Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

El Estado no tiene porqué ser aburrido ¡conoce a gov.co!

¿Sabes que es GOV.CO?

¿Sabes que es GOV.CO? Conócelo aquí

Servicio Geológico Colombiano

Skip Navigation Linksv3ch15
Seleccione su búsqueda
miig

​​Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño

 Volume 3 Chapter 15

Chapter 15

Isthmian Bedrock Geology: Tilted, Bent, and Broken   

Camilo MONTES and Natalia HOYOS

https://doi.org/10.32685/pub.esp.37.2019.15


Citation is suggested as: 

Montes, C. & Hoyos, N. 2020. Isthmian bedrock geology: Tilted, bent, and broken. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 17 p. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.15​


Download chapter       

Download EndNote reference​ ​​


Abstract 


A review of the bedrock geology of the Isthmus of Panama highlights tectonic deformation—tilting, bending, and breaking—, as the major controlling factor in the sites and modes of Cenozoic sedimentation. Deformation in Paleocene – early Eocene times folded and faulted a basement complex composed of plateau basalts, pelagic and hemipelagic sequences, and an overprinted magmatic arc. This deformation episode brought parts of the isthmus from lower bathyal depths to subaerial exposure, bringing about basement cooling and eroding the plutonic bodies that make up the roots of a Campanian to Eocene arc. A clastic–carbonate, less deformed, upper Eocene and younger sedimentary sequence onlaps nonconformably the basement complex. Southward tilting of the isthmus controlled the accumulation of the clastic wedge, recording first shallow marine depositional environments, followed by deepening, and then by shoaling. This sequence resulted from basin tilting that simultaneously raised the San Blas Range, eroding it, while deepening the axis of the Chucunaque Basin. Bending and breaking of the isthmus took place as it was being detached from the trailing edge of the Caribbean Plate, and marked the start of left–lateral offset of the isthmus in late Eocene times.


Keywords:   Panama, isthmus, deformation.


Resumen

Una revisión de la geología del basamento del Istmo de Panamá muestra que la deformación tectónica ––el basculamiento, la flexión y la ruptura–– es el factor principal que controla los sitios y modos de sedimentación cenozoica. La deformación durante el Paleoceno–Eoceno temprano plegó y falló el complejo de basamento compuesto por basaltos de plateau, secuencias pelágicas y hemipelágicas, y un arco magmático sobreimpuesto. Este episodio de deformación trajo partes del istmo desde las profundidades batiales inferiores a exposición subaérea, provocando el enfriamiento de rocas del basamento y la erosión de los cuerpos plutónicos que forman las raíces del arco Campaniano–Eoceno. Una secuencia sedimentaria clástica–calcárea, menos deformada, del Eoceno superior y más joven cubre discordantemente el complejo de basamento. El basculamiento del istmo hacia el sur controló la acumulación de la cuña clástica, registrando primero ambientes deposicionales marinos poco profundos, seguidos por profundización y luego somerización. Esta secuencia resultó del basculamiento de la cuenca que levantó simultáneamente la cordillera de San Blas, erosionándola, mientras se profundizaba el eje de la Cuenca de Chucunaque. La flexión y la ruptura del istmo ocurrieron cuando este se despegó de la parte trasera de la Placa del Caribe, marcando el inicio del desplazamiento sinestral del istmo a finales del Eoceno.

 

Palabras clave: Panamá, istmo, deformación.



Abbreviations 

CLIP                              Caribbean Large Igneous Plateau

LIP                                                                 Large Igneous Province

ODP                             Ocean Drilling Program

STRI                             Smithsonian Tropical Research Institute

UNDP                        United Nations Development Program​



References

Abrams, L.J. & Hu, M. 2000. Data report: Depth to volcanic basement at Site 999, Kogi Rise, Colombian Basin. In: Leckie, R.M., Sigurdsson, H., Acton, G.D. & Draper, G. (editors), Proceedings of the Ocean Drilling Program, Scientific Results 165, p. 219–224. College Station, USA. https://doi.org/10.2973/odp.proc.sr.165.028.2000

 

Amante, C. & Eakins, B.W. 2009. ETOPO1 1 Arc–minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC–24. National Oceanic and Atmospheric Administration, 25 p.

 

Bacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P. & Antonelli, A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences of the United States of America, 112(19): 6110–6115. https://doi.org/10.1073/pnas.1423853112

 

Bandy, O.L. & Casey, R.E. 1973. Reflector horizons and paleobathymetric history, eastern Panama. Geological Society of America Bulletin, 84(9): 3081–3086. https://doi.org/10.1130/0016-7606(1973)84<3081:RHAPHE>2.0.CO;2

 

Barat, F., De Lépinay, B.M., Sosson, M., Müller, C., Baumgartner, P.O. & Baumgartner–Mora, C. 2014. Transition from the Farallon Plate subduction to the collision between South and Central America: Geological evolution of the Panama Isthmus. Tectonophysics, 622: 145–167. https://doi.org/10.1016/j.tecto.2014.03.008

 

Baumgartner, P.O., Flores, K., Bandini, A.N., Girault, F. & Cruz, D. 2008. Upper Triassic to Cretaceous radiolaria from Nicaragua and northern Costa Rica–The Mesquito composite oceanic terrane. Ofioliti, 33(1): 1–19.

 

Becker, G.F. 1917. Mechanics of the Panama Canal slides. In: White, D. (editor), Shorter contributions to general geology, 1916. Professional paper 98–N. U.S. Geological Survey, p. 253–261. Washington D.C. https://doi.org/10.3133/pp98N

 

Berry, E.W. 1914. Fossil plants in the Panama Canal zone. Science, 39(1001): p. 357. https://doi.org/10.1126/science.39.1001.357

 

Bloch, J.I., Woodruff, E.D., Wood, A.R., Rincón, A.F., Harrington, A.R., Morgan, G.S., Foster, D.A., Montes, C., Jaramillo, C., Jud, N.A., Jones, D.S. & MacFadden, B.J. 2016. First North American fossil monkey and early Miocene tropical biotic interchange. Nature, 533(7602): 243–246. https://doi.org/10.1038/nature17415

 

Bowland, C.L. 1993. Depositional history of the western Colombian Basin, Caribbean Sea, revealed by seismic stratigraphy. Geological Society of America Bulletin, 105(10): 1321–1345. https://doi.org/10.1130/0016-7606(1993)105<1321:DHOTWC>2.3.CO;2

 

Breen, N.A., Tagudin, J.E., Reed, D.L. & Silver, E.A. 1988. Mud–cored parallel folds and possible melange development in the north Panama thrust belt. Geology, 16(3): 207–210. https://doi.org/10.1130/0091-7613(1988)16[207:MPFAPM]2.0.CO;2

 

Brown, R.M. 1920. Five years of the Panama Canal: An evaluation. Geographical Review, 9(3): 191–198. https://doi.org/10.2307/207257

 

Buchs, D.M., Arculus, R.J., Baumgartner, P.O., Baumgartner–Mora, C. & Ulianov, A. 2010. Late Cretaceous arc development on the SW margin of the Caribbean Plate: Insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochemistry, Geophysics, Geosystems, 11(7): 1–35. https://doi.org/10.1029/2009GC002901

 

Buchs, D.M., Arculus, R.J., Baumgartner, P.O. & Ulianov, A. 2011a. Oceanic intraplate volcanoes exposed: Example from seamounts accreted in Panama. Geology, 39(4): 335–338. https://doi.org/10.1130/G31703.1

 

Buchs, D.M., Baumgartner, P.O., Baumgartner–Mora, C., Flores, K. & Bandini, A.N. 2011b. Upper Cretaceous to Miocene tectonostratigraphy of the Azuero area (Panama) and the discontinuous accretion and subduction erosion along the middle American margin. Tectonophysics, 512(1–4): 31–46. https://doi.org/10.1016/j.tecto.2011.09.010

 

Buchs, D.M., Hoernle, K., Hauff, F. & Baumgartner, P.O. 2016. Evidence from accreted seamounts for a depleted component in the early Galapagos plume. Geology, 44(5): 383–386. https://doi.org/10.1130/G37618.1

 

Camacho, E., Hutton, W. & Pacheco, J.F. 2010. A new look at evidence for a Wadati–Benioff zone and active convergence at the North Panama Deformed Belt. Bulletin of the Seismological Society of America, 100(1): 343–348. https://doi.org/10.1785/0120090204

 

Cardona, A., Valencia, V., Bayona, G., Duque, J., Ducea, M., Gehrels, G., Jaramillo, C., Montes, C., Ojeda, G. & Ruiz, J. 2011. Early–subduction–related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova, 23(1): 26–34. https://doi.org/10.1111/j.1365-3121.2010.00979.x

 

Cardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C., Niño, H., Ramírez, V., Valencia, V., Rincón, D., Vervoort, J.D. & Zapata, S. 2012. From arc–continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean–South America Plate boundary. Tectonophysics, 580: 58–87. https://doi.org/10.1016/j.tecto.2012.08.039

 

Carvajal–Arenas, L.C. & Mann, P. 2018. Western Caribbean intraplate deformation: Defining a continuous and active microplate boundary along the San Andres Rift and Hess Escarpment fault zone, Colombian, Caribbean Sea. American Association of Petroleum Geologists Bulletin, 102(8): 1523–1563. https://doi.org/10.1306/12081717221

 

Case, J.E. 1974. Oceanic crust forms basement of eastern Panamá. Geological Society of America Bulletin, 85(4): 645–652. https://doi.org/10.1130/0016-7606(1974)85<645:OCFBOE>2.0.CO;2

 

Case, J.E., Durán, L.G., López, A. & Moore, W.R. 1971. Tectonic investigations in western Colombia and eastern Panama. Geological Society of America Bulletin, 82(10): 2685–2711. https://doi.org/10.1130/0016-7606(1971)82[2685:TIIWCA]2.0.CO;2

 

Case, J.E., Shagam, R. & Giegengack, R.F. 1990. Geology of the northern Andes: An overview. In: Dengo, G. & Case, J.E. (editors), The Caribbean region. Geological Society of America, p. 177–200. Boulder, USA. https://doi.org/10.1130/DNAG-GNA-H.177

 

Cediel, F., Shaw, R.P. & Cáceres, C. 2003. Tectonic assembly of the northern Andean Block. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 815–848. Tulsa, USA.

 

Coates, A.G. & Stallard, R.F. 2013. How old is the Isthmus of Panama? Bulletin of Marine Science, 89(4): 801–813. https://doi.org/10.5343/bms.2012.1076

 

Coates, A.G., Collins, L.S., Aubry, M.P. & Berggren, W.A. 2004. The geology of the Darien, Panama, and the late Miocene – Pliocene collision of the Panama arc with northwestern South America. Geological Society of America Bulletin, 116(11–12): 1327–1344. https://doi.org/10.1130/B25275.1

 

Collins, L.S., Coates, A.G., Berggren, W.A., Aubry, M.P. & Zhang, J. 1996. The late Miocene Panama isthmian strait. Geology, 24(8): 687–690. https://doi.org/10.1130/0091-7613(1996)024<0687:TLMPIS>2.3.CO;2

 

Corral, I., Griera, A., Gómez–Gras, D., Corbella, M., Canals, Á., Pineda–Falconett, M. & Cardellach, E. 2011. Geology of the Cerro Quema Au–Cu deposit (Azuero Peninsula, Panama). Geologica Acta, 9(3–4): 481–498. https://doi.org/10.1344/105.000001742

 

Corral, I., Gómez–Gras, D., Griera, A., Corbella, M. & Cardellach, E. 2013. Sedimentation and volcanism in the Panamanian Cretaceous intra–oceanic arc and fore–arc: New insights from the Azuero Peninsula (SW Panama). Bulletin de la Société Géologique de France, 184(1–2): 35–45. https://doi.org/10.2113/gssgfbull.184.1-2.35

 

Corral, I., Cardellach, E., Corbella, M., Canals, Á., Gómez–Gras, D., Griera, A. & Cosca, M.A. 2016. Cerro Quema (Azuero Peninsula, Panama): Geology, alteration, mineralization, and geochronology of a volcanic dome–hosted high–sulfidation Au–Cu deposit. Economic Geology, 111(2): 287–310. https://doi.org/10.2113/econgeo.111.2.287

 

Coryell, H.N. & Embich, J.R. 1937. The Tranquilla Shale (upper Eocene) of Panama and its foraminiferal fauna. Journal of Paleontology, 11(4): 289–305.

 

Cowan, H.A., Dart, R.L. & Machette, M.N. 1998. Map of Quaternary faults and folds of Panama and its offshore regions. Scale 1:750 000. U.S. Geological Survey, 1 sheet. https://doi.org/10.3133/ofr98779

 

de Banville, M. 2004. Canal Français: L'aventure illustrée des français au Panama. 1880–1904. Éditeur Canal Valley, 194 p.

 

Di Marco, G., Baumgartner, P.O. & Channell, J.E.T. 1995. Late Cretaceous – early Tertiary paleomagnetic data and a revised tectonostratigraphic subdivision of Costa Rica and western Panama. In: Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 1–27. Boulder, USA. https://doi.org/10.1130/SPE295-p1

 

Douville, H. 1898. Sur l'âge des couches traversées par le canal de Panama. Bulletin de la Société Géologique de France, 3(26): 587–600.

 

Duque–Caro, H. 1990. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(3–4): 203–234. https://doi.org/10.1016/0031-0182(90)90178-A

 

Farris, D.W., Jaramillo, C., Bayona, G., Restrepo–Moreno, S.A., Montes, C., Cardona, A., Mora, A., Speakman, R.J., Glascock, M.D. & Valencia, V. 2011. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11): 1007–1010. https://doi.org/10.1130/G32237.1

 

Farris, D.W., Cardona, A., Montes, C., Foster, D. & Jaramillo, C. 2017. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change. PLOS ONE, 12(5): 1–44. https://doi.org/10.1371/journal.pone.0176010

 

Fisher, S.P. & Pessagno, E.A. 1965. Upper Cretaceous strata of northwestern Panama. American Association of Petroleum Geologists Bulletin, 49(4): 433–444. https://doi.org/10.1306/A6633630-16C0-11D7-8645000102C1865D

 

Gazel, E., Hoernle, K., Carr, M.J., Herzberg, C., Saginor, I., van den Bogaard, P., Hauff, F., Feigenson, M.D. & Swisher III, C. 2011. Plume–subduction interaction in southern Central America: Mantle upwelling and slab melting. Lithos, 121(1–4): 117–134. https://doi.org/10.1016/j.lithos.2010.10.008

 

Giudice, D. & Recchi, G. 1969. Geología del área del proyecto minero de Azuero. Programa para el desarrollo de las Naciones Unidas, 53 p.

 

Herrera, F., Manchester, S.R. & Jaramillo, C. 2012. Permineralized fruits from the late Eocene of Panama give clues of the composition of forests established early in the uplift of Central America. Review of Paleobotany and Palynology, 175: 10–24. https://doi.org/10.1016/j.revpalbo.2012.02.007

 

Hershey, O.H. 1901. The geology of the central portion of the Isthmus of Panama. University of California, Bulletin of the Department of Geology, 2(8): 231–267.

 

Hidalgo, P.J., Vogel, T.A., Rooney, T.O., Currier, R.M. & Layer, P.W. 2011. Origin of silicic volcanism in the Panamanian Arc: Evidence for a two–stage fractionation process at El Valle Volcano. Contributions to Mineralogy and Petrology, 162(6): 1115–1138. https://doi.org/10.1007/s00410-011-0643-2

 

Hill, R.T., Dall, W.H., Bagg, M., Vaughan, T.W., Wolff, J.E., Turner, H.W. & Sjögren, A. 1898. The geological history of the Isthmus of Panama and portions of Costa Rica: Based upon a reconnoissance made for Alexander Agassiz. Bulletin of the Museum of Comparative Zoology at Harvard College, 28(5): 149–285.

 

Hoernle, K., van den Bogaard, P., Werner, R., Lissinna, B., Hauff, F., Alvarado, G. & Garbe–Schönberg, D. 2002. Missing history (16–71 Ma) of the Galapagos hotspot: Implications for the tectonic and biological evolution of the Americas. Geology, 30(9): 795–798. https://doi.org/10.1130/0091-7613(2002)030<0795:MHMOTG>2.0.CO;2

 

Hoernle, K., Hauff, F. & van den Bogaard, P. 2004. 70 m.y. history (139–69 Ma) for the Caribbean Large Igneous Province. Geology, 32(8): 697–700. https://doi.org/10.1130/G20574.1

 

Hoernle, K., Abt, D.L., Fischer, K.M., Nichols, H., Hauff, F., Abers, G.A., van den Bogaard, P., Heydolph, K., Alvarado, G., Protti, M. & Strauch, W. 2008. Arc–parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 451(7182): 1094–1097. https://doi.org/10.1038/nature06550

 

Jaramillo, C. 2018. Evolution of the Isthmus of Panama: Biological, paleoceanographic, and paleoclimatological implications. In: Hoorn, C., Perrigo, A. & Antonelli, A. (editors), Mountains, climate and biodiversity. Wiley–Blackwell, p. 323–338. Chichester, UK.

 

Jaramillo, C., Montes, C., Cardona, A., Silvestro, D., Antonelli, A. & Bacon, C.D. 2017. Comment (1) on “Formation of the Isthmus of Panama" by O'Dea et al. Science Advances, 3(6): 1–8. https://doi.org/10.1126/sciadv.1602321

 

Jorissen, F.J., Fontanier, C. & Thomas, E. 2007. Paleoceanographical proxies based on deep–sea benthic foraminiferal assemblage characteristics. In: Hillaire–Marcel, C. & de Vernal, A. (editors), Proxies in late Cenozoic paleoceanography. Elsevier Science, p. 263–325. https://doi.org/10.1016/S1572-5480(07)01012-3

 

Kellogg, J.N., & Vega, V., 1995. Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In: Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 75–90. Boulder, USA. https://doi.org/10.1130/SPE295-p75

 

Kennan, L. & Pindell, J.L. 2009. Dextral shear, terrane accretion and basin formation in the northern Andes: Best explained by interaction with a Pacific–derived Caribbean Plate? In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 487–531. https://doi.org/10.1144/SP328.20

 

Kerr, A.C. & Tarney, J. 2005. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33(4): 269–272. https://doi.org/10.1130/G21109.1

 

Kerr, A.C., White, R.V., Thompson, P.M.E., Tarney, J. & Saunders, A.D. 2003. No oceanic plateau–no Caribbean Plate? The seminal role of an oceanic plateau in Caribbean Plate evolution. In: Bartolini, C., Buffler, R.T. & Blickwede, J. (editors), The circum–Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. American Association of Petroleum Geologists, Memoir 79, p. 126–168. Tulsa, USA.

 

Kesler, S.E., Sutter, J.F., Issigonis, M.J., Jones, L.M. & Walker, R.L. 1977. Evolution of porphyry copper mineralization in an oceanic island arc: Panama. Economic Geology, 72(6): 1142–1153. https://doi.org/10.2113/gsecongeo.72.6.1142

 

Kirby, M.X. & MacFadden, B. 2005. Was southern Central America an archipelago or a peninsula in the middle Miocene? A test using land–mammal body size. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3–4): 193–202. https://doi.org/10.1016/j.palaeo.2005.06.002

 

Kirby, M.X., Jones, D.S. & MacFadden, B.J. 2008. Lower Miocene stratigraphy along the Panama Canal and its bearing on the Central American Peninsula, PLOS ONE, 3(7): 1–14. https://doi.org/10.1371/journal.pone.0002791

 

Kolarsky, R.A. & Mann, P. 1995. Structure and neotectonics of an oblique–subduction margin, southwestern Panama. In Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 131–157. Boulder, USA. https://doi.org/10.1130/SPE295-p131

 

Kolarsky, R.A., Mann, P. & Monechi, S. 1995. Stratigraphic development of southwestern Panama as determined from integration of marine seismic data and onshore geology. In Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 159–200. Boulder, USA. https://doi.org/10.1130/SPE295-p159

 

Krawinkel, H., Wozazek, S., Krawinkel, J. & Hellmann, W. 1999. Heavy–mineral analysis and clinopyroxene geochemistry applied to provenance analysis of lithic sandstones from the Azuero–Soná Complex (NW Panama). Sedimentary Geology, 124(1–4): 149–168. https://doi.org/10.1016/S0037-0738(98)00125-0

 

Leigh, E.G., O'Dea, A. & Vermeij, G.J. 2013. Historical biogeography of the Isthmus of Panama. Biological Reviews, 89(1): 148–172. https://doi.org/10.1111/brv.12048

 

León, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V.A., Chew, D., Montes, C., Posada, G., Monsalve, G. & Pardo–Trujillo, A. 2018. Transition from collisional to subduction–related regimes: An example from Neogene Panama–Nazca–South America interactions. Tectonics, 37(1): 119–139. https://doi.org/10.1002/2017TC004785

 

Lessios, H.A. 2008. The great American schism: Divergence of marine organisms after the rise of the Central American Isthmus. Annual Review of Ecology Evolution, and Systematics, 39: 63–91. https://doi.org/10.1146/annurev.ecolsys.38.091206.095815

 

Li, C., Arndt, N.T., Tang, Q. & Ripley, E.M. 2015. Trace element indiscrimination diagrams. Lithos, 232: 76–83. https://doi.org/10.1016/j.lithos.2015.06.022

 

Lissina, B. 2005. A profile through the Central American landbridge in western Panama: 115 Ma interplay between the Galápagos hotspot and the Central American subduction zone. Doctorade thesis, Christian–Albrechts–Universität zu Kiel, 102 p. Kiel, Germany.

 

Lonsdale, P. 2005. Creation of the Cocos and Nazca Plates by fission of the Farallon Plate. Tectonophysics, 404(3–4): 237–264. https://doi.org/10.1016/j.tecto.2005.05.011

 

Lonsdale, P. & Klitgord, K.D. 1978. Structure and tectonic history of the eastern Panama Basin. Geological Society of America Bulletin, 89(7): 981–999. https://doi.org/10.1130/0016-7606(1978)89<981:SATHOT>2.0.CO;2

 

Lutton, R.J. & Banks, D.C. 1970. Study of clay shale slopes along the Panama Canal. Report 1: East Culebra and west Culebra slides and the model slope. U.S. Army Engineer Waterways Experiment Station. Technical report, 385 p. Vicksburg, USA.

 

MacDonald, D.F. 1919. The sedimentary formations of the Panama Canal zone, with special reference to the stratigraphic relations of the fossiliferous beds. In: Vaughan, T.W. (editor), Contributions to the geology and paleontology of the Canal zone, Panama, and geologically related areas in Central America and the West Indies. Smithsonian Institution, Unites States National Museum, Press Bulletin 103, p. 525–545. Washington D.C.

 

MacDonald, D.F. 1947. Panama Canal slides. Department of operation and maintenance, Special Engineering Division, Balboa Heights Canal Zone, 73 p.

 

MacFadden, B.J., Jones, D.S., Jud, N.A., Moreno–Bernal, J.W., Morgan, G.S., Portell, R.W., Pérez, V.J., Moran, S.M. & Wood, A.R. 2017. Integrated chronology, flora and faunas, and paleoecology of the Alajuela Formation, late Miocene of Panama. PLOS ONE: 12(1): 1–27. https://doi.org/10.1371/journal.pone.0170300

 

Mann, P. & Corrigan, J. 1990. Model for late Neogene deformation in Panama. Geology, 18(6): 558–562. https://doi.org/10.1130/0091-7613(1990)018<0558:MFLNDI>2.3.CO;2

 

Mann, P. & Kolarsky, R.A. 1995. East Panama Deformed Belt: Structure, age, and neotectonic significance. In: Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 111–130. Boulder, USA. https://doi.org/10.1130/SPE295-p111

 

Maury, R.C., Defant, M.J., Bellon, H., de Boer, J.Z., Stewart, R.H. & Cotten, J. 1995. Early tertiary arc volcanics from eastern Panama. In: Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 29–34. Boulder, USA. https://doi.org/10.1130/SPE295-p29

 

Ministerio de Comercio e Industrias. 1991. Mapa Geológico de Panamá. Scale 1:500 000. Ministerio de Comercio e Industrias–División General de Recursos Minerales, 1sheet.

 

Molnar, P. 2008. Closing of the Central American Seaway and the ice age: A critical review. Paleoceanography and Paleoclimatology, 23(2): 1–15. https://doi.org/10.1029/2007PA001574

 

Molnar, P. 2017. Comment (2) on “Formation of the Isthmus of Panama" by O'Dea et al. Science Advances, 3(6): 1–4. https://doi.org/10.1126/sciadv.1602320

 

Montes, C., Bayona, G., Cardona, A., Buchs, D.M., Silva, C.A., Morón, S., Hoyos, N., Ramírez, D.A., Jaramillo, C. & Valencia, V. 2012a. Arc–continent collision and orocline formation: Closing of the Central American Seaway. Journal of Geophysical Research: Solid Earth, 117(B4): 1–25. https://doi.org/10.1029/2011JB008959

 

Montes, C., Cardona, A., McFadden, R., Moron, S.E., Silva, C.A., Restrepo–Moreno, S., Ramírez, D.A., Hoyos, N., Wilson, J., Farris, D.W., Bayona, G., Jaramillo, C., Valencia, V., Bryan, J. & Flores, J.A. 2012b. Evidence for middle Eocene and younger land emergence in Central Panama: Implications for isthmus closure. Geological Society of America Bulletin, 124(5–6): 780–799. https://doi.org/10.1130/B30528.1

 

Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez–Ángel, L.C., Rodríguez–Parra, L.A., Ramírez, V. & Niño, H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348(6231): 226–229. https://doi.org/10.1126/science.aaa2815

 

Nivia, Á. 1996. The Bolivar mafic–ultramafic complex, SW Colombia: The base of an obducted oceanic plateau. Journal of South American Earth Sciences, 9(1–2): 59–68. https://doi.org/10.1016/0895-9811(96)00027-2

 

O'Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo–Moreno, S.A., Cione, A.L., Collins, L.S., de Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M. –P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque–Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard–Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello–Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J. & Jackson, J.B.C. 2016. Formation of Isthmus of Panama. Science Advances, 2(8): 1–11. https://doi.org/10.1126/sciadv.1600883

 

Pérez–Consuegra, N., Góngora, D.E., Herrera, F., Jaramillo, C., Montes, C., Cuervo–Gómez, A.M., Hendy, A., Machado, A., Cárdenas, D. & Bayona, G. 2018. New records of Humiriaceae fossil fruits from the Oligocene and early Miocene of the western Azuero Peninsula, Panamá. Boletín de la Sociedad Geológica Mexicana, 70(1): 223–239. http://dx.doi.org/10.18268/BSGM2018v70n1a13

 

Pindell, J.L. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In: James, K.H., Lorente, M.A. & Pindell, J.L. (editors), The origin and evolution of the Caribbean Plate. Geological Society of London, Special Publication 328, p. 1–55. https://doi.org/10.1144/SP328.1

 

Ramírez, D.A., Foster, D.A., Min, K., Montes, C., Cardona, A. & Sadove, G. 2016. Exhumation of the Panama basement complex and basins: Implications for the closure of the Central American Seaway. Geochemistry, Geophysics, Geosystems, 17(5): 1758–1777. https://doi.org/10.1002/2016GC006289

 

Recchi, G. & Metti, A. 1975. Lámina 17. In: Molo, J.C. (editor), Atlas Nacional de Panamá. Instituto Geográfico Nacional Tommy Guardia, p. 71. Panamá.

 

Reclus, A. & De Vaisseau, L. 1880. Explorations aux Isthmes de Panama et de Darien. Le Tour du Monde, 21(1): 321–400.

 

Reed, D.L. & Silver, E.A. 1995. Sediment dispersal and accretionary growth of the North Panama Deformed Belt. In: Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 213–223. Boulder, USA. https://doi.org/10.1130/SPE295-p213

 

Reed, D.L., Silver, E.A., Tagudin, J.E., Shipley, T.H. & Vrolijk, P. 1990. Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama. Marine and Petroleum Geology, 7(1): 44–54. https://doi.org/10.1016/0264-8172(90)90055-L

 

Rincón, A.F., Bloch, J.I., Macfadden, B.J. & Jaramillo, C. 2015. New early Miocene protoceratids (Mammalia, Artiodactyla) from Panama. Journal of Vertebrate Paleontology, 35(5): 1–22. https://doi.org/10.1080/02724634.2015.970688

 

Rodríguez, G. & Sierra, M.I. 2010. Las Sedimentitas de Tripogadí y las Brechas de Triganá: Un registro de volcanismo de arco, corrientes de turbidez y levantamiento rápido Eoceno en el noroccidente de Sur América. Geología Colombiana, 35: 74–86.

 

Rodríguez–Parra, L.A., Gaitán, C., Montes, C., Bayona, G. & Rapalini, A. 2017. Arc–seamount collision: Driver for vertical–axis rotations in Azuero, Panama. Studia Geophysica et Geodaetica, 61(2): 199–218. https://doi.org/10.1007/s11200-016-1173-1

 

Röhl, U. & Abrams, L.J. 2000. High–resolution, downhole, and nondestructive core measurements from Sites 999 and 1001 in the Caribbean Sea: Application to the late Paleocene Thermal Maximum. In: Leckie, R.M., Sigurdsson, H., Acton, G.D. & Draper, G. (editors), Proceedings of the Ocean Drilling Program, Scientific Results 165, p. 191–203. College Station, USA. https://doi.org/10.2973/odp.proc.sr.165.009.2000

 

Rooney, T.O., Franceschi, P. & Hall, C.M. 2011. Water–saturated magmas in the Panama Canal region: A precursor to adakite–like magma generation? Contributions to Mineralogy and Petrology, 161(3): 373–388. https://doi.org/10.1007/s00410-010-0537-8

 

Rooney, T.O., Morell, K.D., Hidalgo, P. & Franceschi, P. 2015. Magmatic consequences of the transition from orthogonal to oblique subduction in Panama. Geochemistry, Geophysics, Geosystems 16(12): 4178–4208. https://doi.org/10.1002/2015GC006150

 

Sheffey, J.P., Woodbury, H.G., Noble, C.C., Groves, R.H. & McGregor, E.W. 1969. Summary of geology and rock physical properties. U.S. Army Engineer Nuclear Cratering Group & Lawrence Radiation Laboratory, University of California, 1027 p. California.

 

Shelton, B.J. 1952. Geology and petroleum prospects of Darien, southeastern Panama. Master thesis, Oregon State College, 62 p. Corvallis, USA.

 

Silver, E.A., Reed, D.L., Tagudin, J.E. & Heil, D.J. 1990. Implications of the north and south Panama thrust belts for the origin of the Panama orocline. Tectonics, 9(2): 261–281. https://doi.org/10.1029/TC009i002p00261

 

Silver, E.A., Galewsky, J. & McIntosh, K.D. 1995. Variation in structure, style, and driving mechanism of adjoining segments of the North Panama Deformed Belt. In: Mann, P. (editor), Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America, Special Paper 295, p. 225–233. Boulder, USA. https://doi.org/10.1130/SPE295-p225

 

Stephan, J.F., Blanchet, R. & Mercier de Lepinay, B. 1986. Northern and southern Caribbean festoons (Panama, Colombia–Venezuela and Hispaniola–Puerto Rico), interpreted as pseudosubductions induced by the east–west shortening of the pericaribbean continental frame. In: Wezel, F.C. (editor), The origin of arcs. Elsevier, Developments in Geotectonics 21, p. 401–422. Amsterdam, the Netherlands. https://doi.org/10.1016/B978-0-444-42688-8.50022-9

 

Stewart, R.H., Stewart, J.L. (compilers) & Woodring, W.P. (collaborator). 1980. Geologic map of the Panama Canal and vicinity, Republic of Panama. Scale 1:100 000. U.S. Geological Survey, Miscellaneous Investigations Series, Map I–1232, 1 sheet. https://doi.org/10.3133/i1232

 

Tavelli, J.A. 1947. Geologic Explorations, Caledonia Bay, Route 17, Geology and Topography. Panama Canal Company, 21 p.

 

Terry, R.A. 1956. A geological reconnaissance of Panama. California Academy of Science, Occasional Papers 23–25, 91 p. San Francisco, USA.

 

Tournon, J., Triboulet, C. & Azema, J. 1989. Amphibolites from Panama: Anticlockwise P–T paths from a pre–Upper Cretaceous metamorphic basement in Isthmian Central America. Journal of Metamorphic Geology, 7(5): 539–546. https://doi.org/10.1111/j.1525-1314.1989.tb00616.x

 

Tripati, A. & Zachos, J.C. 2002. Late Eocene tropical sea surface temperatures: A perspective from Panama. Paleoceanography and Paleoclimatology, 17(3): 4-1–4-14. https://doi.org/10.1029/2000PA000605

 

United Nations Development Program. 1972. Reconnaissance geochemical survey of Bocas del Toro, Maje, Pirre and San Blas–Darien. United Nations, Technical report 2, 79 p. Panamá.

 

U.S. Geological Survey. 2010. Global multi–resolution terrain elevation data 2010 (GMTED2010). https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm (consulted in July 2018).

 

U.S. Geological Survey. 2017. Search earthquake catalog. https://earthquake.usgs.gov/earthquakes/search/ (consulted in November 2018).

 

Vannucchi, P., Fisher, D.M., Bier, S. & Gardner, T.W. 2006. From seamount accretion to tectonic erosion: Formation of Osa Mélange and the effects of Cocos Ridge subduction in southern Costa Rica. Tectonics, 25(2): 1–19. https://doi.org/10.1029/2005TC001855

 

Vannucchi, P., Fisher, D.M. & Gardner, T.W. 2007. Reply to comment by David M. Buchs & Peter O. Baumgartner on "From seamount accretion to tectonic erosion: Formation of Osa Mélange and the effects of the Cocos Ridge subduction in southern Costa Rica". Tectonics, 26(3): 1–2. https://doi.org/10.1029/2007TC002129

 

Vannucchi, P., Sak, P.B., Morgan, J.P., Ohkushi, K. & Ujiie, K. 2013. Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins. Geology, 41(9): 995–998. https://doi.org/10.1130/G34355.1

 

Vaughan, T.W. 1946. Initiation of geological investigations in the Panama Canal zone. Science, 104(2696): 209. https://doi.org/10.1126/science.104.2696.209

 

Verbrugghe, L. 1879. A travers l'isthme de Panama. Tracé interocéanique de L.N.B. Wyse et A. Reclus, Imprimerie de A. Quantin, 476 p. Paris.

 

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lithos.2011.05.003

 

Wegner, W., Wörner, G., Harmon, R.S. & Jicha, B.R. 2011. Magmatic history and evolution of the Central American land bridge in Panama since the Cretaceous times. Geological Society of America Bulletin, 123(3–4): 703–724. https://doi.org/10.1130/B30109.1

 

Westbrook, G.K., compiler. 1990. Gravity anomaly map of the Caribbean region. Scale 1:5 000 000. In: Dengo, G. & Case, J.E. (editors), The Caribbean region. Geological Society of America, plate 7, p. 537. Boulder, USA. https://doi.org/10.1130/DNAG-GNA-H

 

Whattam, S.A. & Stern, R.J. 2015. Late Cretaceous plume–induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1): 38–63. https://doi.org/10.1016/j.gr.2014.07.011

 

Whattam, S.A., Montes, C., McFadden, R.R., Cardona, A., Ramírez, D. & Valencia, V. 2012. Age and origin of earliest adakitic–like magmatism in Panama: Implications for the tectonic evolution of the Panamanian magmatic arc system. Lithos, 142–143: 226–244. https://doi.org/10.1016/j.lithos.2012.02.017

 

Wolters, B. 1986. Seismicity and tectonics of southern Central America and adjacent regions with special attention to the surroundings of Panama. Tectonophysics, 128(1–2): 21–46. https://doi.org/10.1016/0040-1951(86)90306-9

 

Woodring, W.P. 1957. Geology and description of tertiary mollusks (gastropods: Trochidae to Turritellidae). Geology and paleontology of Canal zone and adjoining parts of Panama. U.S. Geological Survey, Professional Paper 306–A, 135 p.

 

Woodring, W.P. 1973. Description of tertiary mollusks (additions to gastropods, scaphopods, pelecypods: Nuculidae to Malleidae). Geology and paleontology of Canal zone and adjoining parts of Panama. U.S. Geological Survey, Professional Paper 306–E: 453–531.

 

Woodring, W.P. & Thompson, T.F. 1949. Tertiary formations of Panama Canal zone and adjoining parts of Panama. American Association of Petroleum Geologists Bulletin, 33(2): 223–247.

 

Wörner, G., Harmon, R.S., Hartmann, G. & Simon, K. 2005. Igneous geology and geochemistry of the upper río Chagres Basin. In: Harmon, R.S. (editor), The río Chagres, Panama: A multidisciplinary profile of a tropical Watershed. Springer, p. 65–82. Dordrecht, the Netherlands.