Home
Aumentar fuente
Aumentar contraste
Lengua de señas
Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño
The Combia Volcanic Province: Miocene Post‒Collisional Magmatism in the Northern Andes
Marion WEBER, José Fernando DUQUE, Susana HOYOS, Andrés L. CÁRDENAS–ROZO, Jorge GÓMEZ, and Rob WILSON
https://doi.org/10.32685/pub.esp.37.2019.12
ISBN impreso obra completa: 978-958-52959-1-9
ISBN digital obra completa: 978-958-52959-6-4
ISBN impreso Vol. 3: 978-958-52959-4-0
ISBN digital Vol. 3: 978-958-53131-0-1
Citation is suggested as:
Weber, M., Duque, J.F., Hoyos, S., Cárdenas–Rozo, A.L., Gómez, J. & Wilson, R. 2020. The Combia Volcanic Province: Miocene post–collisional magmatism in the northern Andes. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 355–394. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.12
Download chapter Download supplementary information S1 Download supplementary information S2
Download supplementary information S3 Download supplementary information S4
Download EndNote reference
Abstract
A transtensional basin setting originated the Combia Volcanic Province in the northern Andes of Colombia. Volcanism is heterogeneous encompasses tholeiitic, calc–alkaline, and shoshonitic magmatic series. A review of existing geochemical and geochronological data suggests that all magma series coexisted between 12 and 6 Ma but originated from different processes. Tholeiites formed via the melting of a modified primitive mantle source, with limited sedimentary or continental–contaminant input. Calc–alkaline magmas are mainly adakitic and formed from fractionation of garnet and amphibole at high pressures from a hydrous melt from an enriched source. Petrographic and mineral chemistry of garnet–bearing rocks indicate that magmas underwent at least three ascent phases that include: (1) crystallization of high–pressure phenocryst phases at 900 °C and 1200 GPa in a mantle–derived melt, (2) stalling of differentiated magma at lower–pressure conditions, and (3) stalling at shallower conditions, where decompression occurred. Shoshonitic magmas formed via from a mantle with sedimentary or continental–contaminant input source in the plagioclase stability field. Finally, Combia Volcanic Province's formation was enhanced by the Caldas Tear, a slab window developed by the subduction of the Sandra Ridge beneath the South American Plate.
Keywords: Combia Formation, shallow–volcanic intrusions, tholeiitic magmatism, calc–alkaline magmas, adakites, shoshonitic magmatism, igneous garnet.
Resumen
La Provincia Volcánica de Combia en el norte de los Andes de Colombia se formó en un ambiente de cuenca transtensional. El vulcanismo es heterogéneo y comprende series magmáticas toleíticas, calcoalcalinas y shoshoníticas. Una revisión de los datos geoquímicos y geocronológicos existentes sugiere que las tres composiciones de magma coexistieron entre 12 y 6 Ma, pero se originaron por diferentes procesos. Las toleítas se formaron a partir de una fuente de manto primitivo modificada, con limitado suministro de contaminante sedimentario o continental. Los magmas calcoalcalinos son principalmente adakíticos y se formaron del fraccionamiento de granate y anfíbol a altas presiones a partir de un fundido hidratado proveniente de una fuente enriquecida. Los datos petrográficos y de química mineral de rocas con granate indican que estos magmas experimentaron por lo menos tres fases de ascenso que incluyen: (1) cristalización de las fases de fenocristales de alta presión a 900 °C y 1200 GPa en un fundido derivado del manto, (2) estancamiento del magma diferenciado a más bajas condiciones de presión y (3) estancamiento en condiciones superficiales, donde ocurrió la descompresión. Los magmas shoshoníticos se formaron a partir de una fuente mantélica con aporte sedimentario o continental, en el campo de estabilidad de la plagioclasa. La formación de la Provincia Volcánica de Combia fue acentuada por el Caldas Tear, una ventana en la placa desarrollada por la subducción del Sandra Ridge bajo la Placa de Suramérica.
Palabras clave: Formación Combia, intrusivos volcánicos someros, magmatismo toleítico, magmas calcoalcalinos, adakitas, magmatismo shoshonítico, granate ígneo.
Abbreviations
ADR Andesite dacite rhyolite
AF Amagá Formation
AFC Assimilation and fractional crystallization
CF Combia Formation
CSVI Cauca Shallow Volcanic Intrusions
CVP Combia Volcanic Province
E–MORB Enriched–mid ocean ridge basalt
GLOSS Global subducting sediment
HP High–pressure
HREE Heavy rare earth element
LILE Large–ion lithophile element
LOI Loss on ignition
LREE Light rare earth element
MASH Melting, assimilation, storage, homogenization.
MORB Mid ocean ridge basalt
N–MORB Normal–mid ocean ridge basalt
OIB Oceanic island basalt
REE Rare earth element
References
Agencia Nacional de Hidrocarburos & Universidad de Caldas. 2011. Estudio integrado de los núcleos y registros obtenidos de los pozos someros (slim holes) perforados por la ANH. Agencia Nacional de Hidrocarburos, unpublished report, 304 p. Manizales.
Alcárcel–Gutiérrez, F.A. & Gómez, J., compilers, 2017. Mapa Geológico de Colombia 2017. Scale 1:2 000 000. Servicio Geológico Colombiano. Bogotá.
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. & Mitchell, J.G. 2000. Petrogenetic evolution of late Cenozoic, post–collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2): 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7
Alonso–Perez, R., Müntener, O. & Ulmer, P. 2009. Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids. Contributions to Mineralogy and Petrology, 157(4): 541–558. https://doi.org/10.1007/s00410-008-0351-8
Álvarez, A.J. 1983. Geología de la cordillera Central y el occidente colombiano y petroquímica de los intrusivos granitoides meso–cenozoicos. Boletín Geológico, 26(2): 1–175. Aspden, J.A. & Litherland, M. 1992. The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics, 205(1–3): 187–204. https://doi.org/10.1016/0040-1951(92)90426-7
Aydar, E. & Gourgaud, A. 2002. Garnet–bearing basalts: An example from Mt. Hasan, Central Anatolia, Turkey. Mineralogy and Petrology, 75(3–4): 185–201. https://doi.org/10.1007/s007100200023
Bach, P., Smith, I.E.M. & Malpas, J.G. 2012. The origin of garnets in andesitic rocks from the Northland Arc, New Zealand, and their implication for sub–arc processes. J Petrology, 53(6): 1169–1195. https://doi.org/10.1093/petrology/egs012
Barragan, R., Geist, D., Hall, M., Larson, P. & Kurz, M. 1998. Subduction controls on the compositions of lavas from the Ecuadorian Andes. Earth and Planetary Science Letters, 154(1–4): 153–166. https://doi.org/10.1016/S0012-821X(97)00141-6
Bernet, M., Mesa–Garcia, J., Chauvel, C., Ramírez Londoño, M.J. & Marín–Cerón, M.I. 2020. Thermochronological, petrographic and geochemical characteristics of the Combia Formation, Amagá Basin, Colombia. Journal of South American Earth Sciences, 104: 1–21. https://doi.org/10.1016/j.jsames.2020.102897
Bissig, T., Leal–Mejía, H., Stevens, R.B. & Hart, C.J. 2017. High Sr/Y magma petrogenesis and the link to porphyry mineralization as revealed by garnet–bearing I–type granodiorite porphyries of the Middle Cauca Au–Cu Belt, Colombia. Economic Geology, 112(3): 551–568. https://doi.org/10.2113/econgeo.112.3.551
Borrero, C. & Toro–Toro, L.M. 2016. Vulcanismo de afinidad adaquítica en el Miembro Inferior de la Formación Combia (Mioceno Tardío) al sur de la Subcuenca de Amagá, noroccidente de Colombia. Boletín de Geología, 38(1): 87–100. http://dx.doi.org/10.18273/revbol.v38n1-2016005
Borrero, C., Toro, L.M., Alvarán, M. & Castillo, H. 2009. Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz Volcano, Colombia. Geofísica Internacional, 48(1): 149–169.
Bourdon, E., Eissen, J–P., Monzier, M., Robin, C., Martin, H., Cotten, J. & Hall, M.L. 2002. Adakite–like lavas from Antisana Volcano (Ecuador): Evidence for slab melt metasomatism beneath the Andean Northern Volcanic Zone. Journal of Petrology, 43(2): 199–217. https://doi.org/10.1093/petrology/43.2.199
Bryan, S.E., Peate, I.U., Peate, D.W., Self, S., Jerram, D.A., Mawby, M.R., Marsh, J.S. & Miller, J.A. 2010. The largest volcanic eruptions on Earth. Earth–Science Reviews, 102(3–4): 207–229. https://doi.org/10.1016/j.earscirev.2010.07.001
Calle, B. & González, H. 1980. Memoria explicativa: Geología y geoquímica de la plancha 166 Jericó. Scale 1:100 000. Ingeominas, Internal report 1822, 250 p. Bogotá.
Calle, B. & González, H. 1982. Memoria explicativa: Geología y geoquímica de la plancha 186 Riosucio. Scale 1:100 000. Ingeominas, Internal report 1878, 120 p. Medellín.
Calle, B., González, H., de la Peña, R., Escorce, E., Durango, J., Ramírez, O., Alvarez, E., Calderón, M., Álvarez, J., Guarín, G., Rodríguez, C., Muñoz, J. & Durán, J. 1980. Geología de la plancha 166 Jericó. Scale 1:100 000. Ingeominas. Bogotá.
Castillo, P.R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 257–268. https://doi.org/10.1007/s11434-006-0257-7
Castillo, P.R. 2012. Adakite petrogenesis. Lithos, 134–135: 304–316. https://doi.org/10.1016/j.lithos.2011.09.013
Castillo, P.R., Janney, P.E. & Solidum, R.U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33–51. https://doi.org/10.1007/s004100050467
Cediel, F., Shaw, R.P. & Cáceres, C. 2003. Tectonic assembly of the northern Andean Block. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 815–848. Tulsa, USA.
Chappell, B.W. & White, A.J.R. 1974. Two contrasting granite types. Pacific Geology, 8: 173–174.
Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V. & Prieto, G.A. 2016. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1): 16–27. https://doi.org/10.1002/2015GC006048
Davidson, J., Turner, S. & Plank, T. 2013. Dy/Dy*: Variations arising from mantle sources and petrogenetic processes. Journal of Petrology, 54(3): 525–537. https://doi.org/10.1093/petrology/egs076
Day, R.A., Green, T.H. & Smith, I.E.M. 1992. The origin and significance of garnet phenocrysts and garnet–bearing xenoliths in miocene calc–alkaline volcanics from Northland, New Zealand. Journal of Petrology, 33(1):125–161. https://doi.org/10.1093/petrology/33.1.125
Defant, M.J. & Drummond, M.S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0
Drummond, M.S. & Defant, M.J. 1990. A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean o modern comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503–21521. https://doi.org/10.1029/JB095iB13p21503
Dunia. 2005. Complementación geológica, geoquímica y geofísica (magnetométrica) de las planchas 166, 167, 186 y 187. Ingeominas, unpublished report, 576 p. Bogotá.
Duque–Caro, H. 1990. The Choco Block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1): 71–84. https://doi.org/10.1016/0895-9811(90)90019-W
Embey–Isztin, A., Noske–Fazekas, G., Kurat, G. & Brandstätter, F. 1985. Genesis of garnets in some magmatic rocks from Hungary. Tschermaks mineralogische und petrographische Mitteilungen, 34: 49–66. https://doi.org/10.1007/BF01082457
Farris, D.W., Jaramillo, C., Bayona, G., Restrepo–Moreno, S.A., Montes, C., Cardona, A., Mora, A., Speakman, R.J., Glascock, M.D. & Valencia, V. 2011. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11): 1007–1010. https://doi.org/10.1130/G32237.1
Fitton, J.G. 1972. The genetic significance of almandine–pyrope phenocrysts in calc–alkaline Borrowdale Volcanic Group, northern England. Contributions to mineralogy and petrology, 36(3): 231–248. https://doi.org/10.1007/BF00371434
Francis, P.W., Moorbath, S. & Thorpe, R.S. 1977. Strontium isotope data for recent andesites in Ecuador and north Chile. Earth and Planetary Sciences Letters, 37(2): 197–202. https://doi.org/10.1016/0012-821X(77)90164-9
Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y. & Schilling, J.G. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518. https://doi.org/10.1029/2012GC004334
García, M. 1983. Petrografía detallada de los pórfidos granatíferos de Chinchiná, Caldas. Bachelor thesis, Universidad Nacional de Colombia, 142 p. Bogotá.
Gelves, J.F., Sierra–Gallego, G. & Márquez, M.A. 2016. Mineralogical characterization of zeolites present on basaltic rocks from Combia geological formation, La Pintada, Colombia. Microporous and Mesoporous Materials, 235: 9–19. https://doi.org/10.1016/j.micromeso.2016.07.035
Gilbert, J.S. & Rogers, N.W. 1989. The significance of garnet in the Permo–Carboniferous volcanic rocks of the Pyrenees. Journal of the Geological Society, 146(3): 477–490. https://doi.org/10.1144/gsjgs.146.3.0477
Gill, J.B. 1981. Orogenic andesites and plate tectonics. Spring–Verlag. 392 p. Berlin. https://doi.org/10.1007/978-3-642-68012-0
Gómez, J., Montes, N.E., Nivia, Á. & Diederix, H., compilers. 2015. Geological Map of Colombia 2015. Scale 1:1 000 000. Servicio Geológico Colombiano, 2 sheets. Bogotá. https://doi.org/10.32685/10.143.2015.936
González, H. 1980. Geología de las planchas 167 Sonsón y 187 Salamina. Scale 1:100 000. Boletín Geológico, 23(1): 1–174. González, H. 2010. Geoquímica, geocronología de las unidades litológicas asociadas al sistema de fallas Cauca–Romeral, sector centro–sur. Tomo I. Ingeominas, unpublished report, 412 p. Medellín.
Green, T.H. 1972. Crystallization of calc–alkaline andesite under controlled high–pressure hydrous conditions. Contributions to Mineralogy and Petrology, 34(2): 150–166. https://doi.org/10.1007/BF00373770
Green, T.H. 1977. Garnet in silicic liquids and its possible use as a P–T indicator. Contributions to Mineralogy and Petrology, 65(1): 59–67. https://doi.org/10.1007/BF00373571
Green, T.H. 1992. Experimental phase equilibrium studies of garnet–bearing I–type volcanics and high–level intrusives from Northland, New Zealand. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 83(1–2): 429–438. https://doi.org/10.1017/S0263593300008105
Grosse, E. 1926. Estudio geológico del terciario carbonífero de Antioquia en la parte occidental de la cordillera Central de Colombia, entre el río Arma y Sacaojal, ejecutado en los años de 1920–1923. Dietrich Reimer, 361 p. Berlin.
Hamer, R.D. & Moyes, A.B. 1982. Composition and origin of garnet from the Antarctic Peninsula volcanic group of Trinity Peninsula. Journal of the Geological Society London, 139(6): 713–720. https://doi.org/10.1144/gsjgs.139.6.0713
Harangi, S., Downes, H., Kósa, L., Szabó, C., Thirlwall, M.F., Mason, P.R.D. & Mattey, D. 2001. Almandine garnet in calc–alkaline volcanic rocks of the northern Pannonian Basin (eastern–central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42(10): 1813–1844. https://doi.org/10.1093/petrology/42.10.1813
Harmon, R.S., Barreiro, B.A., Moorbath, S., Hoefs, J., Francis, P.W., Thorpe, R.S., Déruelle, B., McHugh, J. & Viglino, J.A. 1984. Regional O–, Sr–, and Pb–isotope relationships in late Cenozoic calc–alkaline lavas of the Andean Cordillera. Journal of the Geological Society, 141(5): 803–822. https://doi.org/10.1144/gsjgs.141.5.0803
Hawkesworth, C.J., Norry, M.J., Roddick, J.C., Baker, P.E., Francis, P.W. & Thorpe, R.S. 1979. 143Nd/144Nd, 87Sr/86Sr, and incompatible element variations in calc–alkaline andesites and plateau lavas from South America. Earth and Planetary Science Letters, 42(1): 45–57. https://doi.org/10.1016/0012-821X(79)90189-4
Henrichs, I.A. 2013. Caracterização e idade das intrusivas do sistema Pórfiro Yarumalito, magmatismo Combia, Colombia. Doctoral thesis, Universidade Federal do Rio Grande do Sul, 68 p. Porto Alegre, Brasil.
Hidalgo, P.J. & Rooney, T.O. 2010. Crystal fractionation processes at Baru volcano from the deep to shallow crust. Geochemistry, Geophysics, Geosystems, 11(12): 1–29. https://doi.org/10.1029/2010GC003262
Hidalgo, P.J. & Rooney, T.O. 2014. Petrogenesis of a voluminous Quaternary adakitic volcano: The case of Baru volcano. Contributions to Mineralogy and Petrology, 168(3): 1–19. https://doi.org/10.1007/s00410-014-1011-9
Hidalgo, S., Monzier, M., Martin, H., Chazot, G., Eissen, J.P. & Cotten, J. 2007. Adakitic magmas in the Ecuadorian volcanic front: Petrogenesis of the Iliniza volcanic complex, Ecuador. Journal of Volcanology and Geothermal Research, 159(4): 366–392. https://doi.org/10.1016/j.jvolgeores.2006.07.007
Horton, B.K., Parra, M., Saylor, J.E., Nie, J., Mora, A., Torres, V., Stockli, D.F. & Strecker, M.R. 2010. Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today, 20(7): 4–10. https://doi.org/10.1130/GSATG76A.1
Hoyos, S. & Duque–Trujillo, J.F. 2017. Determinación de focos de emisión en ignimbritas de la Formación Combia a partir de análisis de fábrica magnética. XVI Congreso Colombiano de Geología. Memoirs, p. 1301–1302. Santa Marta.
Hoyos, S., Weber, M., Cárdenas–Rozo, A.L., Cottrell, E., Duque, J.F., Beltrán–Triviño, A., von Quadt, A. & Gómez Tapias, J. 2020. Late Miocene garnet–bearing andesites in the Northern Andes and their tectonic implications. Manuscript submitted for publication.
Irving, A.J. & Frey, F.A. 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic rhyolitic composition. Geochimica et Cosmochimica Acta, 42(6): 771–787. https://doi.org/10.1016/0016-7037(78)90092-3
James, D.E. & Murcia, L.A. 1984. Crustal contamination in northern Andean volcanics. Journal of the Geological Society, 141(5): 823–830. https://doi.org/10.1144/gsjgs.141.5.0823
Jaramillo, J.M. 1976. Volcanic rocks of the rio Cauca Valley, Colombia. Master thesis, Rice University, 46 p. Houston, USA.
Jaramillo, J.S., Cardona, A., Monsalve, G., Valencia, V. & León, S. 2019. Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos 330–331: 194–220. https://doi.org/10.1016/j.lithos.2019.02.017
Kano, H. & Yashima, R. 1976. Almandine–garnets of acid magmatic origin from Yamanogawa. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geology, 71(4): 106–119. https://doi.org/10.2465/ganko1941.71.106
Kawabata, H. & Takafuji, N. 2005. Origin of garnet crystals in calc–alkaline volcanic rocks from the Setouchi volcanic belt, Japan. Mineralogical Magazine, 69(6): :951–971. https://doi.org/10.1180/0026461056960301
Kennan, L. & Pindell, J.L. 2009. Dextral shear, terrane accretion and basin formation in the northern Andes: Best explained by interaction with a Pacific–derived Caribbean Plate? In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 487–531. https://doi.org/10.1144/SP328.20
Kerr, A.C., Tarney, J., Marriner, G.F., Nivia, Á., Klaver, G.T. & Saunders, A.D. 1996. The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism. Journal of South American Earth Sciences, 9(1–2): 111–120. https://doi.org/10.1016/0895-9811(96)00031-4
Kerr, A.C., Marriner, G.F., Tarney, J., Nivia, Á., Saunders, A.D., Thirlwall, M.F. & Sinton, C.W. 1997. Cretaceous basaltic terranes in western Colombia: Elemental, chronological and Sr–Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6): 677–702. https://doi.org/10.1093/petrology/38.6.677
Krein, S.B., Molitor, Z.J. & Grove, T.L. In Review at JGR: Solid Earth. ReversePetrogen: A Multiphase Dry Reverse Fractional Crystallization–Mantle Melting Thermobarometer applied to 13,589 Mid–Ocean Ridge Basalt Glasses.
Lara, M., Salazar–Franco, A.M. & Silva–Tamayo, J.C. 2018. Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America. Sedimentary Geology, 373: 147–162. https://doi.org/10.1016/j.sedgeo.2018.06.003
Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Schumaker J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W. & Youzhi G. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical magazine, 61(405): 295–321
Leal–Mejía, H. 2011. Phanerozoic gold metallogeny in the Colombian Andes: A tectono–magmatic approach. Doctoral thesis, Universitat de Barcelona, 989 p. Barcelona.
Leal–Mejía, H., Shaw, R.P. & Melgarejo I Draper, J.C. 2019. Spatial–temporal migration of granitoid magmatism and the Phanerozoic tectono–magmatic evolution of the Colombian Andes. In: Cediel, F. & Shaw, R.P. (editors), Geology and tectonics of northwestern South America: The Pacific–Caribbean–Andean junction. Frontiers in Earth Sciences. Springer, p. 253–410. Cham, Germany. https://doi.org/10.1007/978-3-319-76132-9_5
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., Sørensen, H. & Woolley, A.R., editors. 2002. Igneous rocks: A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Cambridge University Press, 236 p. Cambridge, UK. https://doi.org/10.1017/CBO9780511535581
Lesage, G., Richards, J.P., Muehlenbachs, K. & Spell, T.L. 2013. Geochronology, geochemistry, and fluid characterization of the late Miocene Buriticá gold deposit, Antioquia Department, Colombia. Economic Geology, 108(5): 1067–1097. https://doi.org/10.2113/econgeo.108.5.1067
Lonsdale, P. 1991. Structural patterns of the Pacific floor offshore of peninsular California. In: Dauphin, J.P. & Simoneit, B.R.T. (editors), The gulf and peninsular province of the Californias. American Association of Petroleum Geologists, Memoir 47, p. 87–125. Tulsa, USA.
Lonsdale, P. 2005. Creation of the Cocos and Nazca Plates by fission of the Farallon Plate. Tectonophysics, 404(3–4): 237–264. https://doi.org/10.1016/j.tecto.2005.05.011
MacDonald, W.D. 1980. Anomalous paleomagnetic directions in late tertiary andesitic intrusions of the Cauca depression, Colombian Andes. Tectonophysics, 68(3–4): 339–348. https://doi.org/10.1016/0040-1951(80)90183-3
Macpherson, C.G., Dreher, S.T. & Thirlwall, M.F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3–4): 581–593. https://doi.org/10.1016/j.epsl.2005.12.034
Mahecha, H., Ortiz, J., Tejada, M.L., Paniagua, F. & Weber, M. 2006. Cartografía geológica de las vulcanitas de la Formación Combia, en un área de 200 km2 en los alrededores del municipio de Jardín, departamento de Antioquia, Colombia. Ingeominas, unpublished report, 27 p. Bogotá.
Marín–Cerón, M.I., Moriguti, T., Makishima, A. & Nakamura, E. 2010. Slab decarbonation and CO2 recycling in the southwestern Colombian volcanic arc. Geochimica et Cosmochimica Acta, 74(3): 1104–1121. https://doi.org/10.1016/j.gca.2009.10.031
Marín–Cerón, M.I., Leal–Mejía, H., Bernet, M. & Mesa–García J. 2019. Late Cenozoic to modern–day volcanism in the northern Andes: A geochronological, petrographical, and geochemical review. In: Cediel, F. & Shaw R.P. (editors), Geology and tectonics of northwestern South America: The Pacific–Caribbean–Andean junction. Frontiers in Earth Sciences. Springer, p. 603–648. Cham, Germany. https://doi.org/10.1007/978-3-319-76132-9_8
Marriner, G.F. & Millward, D. 1984. The petrology and geochemistry of Cretaceous to recent volcanism in Colombia: The magmatic history of an accretionary plate margin. Journal of the Geological Society, 141(3): 473–486. https://doi.org/10.1144/gsjgs.141.3.0473
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.–F. & Champion, D. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1–2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048
McPhie, J., Doyle, M. & Allen, R.L. 1993. Volcanic textures: A guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposits and Exploration Studies, University of Tasmania, 196 p. Hobart, Australia.
Miyashiro, A. 1955. Pyralspite garnets in volcanic rocks. Journal of Geological Society of Japan, 61(721): 463–470. https://doi.org/10.5575/geosoc.61.463
Miyashiro, A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321–355. https://doi.org/10.2475/ajs.274.4.321
Montes, C., Bayona, G., Cardona, A., Buchs, D.M., Silva, C.A., Morón, S., Hoyos, N., Ramírez, D.A., Jaramillo, C. & Valencia, V. 2012. Arc–continent collision and orocline formation: Closing of the Central American Seaway. Journal of Geophysical Research: Solid Earth, 117(B4), 1–25. https://doi.org/10.1029/2011JB008959
Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez–Ángel, L.C., Rodríguez–Parra, L.A., Ramírez, V. & Niño, H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348(6231): 226–229. https://doi.org/10.1126/science.aaa2815
Morrison, G.W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos 13(1): 79–108. https://doi.org/10.1016/0024-4937(80)90067-5
Müller, D., Rock, N.M.S. & Groves, D.I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study. Mineralogy and Petrology, 46(4): 259–289. https://doi.org/10.1007/BF01173568
Müller, R.D., Sdrolias, M., Gaina, C. & Roest, W.R. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): 1–19. https://doi.org/10.1029/2007GC001743
Müntener, O., Kelemen, P.B. & Grove, T.L. 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contributions to Mineralogy and Petrology, 141(6): 643–658. https://doi.org/10.1007/s004100100266
Muñoz, J.A. 1992. Evolution of a continental collision belt: ECORS–Pyrenees crustal balanced cross–section. In: McClay, K.R., (editor), Thrust Tectonics. Springer Science, p. 235–246. London, UK.
Murcia, H.F., Borrero, C.A., Pardo, N., Alvarado, G.E., Arnosio, M. & Scolamacchia, T. 2013. Depósitos volcaniclásticos: Términos y conceptos para una clasificación en español. Revista Geológica de América Central, 48:15–39.
Németh, K. & Martin, U. 2007. Practical volcanology: Lecture notes for understanding volcanic rocks from field based studies. Geological Institute of Hungary, 221 p. Budapest, Hungary.
Ordóñez–Carmona, O. 2001. Caracterização isotópica Rb–Sr e Sm–Nd dos principais eventos magmáticos nos Andes colombianos. Doctoral thesis, Universidad de Brasilia, 176 p. Brasilia.
Pardo, N., Cepeda, H. & Jaramillo, J. 2005. The Paipa volcano, Eastern Cordillera of Colombia, South America: Volcanic stratigraphy. Earth Sciences Research Journal, 9(1): 3–18.
Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
Pindell, J., Kennan, L., Maresch, W.V., Stanek, K.P., Draper, G. & Higgs, R. 2005. Plate–kinematics and crustal dynamics of circum–Caribbean arc–continent interactions: Tectonic controls on basin development in proto–Caribbean margins. In: Avé–Lallemant, H.G. & Sisson, V.B. (editors), Caribbean–South American Plate interactions, Venezuela. Geological Society of America, Special Paper 394, p. 7–52. https://doi.org/10.1130/0-8137-2394-9.7
Plank, T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5): 921–944. https://doi.org/10.1093/petrology/egi005
Plank, T. & Langmuir, C.H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3–4): 325–394. https://doi.org/10.1016/S0009-2541(97)00150-2
Ramírez, D.A., López, A., Sierra, G.M. & Toro, G.E. 2006. Edad y proveniencia de las rocas volcánico–sedimentarias de la Formación Combia en el suroccidente antioqueño, Colombia. Boletín de Ciencias de la Tierra, (19): 9–26.
Ramírez, E., Pardo–Trujillo, A., Plata, A., Vallejo, F. & Trejos, R. 2015. Edad y ambiente de la Formación Amagá, sector de Santa Fé de Antioquia–Sopetrán, con base en evidencias palinológicas. XV Congreso Colombiano de Geología. Memoirs, p. 277–281. Bucaramanga, Colombia.
Restrepo, J.J. 1991. Datación de algunos plutones de Antioquia por el método de trazas de fisión. Boletín de Ciencias de la Tierra, (10): 95–107.
Restrepo, J.J., Toussaint, J.F. & González, H. 1981a. Edades mio–pliocenas del magmatismo asociado a la Formación Combia, departamentos de Antioquia y Caldas, Colombia. Geología Norandina, (3): 21–26.
Restrepo, J.J., Toussaint, J.F., Zuluaga, J. & Hoyos, P. 1981b. Algunas consideraciones sobre la geología de la parte septentrional de la cordillera Occidental. Boletín de Ciencias de la Tierra, (5–6): 85–107.
Ribeiro, J.M., Maury, R.C. & Grégoire, M. 2016. Are adakites slab melts or high–pressure fractionated mantle melts? Journal of Petrology, 57(5): 839–862. https://doi.org/10.1093/petrology/egw023
Richards, J.P. & Kerrich, R. 2007. Special Paper: Adakite–like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537–576. https://doi.org/10.2113/gsecongeo.102.4.537
Ridolfi, F. & Renzulli, A. 2012. Calcic amphiboles in calc–alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163(5): 877–895. https://doi.org/10.1007/s00410-011-0704-6
Ridolfi, F., Renzulli, A. & Puerini, M. 2010. Stability and chemical equilibrium of amphibole in calc–alkaline magmas: An overview, new thermobarometric formulations and application to subduction–related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66. https://doi.org/10.1007/s00410-009-0465-7
Ríos, A.M. & Sierra, M.I. 2004. La Formación Combia: Registro de la relación entre el volcanismo neógeno y la sedimentación fluvial, sección Guineales–Bolombolo, suroeste antioqueño. Bachelor thesis, Universidad EAFIT, 106 p. Medellín.
Rodríguez, G. & Zapata, G. 2014. Descripción de una nueva unidad de lavas denominada andesitas basálticas de El Morito–correlación regional con eventos magmáticos de arco. Boletín de Geología, 36(1): 85–102.
Rutherford, M.J. & Hill, P.M. 1993. Magma ascent rates from amphibole breakdown: An experimental study applied to the 1980–1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98(B11): 19667–19685. https://doi.org/10.1029/93JB01613
Samaniego, P., Robin, C., Chazot, G., Bourdon, E. & Cotten, J. 2010. Evolving metasomatic agent in the northern Andean subduction zone, deduced from magma composition of the long–lived Pichincha volcanic complex, Ecuador. Contributions to Mineralogy and Petrology, 160(2): 239–260. https://doi.org/10.1007/s00410-009-0475-5
Shaw, R.P., Leal–Mejía, H., & Melgarejo I Draper, J.C. 2019. Phanerozoic metallogeny in the Colombian Andes: A tectono–magmatic analysis in space and time. In: Cediel, F. & Shaw R.P. (editors), Geology and tectonics of northwestern South America: The Pacific–Caribbean–Andean junction. Frontiers in Earth Sciences. Springer, p. 411–549. Cham, Germany. https://doi.org/10.1007/978-3-319-76132-9_6
Shuto, K., Sato, M., Kawabata, H., Osanai, Y., Nakano, N. & Yashima, R. 2013. Petrogenesis of middle Miocene primitive basalt, andesite and garnet–bearing adakitic rhyodacite from the Ryozen Formation: Implications for the tectono–magmatic evolution of the NE Japan arc. Journal of Petrology, 54(12), 2413–2454. https://doi.org/10.1093/petrology/egt052
Sierra, G.M. 1994. Structural and sedimentary evolution of the Irra Basin, northern Colombian Andes. Master thesis, State University of New York, 102 p. Binghamton, USA. Smith, I.E.M., Ruddock, R.S. & Day, R.A. 1989. Miocene arc–type volcanic/plutonic complexes of the Northland Peninsula, New Zealand. Royal Society of New Zealand Bulletin, 26: 205–213.
Staudigel, H., Plank, T., White, B. & Schmincke, H.U. 1996. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418. In: Bebout, G.E., Scholl, D.W., Kirby, S.H. & Platt, J.P. (editors), Subduction: Top to bottom. Geophysical Monograph Series, 96, p. 19–38. https://doi.org/10.1029/GM096p0019
Stern, C.R. & Kilian, R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263–281. https://doi.org/10.1007/s004100050155
Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (editors), Magmatism in the ocean basins. Geological Society of London, Special Publication 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Tassinari, C.C.G., Diaz–Pinzon, F. & Buenaventura, J. 2008. Age and sources of gold mineralization in the Marmato mining district, NW Colombia: A Miocene – Pliocene epizonal gold deposit. Ore Geology Reviews, 33(3–4): 505–518. https://doi.org/10.1016/j.oregeorev.2007.03.002
Taylor, S.R. & McLennan, S.M. 1985. The Continental Crust: Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific Publications, 312 p. Oxford.
Tejada, M.L. & Betancourt, J.A. 2006. Cartografía geológica de las vulcanitas de la Formación Combia en un área de 200 km2 en los alrededores de los municipios de Jericó y Pueblorrico, departamento de Antioquia, Colombia. Ingeominas, unpublished report, 54 p. Bogotá.
Tejada, M., Betancourt, J., Nivia, Á., Weber, M. & Gómez, J. 2007. Cartografía geológica y caracterización geoquímica de la Formación Combia en los alrededores de Jericó y Pueblorrico, departamento de Antioquia, Colombia. XI Congreso Colombiano de Geología. Memoirs, CD ROM, 24 p. Bucaramanga.
Thirlwall, M.F. & Fitton, J.G. 1983. Sm–Nd garnet age for the Ordovician Borrowdale Volcanic Group, English Lake District. Journal of the Geological Society London, 140(3): 511–518. https://doi.org/10.1144/gsjgs.140.3.0511
Thorkelson, D.J. & Breitsprecher, K. 2005. Partial melting of slab window margins: Genesis of adakitic and non–adakitic magmas. Lithos 79(1–2): 25–41. https://doi.org/10.1016/j.lithos.2004.04.049
Thorpe, R.S., Francis, W.W. & O'Callaghan, L. 1984. Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philosophical Transactions of the Royal Society of London, A, Mathematical, Physical and Engineering Sciences, 310(1514): 675–692. https://doi.org/10.1098/rsta.1984.0014
Toro, G., Restrepo, J.J., Poupeau, G., Sáenz, E. & Azdimousa, A. 1999. Datación por trazas de fisión de circones rosados asociados a la secuencia volcano–sedimentaria de Irra, Caldas. Boletín de Ciencias de la Tierra, (13): 28–34.
Toro–Toro, L.M., Alvarán–Echeverri, M. & Borrero–Peña, C.A. 2008. Rocas con afinidad adakítica al sureste de Manizales: Rasgos petrogenéticos y geoquímicos. Boletín de Geología, 30(2): 49–60.
Touissaint, J.F. 1999. Evolución geológica de Colombia: Precámbrico, Paleozoico, Mesozoico, Cenozoico. Universidad Nacional de Colombia, CD ROM, 243p. Bogotá.
Vargas, C.A. & Mann, P. 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama arc–indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025–2046. https://doi.org/10.1785/0120120328
Wagner, L.S., Jaramillo, J.S., Ramírez–Hoyos, L.F., Monsalve, G., Cardona, A. & Becker, T.W. 2017. Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13): 6616–6623. https://doi.org/10.1002/2017GL073981
Weber, M.B.I., Tarney, J., Kempton, P.D. & Kent, R.W. 2002. Crustal make–up of the northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345(1–4): 49–82. https://doi.org/10.1016/S0040-1951(01)00206-2
Woodhead, J.D., Hergt, J.M., Davidson, J.P. & Eggins, S.M. 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3): 331–346. https://doi.org/10.1016/S0012-821X(01)00453-8
Yarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D. & Ordoñez–Carmona, O. 2014. Seismological observations in northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics, 637: 57–67. https://doi.org/10.1016/j.tecto.2014.09.006
Zapata, G. & Rodríguez, G. 2011. Basalto de El Botón, arco volcánico mioceno de afinidad shoshonítica al norte de la cordillera Occidental de Colombia. Boletín Ciencias de la Tierra, (30): 77–91.
Zapata, G. & Rodríguez, G. 2013. Petrografía, geoquímica y edad de la Granodiorita de Farallones y las rocas volcánicas asociadas. Boletín de Geología, 35(1): 81–96.
Zindler, A. & Hart, S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425