SW de Amazonia ha sido tradicionalmente considerado como la principal evidencia geológica de dichas interacciones; sin embargo, cada vez es más claro que la historia metamórfica y tectónica de este orógeno no coincide ni en grado metamórfico ni en edad con lo que se esperaría si este hubiese colisionado con la margen adirondiana del Orógeno Grenville o la margen sueco–noruega de Fenoscandia. Aunque la ocurrencia de bloques de basamento con asociaciones metamórficas en facies anfibolita a granulita y edad proterozoica tardía en los Andes del norte es bien conocida desde hace varias décadas, la existencia de un cinturón orogénico autóctono mesoproterozoico tardío a neoproterozoico temprano en la margen occidental del Escudo de Guayana, el cual no haya sido retrabajado durante la Orogenia Andina, fue por mucho tiempo desconocida. El reciente descubrimiento de dicho cinturón orogénico bajo la cuña sedimentaria de la cuenca de antepaís del Putumayo ha permitido, por primera vez, una correlación directa entre los bloques de basamento expuestos en los Andes colombianos y la margen occidental del Escudo de Guayana. En adición a esto, los esfuerzos recientes realizados para expandir la base de datos geocronológica de los bloques de basamento cordilleranos y el basamento de la Cuenca del Putumayo, particularmente utilizando métodos de datación U‒Pb de alta resolución espacial, han permitido realizar una reconstrucción más completa de su evolución tectónica. Este cinturón orogénico, que debido a su localización geográfica ha recibido el nombre de 'Orógeno Putumayo', contiene información crucial sobre la evolución tectónica meso‒ neoproterozoica temprana de Amazonia y es de gran importancia geodinámica para entender el rol de este gran bloque continental en la amalgamación del supercontinente Rodinia. El objetivo de este capítulo es proporcionar una breve síntesis de la información geocronológica existente y la evolución tectónica propuesta del Ciclo Orogénico Putumayo, haciendo énfasis particular en su reconstrucción dentro de un marco dinámico global de interacciones entre Laurentia, Amazonia y Báltica en la segunda mitad del Proterozoico y durante la acreción del supercontinente Rodinia.
Palabras clave: Amazonia, Orógeno Putumayo, Rodinia, tectónica proterozoica, orogenia colisional.
Abbreviations
AMCG Anorthosite–Mangerite–Charnockite–Granite
CHUR Chondritic uniform reservoir
E–MORB Enriched–mid ocean ridge basalt
FM Florencia Margin
GAPES Garnet–Pyroxene–Plagioclase–Quartz geobarometer of Eckert et al. (1991)
GHS Greater Himalayan Sequence
GLOOS Global subducting sediments
LA–ICP–MS Laser ablation–inductively coupled plasma–mass spectrometry
LIP Large igneous province
RNJ Río Negro–Juruena
RSI Rondonian–San Ignacio
SAMBA South America Baltica
SIMS Secondary ion mass spectrometry
SM Solita Margin
TIMS Thermal ionization mass spectrometry
TWQ Software and thermodynamic database of Berman (1991)
UHT Ultra–high temperature
VM Vergel Margin
References
Altenberger, U., Jiménez–Mejía, D.M., Günter, C., Rodriguez–Sierra, G.I., Scheffler, F. & Oberhänsli, R. 2012. The Garzón Massif, Colombia: A new ultrahigh–temperature metamorphic complex in the early Neoproterozoic of northern South America. Mineralogy and Petrology, 105(3–4): 171–185. https://doi.org/10.1007/s00710-012-0202-1
Alvarez, J. 1981. Determinación de edad Rb/Sr en rocas del Macizo de Garzón, Cordillera Oriental de Colombia. Geología Norandina, (4): 31–38.
Alvarez, J. & Cordani, U.G. 1980. Precambrian basement within the septentrional Andes: Age and geological evolution. 26th International Geological Congress. Abstracts 1, p. 18–19. Paris, France.
Anderson, J.L. 1983. Proterozoic anorogenic granite plutonism of North America. In: Medaris, L.G., Jr., Byers, C.W., Mickelson, D.M. & Shanks, W.C. (editors), Proterozoic geology selected papers from an International Proterozoic Symposium. Geological Society of America, Memoir 161: p. 133–154. https://doi.org/10.1130/MEM161-p133
Ashwal, L.D. & Bybee, G.M. 2017. Crustal evolution and the temporality of anorthosites. Earth–Science Reviews, 173, 307–330. https://doi.org/10.1016/j.earscirev.2017.09.002
Baquero, M., Grande, S., Urbani, F., Cordani, U. G., Hall, C. & Armstrong, R. 2015. New evidence for Putumayo crust in the basement of the Falcon Basin and Guajira Peninsula, Northwestern Venezuela. In: Bartolini, C. & Mann, P. (editors), Petroleum Geology and Potential of the Colombian Caribbean Margin, American Association Petroleum Geologists, Memoir 108, p. 105–136. https://doi.org/10.1306/13531933M1083639
Berman, R.G. 1991. Thermobarometry using multi–equilibrium calculations: A new technique, with petrological applications. Canadian Mineralogist, 29(4): 833–855.
Bettencourt, J.S., Leite, Jr., W.B., Ruiz, A.S., Matos, R., Payolla, B.L. & Tosdal, R.M. 2010. The Rondonian–San Ignacio Province in the SW Amazonian Craton: An overview. Journal of South American Earth Sciences, 29(1): 28–46. https://doi.org/10.1016/j.jsames.2009.08.006
Bickford, M.E., McLelland, J.M., Mueller, P.A., Kamenov, G.D. & Neadle, M. 2010. Hafnium isotopic compositions of zircon from Adirondack AMCG suites: Implications for the petrogenesis of anorthosites, gabbros, and granitic members of the suites. Canadian Mineralogist, 48(4): 751–761. https://doi.org/10.3749/canmin.48.2.751
Bingen, B. & Viola, G. 2018. The early–Sveconorwegian Orogeny in southern Norway: Tectonic model involving delamination of the sub–continental lithospheric mantle. Precambrian Research, 313: 170–204. https://doi.org/10.1016/j.precamres.2018.05.025
Bingen, B., Demaiffe, D. & van Breemen, O. 1998. The 616 Ma Old Egersund Basaltic Dike Swarm, SW Norway, and Late Neoproterozoic opening of the Iapetus Ocean. Journal of Geology, 106(5): 565–574. https://doi.org/10.1086/516042
Bingen, B., Nordgulen, O. & Viola, G. 2008a. A four–phase model for the Sveconorwegian Orogeny, SW Scandinavia. Norwegian Journal of Geology, 88(1): 43–72.
Bingen, B., Davis, W.J., Hamilton, M.A., Engvik, A.K., Stein, H.J., Skår, Ø. & Nordgulen, O. 2008b. Geochronology of high–grade metamorphism in the Sveconorwegian belt, S Norway: U–Pb, Th–Pb and Re–Os data. Norwegian Journal of Geology, 88(1): 13–42.
Bispo–Santos, F., D'Agrella–Filho, M.S. Pacca, I.I.G., Janikian, L., Trindade, R.I.F., Elming, S.A., Silva, J.A., Barros, M.A.S. & Pinho, F.E.C. 2008. Columbia revisited: Paleomagnetic results from the 1790 Ma colider volcanics (SW Amazonian Craton, Brazil). Precambrian Research, 164(1–2): 40–49. https://doi.org/10.1016/j.precamres.2008.03.004
Bispo–Santos, F., D'Agrella–Filho, M.S., Trindade, R.I.F., Elming, S.–A., Janikian, L., Vasconcelos, P.M., Perillo, B.M., Pacca, I.I.G., da Silva, J.A. & Barros, M.A.S. 2012. Tectonic implications of the 1419 Ma Nova Guarita mafic intrusives paleomagnetic pole (Amazonian Craton) on the longevity of Nuna. Precambrian Research, 196–197: 1–22. https://doi.org/10.1016/j.precamres.2011.10.022
Bispo–Santos, F., D'Agrella–Filho, M.S., Trindade, R.I.F., Janikian, L. & Reis, N.J. 2014a. Was there SAMBA in Columbia? Paleomagnetic evidence from 1790 Ma Avanavero mafic sills, northern Amazonian Craton. Precambrian Research, 244: 139–155. https://doi.org/10.1016/j.precamres.2013.11.002
Bleeker, W. & Ernst, R. 2006. Short–lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth's paleogeographic record back to 2.6 Ga. In: Hanski, E., Mertanen, S., Rämö, T. & Vuollo, J. (editors), Dyke Swarms— Time Markers of Crustal Evolution. A.A. Balkema Publishers, p. 3–26. Rotterdam, the Netherlands.
Bloch, E., Ganguly, J., Hervig, R. & Cheng, W. 2015. 176Lu–176Hf geochronology of garnet I: Experimental determination of the diffusion kinetics of Lu3+ and Hf4+ in garnet, closure temperatures and geochronological implications. Contributions to Mineralogy and Petrology, 169(2): 1–18. https://doi.org/10.1007/s00410-015-1109-8
Bloch, E.M., Jollands, M.C., Devoir, A., Bouvier, A.S., Ibañez–Mejia, M. & Baumgartner, L.P. 2020. Multispecies diffusion of yttrium, rare earth elements and hafnium in garnet. Journal of Petrology, egaa055, p. 1–77. https://doi.org/10.1093/petrology/egaa055
Bogdanova, S.V., Bingen, B., Gorbatschev, R., Kheraskova, T.N., Kozlov, V.I., Puchkov, V.N. & Volozh, Y.A. 2008. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research, 160(1–2): 23–45. https://doi.org/10.1016/j.precamres.2007.04.024
Boger, S.D., Raetz, M., Giles, D., Etchart, E. & Fanning, C.M. 2005. U–Pb age data from the Sunsas region of eastern Bolivia, evidence for the allochthonous origin of the Paragua Block. Precambrian Research, 139(3–4): 121–146. https://doi.org/10.1016/j.precamres.2005.05.010
Bonamici, C.E., Fanning, C.M., Kozdon, R., Fournelle, J.H. & Valley, J.W. 2015. Combined oxygen–isotope and U–Pb zoning studies of titanite: New criteria for age preservation. Chemical Geology, 398: 70–84. https://doi.org/10.1016/j.chemgeo.2015.02.002
Bond, G.C., Nickeson, P.A. & Kominz, M.A. 1984. Breakup of a supercontinent between 625 Ma and 555 Ma: New evidence and implications for continental histories. Earth and Planetary Science Letters, 70(2), 325–345. https://doi.org/10.1016/0012-821X(84)90017-7
Bouvier, A., Vervoort, J.D. & Patchett, P.J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2): 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
Brown, M. & Johnson, T. 2018. Secular change in metamorphism and the onset of global plate tectonics. American Mineralogist, 103(2): 181–196. https://doi.org/10.2138/am-2018-6166
Bybee, G.M., Hayes, B., Owen–Smith, T.M., Lehmann, J., Ashwal, L.D., Brower, A M., Hill, C.M., Corfu, F. & Manga, M. 2019. Proterozoic massif–type anorthosites as the archetypes of long–lived (≥100 Myr) magmatic systems—New evidence from the Kunene Anorthosite Complex (Angola). Precambrian Research, 332, 105393: 1–16. https://doi.org/10.1016/j.precamres.2019.105393
Cameron, K.L., Lopez, R., Ortega–Gutiérrez, F., Solari, L.A., Keppie, J.D. & Schulze, C. 2004. U–Pb geochronology and Pb isotope compositions of leached feldspars: Constraints on the origin and evolution of Grenvillian rocks from eastern and southern Mexico. In: Tollo, R.P., Corriveau, L., McLelland, J.M. & Bartholomew, M.J. (editors), Proterozoic Tectonic Evolution of the Grenville Orogen in North America. Geological Society of America, Memoir 197, p. 755–769. https://doi.org/10.1130/0-8137-1197-5.755
Cardona, A. 2003. Correlações entre fragmentos do embasamento pré–Mesozóico da terminação setentrional dos Andes Colombianos, com base em dados isotópicos e geocronológicos. Master thesis, Universidade de São Paulo, 149 p. São Paulo. https://doi.org/10.11606/D.44.2003.tde-07042015-090410
Cardona, A., Chew, D., Valencia, V.A., Bayona, G., Mišković, A. & Ibañez–Mejia, M. 2010. Grenvillian remnants in the northern Andes: Rodinian and Phanerozoic paleogeographic perspectives. Journal of South American Earth Sciences, 29(1): 92–104. https://doi.org/10.1016/j.jsames.2009.07.011
Cawood, P.A. & Pisarevsky, S.A. 2006. Was Baltica right–way–up or upside–down in the Neoproterozoic? Journal of the Geological Society, 163(5): 753–759. https://doi.org/10.1144/0016-76492005-126
Cawood, P.A. & Pisarevsky, S.A. 2017. Laurentia–Baltica–Amazonia relations during Rodinia assembly. Precambrian Research, 292: 386–397. https://doi.org/10.1016/j.precamres.2017.01.031
Cawood, P.A., McCausland, P. & Dunning, G.R. 2001. Opening Iapetus: Constraints from the Laurentian margin in Newfoundland. 125 The Putumayo Orogen of Amazonia: A Synthesis
GSA Bulletin, 113(4): 443–453. https://doi.org/10.1130/0016-7606(2001)113<0443:OICFTL>2.0.CO;2
Cawood, P.A., Strachan, R., Cutts, K., Kinny, P.D., Hand, M. & Pisarevsky, S. 2010. Neoproterozoic orogeny along the margin of Rodinia: Valhalla Orogen, North Atlantic. Geology, 38(2): 99–102. https://doi.org/10.1130/G30450.1
Cawood, P.A., Hawkesworth, C.J. & Dhuime, B. 2012. Detrital zircon record and tectonic setting. Geology, 40(10): 875–878. https://doi.org/10.1130/G32945.1
Cawood, P.A., Hawkesworth, C.J. & Dhuime, B. 2013. The continental record and the generation of continental crust. GSA Bulletin, 125(1–2): 14–32. https://doi.org/10.1130/B30722.1
Chiarenzelli, J., Kratzmann, D., Selleck, B. & deLorraine, W. 2015. Age and provenance of Grenville supergroup rocks, Trans–Adirondack Basin, constrained by detrital zircons. Geology, 43(2): 183–186. https://doi.org/10.1130/G36372.1
Cisneros de León, A., Weber, B., Ortega–Gutiérrez, F., González–Guzmán, R., Maldonado, R., Solari, L., Schaaf, P. & Manjarrez–Juárez, R. 2017. Grenvillian massif–type anorthosite suite in Chiapas, Mexico: Magmatic to polymetamorphic evolution of anorthosites and their Ti–Fe ores. Precambrian Research, 295: 203–226. https://doi.org/10.1016/j.precamres.2017.04.028
Coint, N., Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T. & Sørensen, B.E. 2015. The late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: Relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis. Precambrian Research, 265: 57–77. https://doi.org/10.1016/j.precamres.2015.05.002
Condie, K.C., Beyer, E., Belousova, E., Griffin, W.L. & O'Reilly, S.Y. 2005. U–Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 139(1–2): 42–100. https://doi.org/10.1016/j.precamres.2005.04.006
Cordani, U.G. & Teixeira, W. 2007. Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher Jr, R.D., Carlson, M.P., McBride, J.H. & Martínez–Catalá, J.R. (editors), 4–D Framework of continental crust. Geological Society of America, Memoir 200, p. 297–320. https://doi.org/10.1130/2007.1200(14)
Cordani, U.G., Cardona, A., Jiménez, D.M., Liu, D. & Nutman, A.P. 2005. Geochronology of Proterozoic basement inliers in the Colombian Andes: Tectonic history of remnants of a fragmented Grenville belt. In: Vaughan, A.P.M., Leat, P.T. & Pankhurst, R.J. (editors), Terrane processes at the margins of Gondwana. Geological Society of London, Special Publication 246, p. 329–346. London. https://doi.org/10.1144/GSL.SP.2005.246.01.13
Cordani, U.G., Teixeira, W., D'Agrella–Filho, M.S. & Trindade, R.I. 2009. The position of the Amazonian Craton in supercontinents. Gondwana Research, 15(3–4): 396–407. https://doi.org/10.1016/j.gr.2008.12.005
Corrigan, D. & Hanmer, S. 1997. Anorthosites and related granitoids in the Grenville Orogen: A product of convective thinning of the lithosphere? Geology, 25(1): 61–64. https://doi.org/10.1130/0091-7613(1997)025<0061:AARGIT>2.3.CO;2
Cuadros, F.A., Botelho, N.F., Ordóñez–Carmona, O. & Matteini, M. 2014. Mesoproterozoic crust in the San Lucas Range (Colombia): An insight into the crustal evolution of the northern Andes. Precambrian Research, 245: 186–206. https://doi.org/10.1016/j.precamres.2014.02.010
Dalziel, I.W.D. 1991. Pacific margins of Laurentia and east Antarctica–Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent. Geology, 19(6): 598–601. https://doi.org/10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2
D'Agrella–Filho, M.S., Tohver, E., Santos, J.O.S., Elming, S.Å., Trindade, R.I.F., Pacca, I.I.G. & Geraldes, M.C. 2008. Direct dating of paleomagnetic results from Precambrian sediments in the Amazon Craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America. Earth and Planetary Science Letters, 267(1–2): 188–199. https://doi.org/10.1016/j.epsl.2007.11.030
D'Agrella–Filho, M.S., Trindade, R.I.F., Elming, S.Å., Teixeira, W., Yokoyama, E., Tohver, E., Geraldes, M.C., Pacc, I.I.G., Barros, M.A.S. & Ruiz, A.S. 2012. The 1420 Ma Indiavaí Mafic Intrusion (SW Amazonian Craton): Paleomagnetic results and implications for the Columbia supercontinent. Gondwana Research, 22(3–4): 956–973. https://doi.org/10.1016/j.gr.2012.02.022
D'Agrella–Filho, M. S., Bispo–Santos, F., Trindade, R. I. F. & Antonio, P. Y. J. 2016a. Paleomagnetism of the Amazonian Craton and its role in paleocontinents. Brazilian Journal of Geology, 46(2):275–299. http://doi.org/10.1590/2317-4889201620160055
D'Agrella–Filho, M.S., Trindade, R.I.F., Queiroz, M.V.B., Meira, V.T., Janikian, L., Ruiz, A.S. & Bispo–Santos, F. 2016b. Reassessment of Aguapeí, Salto do Céu, paleomagnetic pole, Amazonian Craton and implications for Proterozoic supercontinents. Precambrian Research, 272: 1–17. http://doi.org/10.1016/j.precamres.2015.10.021
DesOrmeau, J.W., Gordon, S.M., Kylander–Clark, A.R.C., Hacker, B.R., Bowring, S.A., Schoene, B. & Samperton, K.M. 2015. Insights into (U)HP metamorphism of the Western Gneiss Region, Norway: A high–spatial resolution and high–precision zircon study. Chemical Geology, 414: 138–155. https://doi.org/10.1016/j.chemgeo.2015.08.004
Dewey, J.F. 1988. Extensional collapse of orogens. Tectonics, 7(6): 1123–1139. https://doi.org/10.1029/TC007i006p01123
Dewey, J.F., Shackleton, R.M., Chengfa, C. & Yiyin, S. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society A, Memoir 327: 379–413. https://doi.org/10.1098/rsta.1988.0135
Dhuime, B., Hawkesworth, C. & Cawood, P. 2011. When continents formed. Science, 331(6014): 154–155. https://doi.org/10.1126/science.1201245
Eckert, J.O., Newton, R.C. & Kleppa, O.J. 1991. The ΔH of reaction and recalibration of garnet–pyroxene–plagioclase–quartz geobarometers in the CMAS system by solution calorimetry. American Mineralogist, 76(1–2): 148–160.
Edmond, J.M. 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088): 1594–1597. https://doi.org/10.1126/science.258.5088.1594
Emslie, R.F. 1991. Granitoids of rapakivi granite–anorthosite and related associations. Precambrian Research, 51(1–4): 173–192. https://doi.org/10.1016/0301-9268(91)90100-O
Engi, M., Lanari, P. & Kohn, M.J. 2017. Significant Ages—An Introduction to Petrochronology. Reviews in Mineralogy and Geochemistry, 83(1): 1–12. https://doi.org/10.2138/rmg.2017.83.1
England, P.C. & Thompson, A.B. 1984. Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894–928. https://doi.org/10.1093/petrology/25.4.894
Ernst, R.E., Bleeker, W., Soderlund, U. & Kerr, A.C. 2013. Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174: 1–14. http://doi.org/10.1016/j.lithos.2013.02.017
Evans, D.A.D. 2013. Reconstructing pre–Pangean supercontinents. Geological Society of America Bulletin, 125(11–12): 1735–1751. http://doi.org/10.1130/B30950.1
Fournier, H.W., Lee, J.K.W., Urbani, F. & Grande, S. 2017. The tectonothermal evolution of the Venezuelan Caribbean Mountain System: 40Ar/39Ar age insights from a Rodinian–related rock, the Cordillera de la Costa and Margarita Island. Journal of South American Earth Sciences, 80: 149–173. http://doi.org/10.1016/j.jsames.2017.09.015
Fuck, R.A., Brito–Neves, B.B. & Schobbenhaus, C. 2008. Rodinia descendants in South America. Precambrian Research, 160(1–2): 108–126. http://doi.org/10.1016/j.precamres.2007.04.018
Ganguly, J. & Tirone, M. 1999. Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion: Theoretical formulation and applications. Earth and Planetary Science Letters, 170(1–2): 131–140. https://doi.org/10.1016/S0012-821X(99)00089-8
Ganguly, J., Cheng, W. & Tirone, M. 1996. Thermodynamics of aluminosilicate garnet solid solution: New experimental data, an optimized model, and thermometric applications. Contributions to Mineralogy and Petrology, 126(1–2): 137–151.
Ganguly, J., Tirone, M. & Hervig, R.L. 1998. Diffusion kinetics of samarium and neodymium in garnet, and a method for determining cooling rates of rocks. Science, 281(5378): 805–807. https://doi.org/10.1126/science.281.5378.805
Ganguly, J., Dasgupta, S., Cheng, W. & Neogi, S. 2000. Exhumation history of a section of the Sikkim Himalayas, India: Records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth and Planetary Science Letters, 183(3–4): 471–486. https://doi.org/10.1016/S0012-821X(00)00280-6
Garzione, C.N. 2008. Surface uplift of Tibet and Cenozoic global cooling. Geology, 36(12): 1003–1004. https://doi.org/10.1130/focus122008.1
Goldsmith, R., Marvin, R.F. & Mehnert, H.H. 1971. Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. United States Geological Survey Professional Paper, 750–D, p. D44–D49.
González–Guzmán, R., Weber, B., Manjarrez–Juárez, R., Cisneros de León, A., Hecht, L. & Herguera–García, J.C. 2016. Provenance, age constraints and metamorphism of Ediacaran metasedimentary rocks from the El Triunfo Complex (SE Chiapas, Mexico): Evidence for Rodinia breakup and Iapetus active margin. International Geology Review, 58(16): 2065–2091. https://doi.org/10.1080/00206814.2016.1207208
Gower, C.F. & Krogh, T.E. 2002. A U–Pb geochronological review of the Proterozoic history of the eastern Grenville Province. Canadian Journal of Earth Sciences, 39(5): 795–829. https://doi.org/10.1139/E01-090
Gower, C.F., Kamo, S. & Krogh, T. E. 2008. Indentor tectonism in the eastern Grenville Province. Precambrian Research, 167(1–2): 201–212. https://doi.org/10.1016/j.precamres.2008.08.004
Hamilton, M. A., McLelland, J. & Selleck, B. 2004. SHRIMP U–Pb zircon geochronology of the anorthosite–mangerite–charnockite–granite suite, Adirondack Mountains, New York: Ages of emplacement and metamorphism. In: Tollo, R.P., Corriveau, L., McLelland, J.M. & Bartholomew, M.J. (editors), Proterozoic Tectonic Evolution of the Grenville Orogen in North America. Geological Society of America, Memoir 197, p. 337–355. https://doi.org/10.1130/0-8137-1197-5.337
Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S. & Storey, C.D. 2010. The generation and evolution of the continental crust. Journal of the Geological Society, 167(2): 229–248. http://doi.org/10.1144/0016-76492009-072
Hawkesworth, C., Cawood, P. & Dhuime, B. 2013. Continental growth and the crustal record. Tectonophysics, 609(C): 651–660. https://doi.org/10.1016/j.tecto.2013.08.013
Hellström, F.A., Johansson, Å.E., Larson, S. Å. 2004. Age and emplacement of late Sveconorwegian monzogabbroic dykes, SW Sweden. Precambrian Research, 128(1–2): 39–55. https://doi.org/10.1016/S0301-9268(03)00194-3
Heumann, M.J., Bickford, M.E., Hill, B.M., McLelland, J.M., Selleck, B.W. & Jercinovic, M.J. 2006. Timing of anatexis in metapelites from the Adirondack lowlands and southern highlands: A manifestation of the Shawinigan Orogeny and subsequent anorthosite–mangerite–charnockite–granite magmatism. GSA Bulletin, 118(11–12): 1283–1298. https://doi.org/10.1130/B25927.1
Hoffman, P.F. 1991. Did the breakout of Laurentia turn Gondwanaland inside–out? Science, 252(5011): 1409–1412. https://doi.org/10.1126/science.252.5011.1409
Ibañez–Mejia, M. & Cordani, U.G. 2020. Zircon U–Pb geochronology and Hf–Nd–O isotope geochemistry of the Paleoproterozoic to Mesoproterozoic basement in the westernmost Guiana Shield. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 65–90. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.04
Ibañez–Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E. & Mora, A.R. 2011. The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research, 191(1–2): 58–77. https://doi.org/10.1016/j.precamres.2011.09.005
Ibañez–Mejia, M., Pullen, A., Arenstein, J., Gehrels, G., Valley, J., Ducea, M., Mora, A., Pecha, M. & Ruiz, J. 2015. Unraveling crustal growth and reworking processes in complex zircons from orogenic lower–crust: The Proterozoic Putumayo Orogen of Amazonia. Precambrian Research, 267: 285–310. https://doi.org/10.1016/j.precamres.2015.06.014
Ibañez–Mejia, M., Bloch, E.M. & Vervoort, J.D. 2018. Timescales of collisional metamorphism from Sm–Nd, Lu–Hf and U–Pb thermochronology: A case from the Proterozoic Putumayo Orogen of Amazonia. Geochimica Et Cosmochimica Acta, 235: 103–126. http://doi.org/10.1016/j.gca.2018.05.017
Jamieson, R.A., Beaumont, C., Medvedev, S. & Nguyen, M.H. 2004. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan–Tibetan Orogen. Journal of Geophysical Research: Solid Earth, 109(B6): 1–24. https://doi.org/10.1029/2003JB002811
Jiménez–Mejía, D.M., Juliani, C. & Cordani, U.G. 2006. P–T–t conditions of high–grade metamorphic rocks of the Garzón Massif, Andean basement, SE Colombia. Journal of South American Earth Sciences, 21(4): 322–336. https://doi.org/10.1016/j.jsames.2006.07.001
Johansson, A. 2009. Baltica, Amazonia and the SAMBA connection–1000 million years of neighborhood during the Proterozoic? Precambrian Research, 175(1–4): 221–234. http://doi.org/10.1016/j.precamres.2009.09.011
Johansson, L., Möller, C. & Söderlund, U. 2001. Geochronology of eclogite facies metamorphism in the Sveconorwegian Province of SW Sweden. Precambrian Research, 106(3–4): 261–275. https://doi.org/10.1016/S0301-9268(00)00105-4
Kemp, A.I.S., Hawkesworth, C.J., Collins, W.J., Gray, C.M., Blevin, P.L. & Edinburgh Ion Microprobe Facility. 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia. Earth and Planetary Science Letters, 284(3–4): 455–466. https://doi.org/10.1016/j.epsl.2009.05.011
Keppie, J.D., Dostal, J., Cameron, K.L., Solari, L.A., Ortega–Gutiérrez, F. & Lopez, R. 2003. Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: Tectonic implications. Precambrian Research, 120(3–4): 365–389. https://doi.org/10.1016/S0301-9268(02)00166-3
Kohn, M.J. 2016. Metamorphic chronology—a tool for all ages: Past achievements and future prospects. American Mineralogist, 101(1): 25–42. https://doi.org/10.2138/am-2016-5146
Kohn, M.J. & Corrie, S.L. 2011. Preserved Zr–temperatures and U–Pb ages in high–grade metamorphic titanite: Evidence for a static hot channel in the Himalayan Orogen. Earth and Planetary Science Letters, 311(1–2): 136–143. https://doi.org/10.1016/j.epsl.2011.09.008
Kohn, M.J., Corrie, S.L. & Markley, C. 2015. The fall and rise of metamorphic zircon. American Mineralogist, 100(4): 897–908. https://doi.org/10.2138/am-2015-5064
Kroonenberg, S.B. 1982. A Grenvillian granulite belt in the Colombian Andes and its relation to the Guiana Shield. Geologie en Mijnbouw, 61(4): 325–333.
Lasaga, A.C. 1983. Geospeedometry: An extension of geothermometry. In: Saxena, S.K. (editor), Kinetics and Equilibrium in Mineral Reactions. Springer, p. 81–114. New York, USA. https://doi.org/10.1007/978-1-4612-5587-1_3
Lawlor, P.J., Ortega–Gutiérrez, F., Cameron, K.L., Ochoa–Camarillo, H., Lopez, R. & Sampson, D.E. 1999. U–Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala Gneiss of eastern Mexico. Precambrian Research, 94(1–2): 73–99. https://doi.org/10.1016/S0301-9268(98)00108-9
Leal–Mejía, H. 2011. Phanerozoic gold metallogeny in the Colombian Andes: A tectono–magmatic approach. Doctoral thesis, Universitat de Barcelona, 989 p. Barcelona.
Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., de Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P. Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break–up history of Rodinia: A synthesis. Precambrian Research, 160(1–2): 179–210. http://doi.org/10.1016/j.precamres.2007.04.021
Litherland, M. & Bloomfield, K. 1981. The Proterozoic history of eastern Bolivia. Precambrian Research, 15(2): 165–179. https://doi.org/10.1016/0301-9268(81)90027-9
Litherland, M., Annells, R.N., Darbyshire, D.P.F., Fletcher, C.J.N., Hawkins, M.P., Klinck, B.A., Mitchell, W.I., O'Connor, E.A., Pitfield, P.E.J., Power, G. & Webb, B.C. 1989. The Proterozoic of eastern Bolivia and its relationship to the Andean Mobile Belt. Precambrian Research, 43(3): 157–174. https://doi.org/10.1016/0301-9268(89)90054-5
MacDonald, W.D. & Hurley, P.M. 1969. Precambrian gneisses from northern Colombia, South America. Geological Society of America Bulletin, 80(9): 1867–1872. https://doi.org/10.1130/0016-7606(1969)80[1867:PGFNCS]2.0.CO;2
McLelland, J.M., Daly, J.S. & McLelland, J.M. 1996. The Grenville Orogenic Cycle (ca 1350–1000 Ma): An Adirondack perspective. Tectonophysics, 265(1–2): 1–28. https://doi.org/10.1016/S0040-1951(96)00144-8
McLelland, J.M., Hamilton, M., Selleck, B., McLelland, J., Walker, D. & Orrell, S. 2001. Zircon U–Pb geochronology of the Ottawan Orogeny, Adirondack Highlands, New York: Regional and tectonic implications. Precambrian Research, 109(1–2): 39–72. https://doi.org/10.1016/S0301-9268(01)00141-3
McLelland, J.M., Bickford, M.E., Hill, B.M., Clechenko, C.C., Valley, J.W. & Hamilton, M.A. 2004. Direct dating of Adirondack massif anorthosite by U–Pb SHRIMP analysis of igneous zircon: Implications for AMCG complexes. GSA Bulletin, 116(11–12): 1299–1317. https://doi.org/10.1130/B25482.1
McLelland, J.M., Selleck, B.W. & Bickford, M.E. 2010. Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians. In: Tollo, R.P., Bartholomew, M.J., Hibbard, J.P. & Karabinos, P.M. (editors), From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region. Geological Society of America, Memoir 206, p. 21–49. Boulder, USA. https://doi.org/10.1130/2010.1206(02)
Mezger, K., Rawnsley, C.M., Bohlen, S.R. & Hanson, G.N. 1991. U–Pb garnet, sphene, monazite, and rutile ages: Implications for the duration of high–grade–metamorphism and cooling histories, Adirondack Mts., New York. The Journal of Geology, 99(3): 415–428. https://doi.org/10.1086/629503
Möller, C. 1998. Decompressed eclogites in the Sveconorwegian (–Grenvillian) Orogen of SW Sweden: Petrology and tectonic implications. Journal of Metamorphic Geology 16(5): 641–656. https://doi.org/10.1111/j.1525-1314.1998.00160.x
Möller, C. 1999. Sapphirine in SW Sweden: A record of Sveconorwegian (–Grenvillian) late–orogenic tectonic exhumation. Journal of Metamorphic Geology 17(1): 127–141. https://doi.org/10.1046/J.1525-1314.1999.00184.X
Möller, C., Bingen, B., Andersson, J., Stephens, M.B., Viola, G. & Scherstén, A. 2013. A non–collisional, accretionary Sveconorwegian Orogen–Comment. Terra Nova 25(2): 165–168. https://doi.org/10.1111/ter.12029
Ordóñez–Carmona, O., Pimentel, M.M. & De Moraes, R. 2002. Granulitas de Los Mangos: Un fragmento grenviliano en la parte oriental de la Sierra Nevada de Santa Marta. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 26(99): 169–179.
Ordóñez–Carmona, O., Restrepo, J.J. & Pimentel, M.M. 2006. Geochronological and isotopical review of pre–Devonian crustal basement of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 372–382. https://doi.org/10.1016/j.jsames.2006.07.005
Ortega–Gutiérrez, F., Ruiz, J. & Centeno–García, E. 1995. Oaxaquia: A Proterozoic microcontinent accreted to North America during the late Paleozoic. Geology, 23(12): 1127–1130. https://doi.or g/10.1130/0091-7613(1995)023<1127:OAPMAT>2.3.CO;2
Ortega–Gutiérrez, F., Elías–Herrera, M., Morán–Zenteno, D.J., Solari, L., Weber, B. & Luna–González, L. 2018. The pre–Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution. Earth–Science Reviews, 183: 2–37. https://doi.org/10.1016/j.earscirev.2018.03.006
Patchett, P.J. & Ruiz, J. 1987. Nd isotopic ages of crust formation and metamorphism in the Precambrian of eastern and southern Mexico. Contributions to Mineralogy and Petrology, 96(4): 523–528. http://doi.org/10.1007/BF01166697
Pinson Jr, W.H., Hurley, P.M., Mencher, E. & Fairbairn, H.W. 1962. K–Ar and Rb–Sr ages of biotites from Colombia, South America. Geological Society of America Bulletin, 73(7): 907–910. https://doi.org/10.1130/0016-7606(1962)73[907:KARAOB]2.0.CO;2
Pisarevsky, S.A., Elming, S.A., Pesonen, L.J. & Li, Z.X. 2014. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Research, 244: 207–225. http://doi.org/10.1016/j.precamres.2013.05.014
Plank, T. & Langmuir, C.H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3–4): 325–394. http://doi.org/10.1016/S0009-2541(97)00150-2
Priem, H., Andriessen, P., Boelrijk, N., De Booder, H., Hebeda, E., Huguett, A., Verdumen, E. & Verschure, R. 1982. Geochronology of the Precambrian in the Amazonas region of southeastern Colombia (western Guiana Shield). Geologie en Mijnbouw, 61(3): 229–242.
Priem, H.N.A., Kroonenberg, S.B., Boelrijk, N.A.I.M. & Hebeda, E.H. 1989. Rb–Sr and K–Ar evidence for the presence of a 1.6 Ga basement underlying the 1.2 Ga Garzón–Santa Marta granulite belt in the Colombian Andes. Precambrian Research, 42(3–4): 315–324. https://doi.org/10.1016/0301-9268(89)90016-8
Raymo, M.E. & Ruddiman, W.F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359(6391): 117–122. https://doi.org/10.1038/359117a0
Reiners, P.W., Carlson, R.W., Renne, P.R., Cooper, K.M., Granger, D.E., McLean, N.M. & Schoene, B. 2017. Geochronology and thermochronology. American Geophysical Union–John Wiley & Sons Ltd., 480 p.
Reis, N.J., Teixeira, W., Hamilton, M.A., Bispo–Santos, F., Almeida, M.E. & D'Agrella–Filho, M.S. 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U–Pb ID–TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos, 174: 175–195. http://doi.org/10.1016/j.lithos.2012.10.014
Restrepo, J.L. & Giraldo, O.A. 2018. Petrografía y geocronología (U–Pb) de las Migmatitas de Florencia, en el Complejo Garzón, departamento de Caquetá. Bachelor thesis, Universidad de Caldas, 126 p. Manizales, Colombia.
Restrepo–Pace, P.A., Ruiz, J., Gehrels, G. & Cosca, M. 1997. Geochronology and Nd isotopic data of Grenville–age rocks in the Colombian Andes: New constraints for late Proterozoic – early Paleozoic paleocontinental reconstructions of the Americas. Earth and Planetary Science Letters, 150(3–4): 427–441. https://doi.org/10.1016/S0012-821X(97)00091-5
Rivers, T. 2008. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province–Implications for the evolution of large hot long–duration orogens. Precambrian Research, 167(3–4): 237–259. https://doi.org/10.1016/j.precamres.2008.08.005
Rivers, T. 2012. Upper–crustal orogenic lid and mid–crustal core complexes: Signature of a collapsed orogenic plateau in the hinterland of the Grenville Province. Canadian Journal of Earth Sciences, 49(1): 1–42. https://doi.org/10.1139/e11-014
Rivers, T. & Corrigan, D. 2000. Convergent margin on southeastern Laurentia during the Mesoproterozoic: Tectonic implications. Canadian Journal of Earth Sciences, 37(2–3): 359–383. https://doi.org/10.1139/e99-067
Rodríguez, G., Zapata, G., Velásquez, M.E., Cossio, U. & Londoño, A.C. 2003. Memoria explicativa: Geología de las planchas 367 Gigante, 368 San Vicente del Caguán, 389 Timaná, 390 Puerto Rico, 391 Lusitania (parte noroccidental) y 414 El Doncello. Scale 1:100 000. Ingeominas, 166 p. Bogotá.
Royden, L.H., Burchfiel, B.C. & van der Hilst, R.D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054–1058. https://doi.org/10.1126/science.1155371
Rudnick, R.L. & Gao, S. 2014. Composition of the Continental Crust. In: Holland, H.D. & K.K. Turekian (editors), Treatise on Geochemistry: The Crust, 4. Elsevier, p. 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
Ruiz, J., Patchett, P.J. & Ortega–Gutiérrez, F. 1988. Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies. GSA Bulletin, 100(2): 274–281. https://doi.org/10.1130/0016-7606(1988)100<0274:PAPBTO>2.3.CO;2
Ruiz, J., Tosdal, R.M., Restrepo, P.A. & Murillo–Muñetón, G. 1999. Pb isotope evidence for Colombia–southern México connections in the Proterozoic. In: Ramos, V.A. & Keppie, J.D. (editors), Laurentia–Gondwana connections before Pangea. Geological Society of America, Special Paper 336, p. 183–197. https://doi.org/10.1130/0-8137-2336-1.183
Sadowski, G.R. & Bettencourt, J.S. 1996. Mesoproterozoic tectonic correlations between eastern Laurentia and the western border of the Amazon Craton. Precambrian Research, 76(3–4): 213–227. https://doi.org/10.1016/0301-9268(95)00026-7
Scholl, D.W. & von Huene, R. 2009. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non–collisional) and collisional (suturing) orogens. Geological Society, London, Special Publications 318, p. 105–125. https://doi.org/10.1144/SP318.4
Schulze, C. 2011. Petrología y geoquímica de las rocas del área de Pluma Hidalgo, Oaxaca e implicaciones tectónicas para el Proterozoico de Oaxaquia. Doctoral thesis, Universidad Autónoma Nacional de México, 311 p. México D.F., México.
Selleck, B., McLelland, J.M. & Bickford, M.E. 2005. Granite emplacement during tectonic exhumation: The Adirondack example. Geology, 33(10): 781–784. https://doi.org/10.1130/G21631.1
Shchepetilnikova, V., Solé, J., Solari, L.A. & Abdullin, F. 2015. A chronological and chemical zircon study of some pegmatite dikes and lenses from the central part (Ayoquezco–Ejutla) of the Oaxacan Complex, southern Mexico. Revista Mexicana Ciencias Geológicas, 32 (1): 123–143.
Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T.S. & Schiellerup, H. 2013a. A non–collisional, accretionary Sveconorwegian Orogen. Terra Nova, 25(1): 30–37. https://doi.org/10.1111/ter.12001
Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T.S. & Schiellerup, H. 2013b. A non–collisional, accretionary Sveconorwegian Orogen–Reply. Terra Nova 25(2): 169–171. https://doi.org/10.1111/ter.12028
Slagstad, T., Roberts, N.M.W. & Kulakov, E. 2017. Linking orogenesis across a supercontinent; the Grenvillian and Sveconorwegian margins on Rodinia. Gondwana Research, 44: 109–115. https://doi.org/10.1016/j.gr.2016.12.007
Solari, L.A., Keppie, J.D., Ortega–Gutiérrez, F., Cameron, K.L., Lopez, R. & Hames, W.E. 2003. 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: roots of an orogen. Tectonophysics, 365(1–4): 257–282. https://doi.org/10.1016/S0040-1951(03)00025-8
Solari, L.A., Ortega–Gutiérrez, F., Elías–Herrera, M., Ortega–Obregón, C., Macías–Romo, C. & Reyes–Salas, M. 2013. Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective. International Journal of Earth Sciences, 103(5): 1301–1315. https://doi.org/10.1007/s00531-013-0938-9
Tassinari, C. & Macambira, M. 1999. Geochronological provinces of the Amazonian Craton. Episodes, 22(3): 174–182.
Teixeira, W., Geraldes, M.C., Matos, R., Ruiz, A.S., Saes, G. & Vargas–Mattos, G. 2010. A review of the tectonic evolution of the Sunsás Belt, SW Amazonian Craton. Journal of South American Earth Sciences, 29(1): 47–60. https://doi.org/10.1016/j.jsames.2009.09.007
Teixeira, W., Reis, N.J., Bettencourt, J.S., Klein, E.L. & Oliveira, D.C. 2019. Intraplate Proterozoic magmatism in the Amazonian Craton reviewed: Geochronology, crustal tectonics and global barcode matches. In: Srivastava, R.K., Ernst, R.E. & Peng, P. (editors), Dyke swarms of the world: A modern perspective. Springer Geology, p. 111–154. Singapore. https://doi.org/10.1007/978-981-13-1666-1_4
Thompson, A.B. & England, P.C. 1984. Pressure—Temperature— Time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology, 25(4): 929–955. https://doi.org/10.1093/petrology/25.4.929
Tirone, M., Ganguly, J., Dohmen, R., Langenhorst, F., Hervig, R. & Becker, H.W. 2005. Rare earth diffusion kinetics in garnet: Experimental studies and applications. Geochimica et Cosmochimica Acta, 69(9): 2385–2398. https://doi.org/10.1016/j.gca.2004.09.025
Tohver, E., van der Pluijm, B.A., van der Voo, R., Rizzotto, G. & Scandolara, J.E. 2002. Paleogeography of the Amazon Craton at 1.2 Ga: Early Grenvillian collision with the Llano segment of Laurentia. Earth and Planetary Science Letters, 199(1–2): 185–200. https://doi.org/10.1016/S0012-821X(02)00561-7
Tohver, E., Bettencourt, J.S., Tosdal, R., Mezger, K., Leite, W.B. & Payolla, B.L. 2004. Terrane transfer during the Grenville Orogeny: Tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes. Earth and Planetary Science Letters, 228(1–2): 161–176. https://doi.org/10.1016/j.epsl.2004.09.029
Tohver, E., van der Pluijm, B.A., Scandolâra, J. & Essene, E.J. 2005. Late Mesoproterozoic deformation of SW Amazonia (Rondônia, Brazil): Geochronological and structural evidence for collision with southern Laurentia. Journal of Geology, 113(3): 309–323. https://doi.org/10.1086/428807
Tschanz, C.M., Jimeno, A. & Cruz, J. 1969. Geology of the Sierra Nevada de Santa Marta area (Colombia): Preliminary report. Ingeominas, 288 p. Bogotá.
Tschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H. & Cebula, G.T. 1974. Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geological Society of America Bulletin, 85(2): 273–284. https://doi.org/10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2
Urbani, F., Baquero, M., Grande, S., Valencia, V., Martens, U., Pindell, J., Mendi, D. & Gomez, A. 2015. Nuevas edades U–Pb de rocas ígneo–metamórficas el Estado Yaracuy. Boletín de La Academia de Ciencias Físicas, Matemáticas y Naturales, LXXV(2): 33–52.
Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K. & Wei, C.S. 2005. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150: 561–580. https://doi.org/10.1007/s00410-005-0025-8
van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. & Mora, A. 2016. Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31: 271–294. https://doi.org/10.1016/j.gr.2015.01.011
van Orman, J.A., Grove, T.L., Shimizu, N. & Layne, G.D. 2002. Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contributions to Mineralogy and Petrology, 142(4): 416–424. https://doi.org/10.1007/s004100100304
Vervoort, J.D. & Blichert–Toft, J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3–4): 533–556. https://doi.org/10.1016/S0016-7037(98)00274-9
Vervoort, J. & Patchett, P. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica Et Cosmochimica Acta, 60(19): 3717–3733.
Weber, B. & Köhler, H. 1999. Sm–Nd, Rb–Sr and U–Pb geochronology of a Grenville terrane in southern Mexico: Origin and geologic history of the Guichicovi Complex. Precambrian Research, 96(3–4): 245–262. https://doi.org/10.1016/S0301-9268(99)00012-1
Weber, B. & Schulze, C.H. 2014. Early Mesoproterozoic (>1.4 Ga) ages from granulite basement inliers of SE Mexico and their implications on the Oaxaquia concept: Evidence from U–Pb and Lu–Hf isotopes on zircon. Revista Mexicana de Ciencias Geológicas, 31(3): 377–394.
Weber, B., Scherer, E.E., Schulze, C., Valencia, V.A., Montecinos, P., Mezger, K. & Ruiz, J. 2010. U–Pb and Lu–Hf isotope systematics of lower crust from central–southern Mexico: Geodynamic significance of Oaxaquia in a Rodinia Realm. Precambrian Research, 182(1–2): 149–162. https://doi.org/10.1016/j.precamres.2010.07.007
Weber, B., González–Guzmán, R., Manjarrez–Juárez, R., Cisneros de León, A., Martens, U., Solari, L., Hecht, L., Valencia, V. 2018. Late Mesoproterozoic to early Paleozoic history of metamorphic basement from the southeastern Chiapas Massif Complex, Mexico, and implications for the evolution of NW Gondwana. Lithos, 300–301: 177–199. https://doi.org/10.1016/j.lithos.2017.12.009
Weber, B., Schmitt, A.K., Cisneros de León, A. & González–Guzmán, R. 2019. Coeval early Ediacaran breakup of Amazonia, Baltica, and Laurentia: Evidence from micro–baddeleyite dating of dykes from the Novillo Canyon, Mexico. Geophysical Research Letters, 46(4): 2003–2011. https://doi.org/10.1029/2018GL079976
Weil, A.B, van der Voo, R., Mac Niocaill, C. & Meert, J. 1998. The Proterozoic supercontinent Rodinia: Paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth and Planetary Science Letters, 154(1–4): 13–24. https://doi.org/10.1016/S0012-821X(97)00127-1
Westphal, M., Schumacher, J.C. & Boschert, S. 2003. High–temperature metamorphism and the role of magmatic heat sources at the Rogaland Anorthosite Complex in Southwestern Norway. Journal of Petrology, 44(6): 1145–1162. http://doi.org/10.1093/petrology/44.6.1145