Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

El Estado no tiene porqué ser aburrido ¡conoce a gov.co!

¿Sabes que es GOV.CO?

¿Sabes que es GOV.CO? Conócelo aquí

Servicio Geológico Colombiano

Skip Navigation Linksv4ch14
Seleccione su búsqueda
miig

​​​Volcán Tabor, Ibagué, Tolima

 Volume 4 Chapter 14

Chapter 14

Contributions of Space Geodesy for Geodynamic Studies in Colombia: 1988 to 2017   

Héctor MORA–PÁEZ, James N. KELLOGG, and Jeffrey T. FREYMUELLER

https://doi.org/10.32685/pub.esp.38.2019.14


Citation is suggested as: 

Mora–Páez, H., Kellogg, J.N. & Freymueller, J.T. 2020. Contributions of space geodesy for geodynamic studies in Colombia: 1988 to 2017. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 479–498. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.14​


Download chapter  ​​​     ​Download supplementary information  ​​ 

Download EndNote reference​ 



Abstract


Space geodetic measurements have transformed our understanding of regional tectonics in the North Andes and southwest Caribbean. The Central and South America GPS project, begun in 1988, provided the first direct measurement of subduction at a convergent plate boundary, and it led to the establishment of a global civilian GPS tracking network. Colombia was the center of the 1988 field campaign, and the leadership of Servicio Geológico Colombiano with logistics, training, and personnel was key to the success of the Central and South America project. Early GPS results showed evidence for northward movement of the North Andes, convergence at the South Caribbean deformed belt, rapid Panamá–North Andes collision, and interseismic “locking" at the Colombia–Ecuador trench. Beginning in 2007, space geodetic measurements took a great step forward with GeoRED project, a continuously operating Global Navigation Satellite System network that now has 108 sites providing the first accurate comprehensive model of North Andean Block motion. Recent GeoRED findings include that the North Andean Block is moving to the northeast at a rate of 8.6 mm/y, the Eastern Cordillera is being compressed at a rate of 4.3 mm/y, the Panamá Arc is colliding eastward with the North Andean Block at approximately 15–18 mm/y, and the Panamá–Chocó collision may have been responsible for much of the uplift of the Eastern Cordillera. The new continuous Global Navigation Satellite Systems measurements help quantify tectonic deformation in northwestern South America and the southwest Caribbean, including earthquake hazards at the Colombia trench, the Caribbean margin, the East Andean Fault System in the Eastern Cordillera, and the Panamá collision zone in northwestern Colombia; as well as the deformation of Colombian volcanoes.

 

Keywords: space geodesy, North Andean Block, crustal deformation, Global Positioning System.​



Resumen


Las mediciones geodésicas espaciales han transformado nuestro entendimiento sobre la tectónica regional en los Andes del norte y el suroeste del Caribe. El proyecto Central and South America GPS comenzó en 1988, suministrando la primera medición directa de la subducción en un límite de placa convergente, y llevó al establecimiento de una red de rastreo global civil. Colombia fue el centro de la campaña de campo de 1988 y el liderazgo del Servicio Geológico Colombiano con la logística, entrenamiento y personal fue la clave para el éxito del proyecto Central and South America GPS. Los primeros resultados de GPS mostraron evidencia de movimiento de los Andes del norte hacia el norte, convergencia del cinturón deformado del sur del Caribe, rápida colisión Panamá–Andes del norte, y “bloqueo" intersísmico en la trinchera Colombia–Ecuador. A comienzos del 2007, las mediciones geodésicas espaciales dieron un gran paso con el proyecto GeoRED, una red de operación continua del Sistema Global de Navegación por Satélite que ahora tiene 108 sitios y ofrece el primer modelo preciso de movimiento del bloque norte de los Andes. Hallazgos recientes de GeoRED indican que el bloque norte de los Andes se está moviendo hacia el noreste a una tasa de 8,6 mm/año, la cordillera Oriental está siendo comprimida a una tasa de 4,3 mm/año, el Arco de Panamá está colisionando hacia el este con el bloque norte de los Andes a 15–18 mm/año aproximadamente y la colisión Panamá–Chocó puede haber sido responsable en gran parte del levantamiento de la cordillera Oriental. Las nuevas mediciones continuas del Sistema Global de Navegación por Satélite ayudan a cuantificar la deformación tectónica en el noroeste de Suramérica y el suroeste del Caribe, incluyendo la amenaza sísmica en la trinchera de Colombia, el margen Caribe, el sistema de fallas andino oriental en la cordillera Oriental y la zona de colisión de Panamá en el noroeste de Colombia, así como la deformación de los volcanes colombianos.

 

Palabras clave: geodesia espacial, bloque norte de los Andes, deformación cortical, Sistema de Posicionamiento Global.

​ 


Abbreviations 


ACP                                                 Autoridad del Canal de Panamá

CASA                                          Central And South America GPS Project

Cenicaña                             Centro de Investigación de la Caña de Azúcar

COCONet                          Continuously Operating Caribbean GPS Observational Network

CORS                                         Continuously Operating Reference Station

Dimar                                       Dirección General Marítima

EAFS                                            East Andean Fault System

ESPONA                               Escuela Politécnica Nacional de Quito

FLINN                                       Fiducial Laboratories for an International Natural Science Network

GeoRED                               Geodesia: Red de Estudios de Deformación

GNSS                                         Global Navigation Satellite System

GPS                                                Global Positioning System

IGC                                                 International GNSS Service

Ingeominas                 Instituto Colombiano de Geología y Minería

JICA                                             Japan International Cooperation Agency

JPL                                                  Jet Propulsion Laboratory

MLE                                              Maximum likelihood estimation

NAB                                             North Andean Block

NASA                                           National Aeronautics and Space Administration

NSF                                               National Science Foundation

SATREPS                              Science and Technology Research Partnership for Sustainable Development Project

SEGAL                                     Space & Earth Geodetic Analysis Laboratory at the University of Beira Interior

SGC                                               Servicio Geológico Colombiano

TEC                                               Total electron content

UNAVCO                             University NAVSTAR Consortium​


​​
References 

Agnew, D.C., Burke, K., Cazenave, A., Dixon, T., Hager, B.H., Heirtzler, J.R., Jordan, T.H., Minster, J.B., McNutt, M.K., Royden, L.H., Sandwell, D.T. & Turcotte, D.L. 1989. Long term dynamics of the solid Earth. In: Mueller, I.I. & Zerbini, S. (editors), The interdisciplinary role of space geodesy. Lecture Notes in Earth Sciences 22, p. 43–102. Springer–Verlag, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049646


Altamimi, Z., Collilieux, X. & Métivier, L. 2011. ITRF2008: An improved solution of the International Terrestrial Reference Frame. Journal of Geodesy, 85(8): 457–473. https://doi.org/10.1007/s00190-011-0444-4

Altamimi, Z., Métivier, L. & Collilieux, X. 2012. ITRF2008 plate motion model. Journal of Geophysical Research Solid Earth, 117(B7): B07402. https://doi.org/10.1029/2011JB008930​​

 

Assumpcao, M. 1992. The regional intraplate stress field in South America. Journal of Geophysical Research: Solid Earth, 97(B8): 11889–11903. https://doi.org/10.1029/91JB01590

 

Audemard, F.A. 1997. Holocene and historical earthquakes on the Boconó Fault System, southern Venezuelan Andes: Trench confirmation. Journal of Geodynamics, 24(1–4): 155–167. https://doi.org/10.1016/S0264-3707(96)00037-3

 

Audemard, F.A. 2009. Falla de Boconó (VE–06b y VE–06c). In: Proyecto Mutinacional Andino: Geociencias para las Comunidades Andinas, Atlas de deformaciones cuaternarias de Los Andes. Servicio Nacional de Geología y Minería Chile, Publicación Geológica Multinacional 7, p. 259–271. Canadá.

 

Audemard, F.A. 2014. Active block tectonics in and around the Caribbean: A review. In: Schmitz, M., Audemard, F. & Urbani, F. (editors), The northeastern limit of the South American Plate: Lithospheric structures from surface to the mantle. Editorial Innovación Tecnológica–Fundación Venezolana de Investigaciones Sismológicas (FUNVISIS), p. 29–78. Venezuela.

 

Audemard, F.E. & Audemard, F.A. 2002. Structure of the Mérida Andes, Venezuela: Relations with the South America–Caribbean geodynamic interaction. Tectonophysics, 345(1–4): 299–327. https://doi.org/10.1016/S0040-1951(01)00218-9

 

Audemard, F.A. & Giraldo, C. 1997. Desplazamientos dextrales a lo largo de la frontera meridional de la Placa Caribe, Venezuela septentrional. VIII Congreso Geológico Venezolano. Memoirs, I, p .101–108. Porlamar, Venezuela.

 

Audemard, F.A., Pantosti, D., Machette, M., Costa, C., Okumura, K., Cowan, H., Diederix, H. & Ferrer, C. 1999. Trench investigation along the Mérida section of the Boconó fault (central Venezuelan Andes), Venezuela. Tectonophysics, 308(1–2): 1–21. https://doi.org/10.1016/S0040-1951(99)00085-2

 

Audemard, F.A., Romero, G., Rendón, H. & Cano, V. 2005. Quaternary fault kinematics and stress tensors along the southern Caribbean from fault–slip data and focal mechanism solutions. Earth–Science Reviews, 69(3–4): 181–233. https://doi.org/10.1016/j.earscirev.2004.08.001

 

Bernal–Olaya, R., Mann, P. & Vargas, C.A. 2015. Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 247–269. https://doi.org/10.1306/13531939M1083642

 

Bertiger, W., Desai, S.D., Haines, B., Harvey, N., Moore, A.W., Owen, S. & Weiss, J.P. 2010. Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84(5): 327–337. https:///doi.org/10.1007/s00190-010-0371-9

 

Bilham, R. & Zerbini, S. 1989. Space geodesy and global forecast of earthquakes. Eos, Transactions American Geophysical Union, 70(5): 65–73. https://doi.org/10.1029/89EO00038

 

Boschman, L.M., van Hinsbergen, D.J.J., Torsvik, T.H., Spakman, W. & Pindell, J.L. 2014. Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth–Science Reviews, 138: 102–136. https://doi.org/10.1016/j.earscirev.2014.08.007

 

Bos, M.S. & Fernandes, R.M.S. 2016. Hector user manual, version 1.6. 31 p.

 

Bos, M.S., Fernandes, R.M.S., Williams, S.D.P. & Bastos, L. 2013. Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87(4): 351–360. https://doi.org/10.1007/s00190-012-0605-0

 

Chlieh, M., Mothes, P.A., Nocquet, J.M., Jarrin, P., Charvis, P., Cisneros, D., Font, Y., Collot, J.Y., Villegas–Lanza, J.C., Rolandone, F., Vallée, M., Regnier, M., Segovia, M., Martin, X. & Yepes, H. 2014. Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth and Planetary Science Letters, 400: 292–301. https://doi.org/10.1016/j.epsl.2014.05.027

 

DeMets, C., Gordon, R.G., Argus, D.F. & Stein, S. 1990. Current plate motions. Geophysical Journal International, 101(2): 425–478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x

 

DeMets, C., Gordon, R.G., Argus, D.F. & Stein, S. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21(20): 2191–2194. https://doi.org/10.1029/94GL02118

 

Dewey, J.W. 1972. Seismicity and tectonics of western Venezuela. Bulletin of the Seismological Society of America, 62(6): 1711–1751.

 

Dixon, T.H. 1993. GPS measurement of relative motion of the Cocos and Caribbean Plates and strain accumulation across the Middle America Trench. Geophysical Research Letters, 20(20): 2167–2170. https://doi.org/10.1029/93GL02415

 

Dixon, T.H. & Wolf, S.K. 1990. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System Experiment. Geophysical Research Letters, 17(3): 203–206. https://doi.org/10.1029/GL017i003p00203

 

Dixon, T.H., González, G., Lichten, S.M. & Katsigris, E. 1991. First epoch geodetic measurements with the Global Positioning System across the northern Caribbean Plate boundary zone. Journal of Geophysical Research: Solid Earth, 96(B2): 2397–2415. https://doi.org/10.1029/90JB02003

 

Egbue, O. & Kellogg, J. 2010. Pleistocene to present north Andean “escape". Tectonophysics, 489(1–4): 248–257. https://doi.org/10.1016/j.tecto.2010.04.021

 

Freymueller, J.T. & Kellogg, J.N. 1990. The extended tracking network and indications of baseline precision and accuracy in the north Andes. Geophysical Research Letters, 17(3): 207–210. https://doi.org/10.1029/GL017i003p00207

 

Freymueller, J.T., Kellogg, J.N. & Vega, V. 1993. Plate motions in the north Andean region. Journal of Geophysical Research: Solid Earth, 98(B12): 21853–21863. https://doi.org/10.1029/93JB00520

 

Kellogg, J.N. & Bonini, W.E. 1982. Subduction of the Caribbean Plate and basement uplifts in the overriding South America Plate. Tectonics, 1(3): 251–276. https://doi.org/10.1029/TC001i003p00251

 

Kellogg, J.N. & Dixon, T.H. 1990. Central and South America GPS geodesy–CASA Uno. Geophysical Research Letters, 17(3): 195–198. https://doi.org/10.1029/GL017i003p00195

 

Kellogg, J.N., Ogujiofor, I.J. & Kansakar, D.R. 1985. Cenozoic tectonics of the Panama and north Andes blocks. VI Congreso Latinoamericano de Geología. Memoirs, I: p. 34–49. Bogotá.

 

Kellogg, J.N., Freymueller, J.T., Dixon, T.H., Neilan, R.E., Ropain, C., Camargo, S., Fernández, B., Stowell, J.L., Salazai, A., Mora, J., Espin, L., Perdue, V. & Leos, L. 1990. First GPS baseline results from the north Andes. Geophysical Research Letters, 17(3): 211–214. https://doi.org/10.1029/GL017i003p00211

 

Kellogg, J.N., Vega, V., Stallings, T.C. & Aiken, C.L.V. 1995. Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In: Mann P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in Southern Central America. Geological Society of America, Special Paper 295, p. 75–90. Boulder, Colorado. https://doi.org/10.1130/SPE295-p75

 

Kobayashi, D., LaFemina, P., Geirsson, H., Chichaco, E., Abrego, A.A., Mora, H. & Camacho, E. 2014. Kinematics of the western Caribbean: Collision of the Cocos Ridge and upper plate deformation. Geochemistry, Geophysics, Geosystems, 15(5): 1671–1683. https://doi.org/10.1002/2014GC005234

 

Ladd, J.W., Truchan, M., Talwani, M., Stoffa, P.L., Buhl, P., Houtz, R., Maufiret, A. & Westbrook, G. 1984. Seismic reflection profiles across the southern margin of the Caribbean. In: Bonini, W.E., Hargraves, R.B. & Shagam, R. (editors), The Caribbean–South American Plate boundary and regional tectonics. Geological Society of America, Memoir 162, p. 153–159. https://doi.org/10.1130/MEM162-p153

 

McCaffrey, R. 1996. Estimates of modern arc–parallel strain rates in fore arcs. Geology, 24(1): 27–30. https://doi.org/10.1130/0091-7613(1996)024<0027:EOMAPS>2.3.CO;2

 

McCaffrey, R. 2002. Crustal block rotations and plate coupling. In: Stein, S. & Freymueller, J.T. (editors), Plate boundary zones. American Geophysical Union, Geodynamics Series, 30: 101–122. https://doi.org/10.1029/GD030p0101

 

Minster, J.B. & Jordan, T.H. 1978. Present–day plate motions. Journal of Geophysical Research: Solid Earth, 83(B11): 5331–5354. https://doi.org/10.1029/JB083iB11p05331

 

Mora–Páez, H. 1995. Central and South America GPS geodesy: Relative plate motions determined from 1991 and 1994 measurements in Colombia, Costa Rica, Ecuador, Panama and Venezuela. Master thesis, University of South Carolina, 94 p.

 

Mora–Páez H., 2006. “Red Nacional de Estaciones Geodésicas Satelitales GPS para estudios e investigaciones geodinámicas". Documento BPIN y Fichas de Proyecto, MGA para Departamento Nacional de Planeación. Ingeominas, 63 p. Bogotá.

 

Mora–Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona–Piedrahita, L., Peláez–Gaviria, J.R. & Corchuelo–Cuervo, Y. 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophysical Research Letters, 43(16): 8407–8416. https://doi.org/10.1002/2016GL069795

 

Mora–Páez, H., Peláez–Gaviria, J.R., Diederix, H., Bohórquez–Orozco, O., Cardona–Piedrahita, L., Corchuelo–Cuervo, Y., Ramírez–Cadena, J. & Díaz–Mila, F. 2018. Space geodesy infrastructure in Colombia for geodynamics research. Seismological Research Letters, 89(2A): 446–451. https://doi.org/10.1785/0220170185

 

Mora–Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M.S, Diederix, H., LaFemina, P., Cardona–Piedrahita, L., Lizarazo, S., Peláez–Gaviria, J.R., Díaz–Mila, F., Bohórquez–Orozco, O., Giraldo–Londoño, L. & Corchuelo–Cuervo, Y. 2019. Crustal deformation in the northern Andes–A new GPS velocity field. Journal of South American Earth Sciences, 89: 76–91. https://doi.org/10.1016/j.jsames.2018.11.002

 

Neilan, R.E., Dixon, T.H., Meehan, T.K., Melbourne, W.G., Scheid, J.A., Kellogg, J.N. & Stowell, J.L. 1989. Operational aspects of CASA UNO'88–The first large scale international GPS Geodetic Network. IEEE Transactions on Instrumentation and Measurement, 38(2): 648–651. https://doi.org/10.1109/19.192368

 

Nocquet, J.M., Villegas–Lanza, J.C., Chlieh, M., Mothes, P.A., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., Martin, X., Font, Y., Régnier, M., Vallée, R.M., Tran, T., Beauval, C., Maguiña–Mendoza, J.M., Martínez, W., Tavera, H. & Yepes, H. 2014. Motion of continental slivers and creeping subduction in the northern Andes. Nature Geosciences, 7(4): 287–291. https://doi.org/10.1038/ngeo2099

 

Pennington, W.D. 1981. Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11): 10753–10770. https://doi.org/10.1029/JB086iB11p10753

 

Pousse–Beltrán, L., Vassallo, R., Audemard, F.A., Jouanne, F., Carcaillet, J., Pathier, E., Doin, M.P. & Volat, M. 2017. Pleistocene slip rates on the Boconó Fault along the north Andean Block plate boundary, Venezuela. Tectonics 36(7): 1207–1231. https://doi.org/10.1002/2016TC004305

 

Programa de las Naciones Unidas para el Desarrollo & Comisión Económica para América Latina y el Caribe. 1999. El terremoto de enero de 1999 en Colombia: Impacto socioeconómico del desastre en la zona del Eje Cafetero. 84 p. México. https://www.laopinion.com.co/sites/default/files/2017/01/24/archivos/colombia.pdf

 

Sagiya, T. & Mora–Páez, H. 2020. Interplate coupling along the Nazca subduction zone on the Pacific coast of Colombia deduced from GeoRED GPS observation data. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 15 p. 615–661. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.15

 

Silver, E.A., Case, J.E. & MacGillavry, H.J. 1975. Geophysical study of the Venezuelan borderland. Geological Society of America Bulletin, 86(2): 213–226. https://doi.org/10.1130/0016-7606(1975)86<213:GSOTVB>2.0.CO;2

 

Stein, S. & Sella, G.F. 2002. Plate boundary zones: Concepts and approaches. In: Stein, S. & Freymueller, J.T. (editors), Plate boundary zones. American Geophysical Union, Geodynamics Series, 30: p. 1–26.https://doi.org/10.1029/GD030p0001

 

Trenkamp, R., Kellogg, J.N., Freymueller, J.T. & Mora, H. 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2): 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4

 

Trenkamp, R., Mora, H., Salcedo, E. & Kellogg, J. 2004. Possible rapid strain accumulation rates near Cali, Colombia, determined from GPS measurements (1996–2003). Earth Sciences Research Journal, 8(1): 25–33.

 

van Benthem, S.A.C., Govers, R., Spakman, W. & Wortel, M.J.R. 2013. Tectonic evolution and the mantle structure of the Caribbean. Journal of Geophysical Research: Solid Earth, 118(6): p. 1–18. https://doi.org/10.1002/jgrb.50235

 

van der Hilst, R. & Mann, P. 1994. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, 22(5): 451–454. https://doi.org/10.1130/0091-7613(1994)022<0451:TIOTIO>2.3.CO;2

 

Wallace, T.C. & Beck, S.L. 1993. The Oct. 17–18, 1992 Colombian earthquakes; slip partitioning or faulting complexity. Seismological Research Letters, 64: 29–35.

 

White, S.M., Trenkamp, R. & Kellogg, J.N. 2003. Recent crustal deformation and the earthquake cycle along Ecuador–Colombia subduction zone. Earth and Planetary Science Letters, 216(3): 231–242. https://doi.org/10.1016/S0012-821X(03)00535-1

 

Xiaoxing, H., Montillet, J.P., Fernandes, R., Bos, M., Yu, K., Hua, X. & Jiang, W. 2017. Review of current GPS methodologies for producing accurate time series and their error sources. Journal of Geodynamics, 106: 12–29. https://doi.org/10.1016/j.jog.2017.01.004

 

Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. & Webb, F.H. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3): 5005–5017. https://doi.org/10.1029/96JB03860