Omitir los comandos de cinta
Saltar al contenido principal
SharePoint

Servicio Geológico Colombiano

Skip Navigation Linksv3ch5
Seleccione su búsqueda
miig

​​​​Sedimentitas marinas del Neógeno en la bahía de Tumaco, Nariño

 Volume 3 Chapter 5

Chapter 5

The Eastern Foothills of Colombia   

Andrés MORA, Eliseo TESÓN, Jaime MARTÍNEZ, Mauricio PARRA, Álvaro LASSO, Brian K. HORTON, Richard A. KETCHAM, Antonio VELÁSQUEZ, and Juan Pablo ARIAS–MARTÍNEZ

https://doi.org/10.32685/pub.esp.37.2019.05


ISBN impreso obra completa: 978-958-52959-1-9

ISBN digital obra completa: 978-958-52959-6-4

ISBN impreso Vol. 3: 978-958-52959-4-0

ISBN digital Vol. 3: 978-958-53131-0-1​


Citation is suggested as: 

Mora, A., Tesón, E., Martínez, J., Parra, M., Lasso, Á., Horton, B.K., Ketcham, R.A., Velásquez, A. & Arias–Martínez, J.P. 2020. The Eastern Foothills of Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 123–142. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.05


Download chapter  

Download EndNote reference​ 

 

Abstract 


In this chapter, we summarize for the first time the structural geometry and evolution of the Eastern Foothills of Colombia based on new and previously published cross–sections. We compare shortening records of the Caguán–Putumayo and Llanos Foothills as two different end–members for thick– and thin–skinned foothill deformation along the Andean deformation front. The Caguán–Putumayo area involves thick–skinned deformation and broad basement uplifts, such as the Garzón Massif, with a simple frontal monoclinal structure expressed in folded and faulted basement rocks, similar to broad thrust–related uplifts in the eastern Rocky Mountains of North America. In contrast, the Llanos Foothills have a more complex array of structural styles, from tightly folded frontal basement structures to thin–skinned antiforms of faulted detachment folds. The main factor controlling the style of basement deformation appears to be basement composition, which is igneous/metamorphic crystalline in the Caguán–Putumayo area and low–grade metasedimentary in the Llanos Foothills, prompting tighter basement folds. The main factors in determining thin– versus thick–skinned deformation appear to be the thickness of the Mesozoic – Cenozoic stratigraphic units and the presence or absence of detachment horizons. The Andean Foothills of Colombia record a geometric evolution that started in the Oligocene, with similar structural styles across all segments at that time. However, the deformation styles diverged rapidly during the Miocene to recent shortening, where rapid deposition of thick fluvial sedimentary units drove source rocks into the oil window and helped form efficient detachment horizons for thin–skinned deformation in deeper sectors of the basin.

 

Keywords: thin–skinned, thick skinned, basement, detachments.​


Resumen 


En este capítulo se sintetiza por primeva vez la geometría estructural y evolución del piedemonte oriental de Colombia a partir de secciones estructurales nuevas y otras ya publicadas. Se compara la evolución del acortamiento de los piedemontes del Caguán‒Putumayo y Llanos como dos miembros extremos de deformación de piedemonte con y sin basamento implicado a lo largo del frente de deformación andino. El área del Caguán‒Putumayo involucra deformación con basamento involucrado y amplios antiformes de basamento, como el Macizo de Garzón, con una estructura monoclinal frontal simple expresada en un basamento plegado y fallado, similar a los thrust‒uplifts en las Montañas Rocosas de Norteamérica. En contraste, el piedemonte llanero presenta un arreglo más complejo de estilos estructurales, desde estructuras de basamento frontales con plegamientos apretados hasta estructuras despegadas de basamento en apilamientos antiformes con pliegues de despegue fallados. El principal control en el estilo de deformación del basamento parece ser su composición, la cual es cristalina ígnea/metamórfica en la región del Caguán‒Putumayo y metasedimentaria en el piedemonte llanero propiciando así la presencia de pliegues de basamento más apretados. Los principales factores que determinan la presencia de deformación despegada del basamento o deformación con basamento involucrado parecen ser el espesor de las unidades estratigráficas mesozoicas y cenozoicas y la presencia o ausencia de horizontes de despegue. Los piedemontes andinos de Colombia registran una evolución geométrica que empezó en el Oligoceno, con estilos estructurales similares a lo largo de todos los segmentos de ese tiempo. Sin embargo, los estilos de deformación divergieron rápidamente durante el acortamiento mioceno al reciente, en el cual un rápido depósito de unidades sedimentarias fluviales espesas hizo que las rocas generadoras del piedemonte entraran en la ventana de generación de petróleo y ayudó a la formación de horizontes de despegue eficientes para la deformación sin basamento implicado en los sectores más profundos de la cuenca.

 

Palabras clave: deformación sin basamento involucrado, deformación con basamento involucrado, basamento, despegues.



References


Anderson, V.J., Shanahan, T.M., Saylor, J.E., Horton, B.K. & Mora, A. 2014. Sources of local and regional variability in the MBT'/ CBT paleotemperature proxy: Insights from a modern elevation transect across the Eastern Cordillera of Colombia. Organic geochemistry, 69: 42–51. https://doi.org/10.1016/j.orggeochem.2014.01.022

 

Anderson, V.J., Horton, B.K., Saylor, J.E., Mora, A., Tesón, E., Breecker, D.O. & Ketcham, R.A. 2016. Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon River systems. Geosphere, 12(4): 1235–1256. https://doi.org/10.1130/GES01294.1

 

Baby, P., Rivadeneira, M., Barragan, R. & Christophoul, F. 2013. Thick–skinned tectonics in the Oriente Foreland Basin of Ecuador. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skinned–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 59–76. https://doi.org/10.1144/SP377.1

 

Bande, A., Horton, B.K., Ramírez, J.C., Mora, A., Parra, M. & Stockli, D.F. 2012. Clastic deposition, provenance, and sequence of Andean thrusting in the frontal Eastern Cordillera and Llanos Foreland Basin of Colombia. Geological Society of America Bulletin, 124(1–2): 59–76. https://doi.org/10.1130/B30412.1

 

Banks, C.J. & Warburton, J. 1986. 'Passive–roof' duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. Journal of Structural Geology, 8(3–4): 229–237. https://doi.org/10.1016/0191-8141(86)90045-3

 

Berg, R.R. 1962. Mountain flank thrusting in Rocky Mountain Foreland, Wyoming and Colorado. American Association of Petroleum Geologist Bulletin, 46(11): 2019–2032.

 

Bonini, M. 2001. Passive roof thrusting and forelandward fold propagation in scaled brittle–ductile physical models of thrust wedges. Journal of Geophysical Research. Solid Earth, 106(B2); 2291–2311. https://doi.org/10.1029/2000JB900310

 

Bonini, M. 2007. Deformation patterns and structural vergence in brittle–ductile thrust wedges: An additional analogue modelling perspective. Journal of Structural Geology, 29(1): 141–158. https://doi.org/10.1016/j.jsg.2006.06.012

 

Branquet, Y., Cheilletz, A., Cobbold, P.R., Baby, P., Laumonier, B. & Giuliani, G. 2002. Andean deformation and rift inversion, eastern edge of cordillera Oriental (Guateque–Medina area), Colombia. Journal of South American Earth Sciences, 15(4): 391–407. https://doi.org/10.1016/S0895-9811(02)00063-9

 

Caballero, V., Parra, M. & Mora, A. 2010. Levantamiento de la cordillera Oriental de Colombia durante el Eoceno tardío – Oligoceno temprano: Proveniencia sedimentaria en el Sinclinal de Nuevo Mundo, cuenca Valle Medio del Magdalena. Boletín de Geología, 32(1): 45–77.

 

Caballero, V., Parra, M., Mora, A., López, C., Rojas, L.E. & Quintero, I. 2013a. Factors controlling selective abandonment and reactivation in thick–skin orogens: A case study in the Magdalena Valley, Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 343–367. London. https://doi.org/10.1144/SP377.4

 

Caballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L.E., López, C., Sánchez, N., Horton, B.K., Stockli, D. & Duddy, I. 2013b. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo Syncline, Middle Magdalena Valley, Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 315–342. London. https://doi.org/10.1144/SP377.12

 

Carrillo, E., Mora, A., Ketcham, R.A., Amorocho, R., Parra, M., Costantino, D., Robles, W., Avellaneda, W., Carvajal, J.S., Corcione, M.F., Bello, W., Figueroa, J.D., Gómez, J.F., González, J.L., Quandt, D., Reyes, M., Rangel, A.M., Román, I., Pelayo, Y. & Porras, J. 2016. Movement vectors and deformation mechanisms in kinematic restorations: A case study from the Colombian Eastern Cordillera. Interpretation, 4(1): T31–T48. https://doi.org/10.1190/INT-2015-0049.1

 

Casero, P., Salel, J. F. & Rossato, A. 1997. Multidisciplinary correlative evidence for polyphase geological evolution of the foot–hills of the cordillera Oriental (Colombia). VI Simposio Bolivariano de Exploración Petrolera en la Cuencas Subandinas. Proceedings 1, 19 p. Cartagena.

 

Castillo, J., Peñas, R., Cardozo, E., Villamizar, C.A., Gelvez, J., Ortiz, J., Velásquez, A.J., Mora, A.R., Caballero, V., De la Parra, F. & Blanco, V. 2016. New exploration ideas leading to discoveries and unlocking new potential in a mature oil province: The T2 unit, Llanos Basin, Colombia. AAPG/SEG International Conference & Exhibition. Abstracts, 1 p. Cancun, Mexico.

 

Cooper, M.A. 1996. Passive–roof duplexes and pseudo–passive–roof duplexes at mountain fronts: A review. Bulletin of Canadian Petroleum Geology, 44(2): 410–421.

 

Cooper, M.A., Addison, F.T., Álvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martínez, J., Naar, J., Peñas, R., Pulham, A.J. & Taborda, A. 1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10): 1421–1443.

 

Coward, M.P., Gillcrist, R. & Trudgill, B. 1991. Extensional structures and their tectonic inversion in the western Alps. In: Roberts, A.M., Yielding, G. & Freeman, B. (editors), The geometry of normal faults. Geological Society of London, Special Publication 56, p. 93–112. https://doi.org/10.1144/GSL.SP.1991.056.01.07

 

de Graciansky, P.C., Dardeau, G., Lemoine, M. & Tricart, P. 1989. The inverted margin in the French Alps and foreland basin inversion. In: Cooper, M.A. & Williams, G.D. (editors), Inversion Tectonics. Geological Society of London, Special Publication 44, p. 87–104. https://doi.org/10.1144/GSL.SP.1989.044.01.06

 

Delgado, A., Mora, A. & Reyes–Harker, A. 2012. Deformation partitioning in the Llanos Foreland Basin during the Cenozoic and its correlation with building in the hinterland. Journal of South American Earth Sciences, 39: 228–244. https://doi.org/10.1016/j.jsames.2012.04.011

 

Dengo, C. & Covey, M. 1993. Structure of the Eastern Cordillera of Colombia: Implications for trap styles and regional tectonics. American Association of Petroleum Geologists Bulletin, 77(8): 1315–1337. https://doi.org/10.1306/BDFF8E7A-1718-11D7-8645000102C1865D

 

Erslev, E.A. 1991. Trishear fault–propagation folding. Geology, 19(6): 617–620. https://doi.org/10.1130/0091-7613(1991)019<0617:TFPF>2.3.CO;2

 

Gelvez, J., Villamizar, C.A., Mora, A.R., Caballero, V., de la Parra, F., Ortiz, J., Cardozo, E. & Velasquez, A.J. 2016. Re–thinking reservoirs: The case of the T2 sands in the southern Llanos Basin of Colombia. AAPG/SEG International Conference & Exhibition, 20 p. Cancún, Mexico.

 

Gillcrist, R., Coward, M. & Mugnier, J.L. 1987. Structural inversion and its controls: Examples from the Alpine foreland and the French Alps. Geodinamica Acta, 1(1): 5–34. https://doi.org/10.1080/09853111.1987.11105122

 

Gomez, A., Jaramillo, C., Parra, M. & Mora, A. 2009. Huesser Horizon: A lake and marine incursion in northwestern South America during the early Miocene. Palaios, 24(4): 136–147. https://doi.org/10.2110/palo.2007.p07-074r

 

Hardy, S. & Allmendinger, R.W. 2011. Trishear: A review of kinematics, mechanics, and applications. In: McClay, K., Shaw, J. & Suppe, J. (editors), Thrust fault–related folding. American Association of Petroleum Geologists, Memoirs 94, p. 95–119. https://doi.org/10.1306/13251334M943429

 

Hardy, S. & Ford, M. 1997. Numerical modeling of trishear fault propagation folding. Tectonics, 16(5): 841–854. https://doi.org/10.1029/97TC01171

 

Horton, B.K. 1999. Erosional control on the geometry and kinematics of thrust belt development in the central Andes. Tectonics, 18(6): 1292–1304. https://doi.org/10.1029/1999TC900051

 

Huyghe, P. & Mugnier, J.L. 1995. A comparison of inverted basins of the southern North Sea and inverted structures of the external Alps. In: Buchanan, J.G. & Buchanan, P.G. (editors), Basin inversion. Geological Society of London, Special Publication 88, p. 339–353. https://doi.org/10.1144/GSL.SP.1995.088.01.19

 

Ibañez–Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E. & Mora, A.R. 2011. The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research, 191(1–2): 58–77. https://doi.org/10.1016/j.precamres.2011.09.005

 

Jiménez, L., Mora, A., Casallas, W., Silva, A., Tesón, E., Támara, J., Namson, J., Higuera–Diaz, I.C., Lasso, A. & Stockli, D. 2013. Segmentation and growth of foothill thrust–belts adjacent to inverted grabens: The case of the Colombian Llanos Foothills. In: Nemčok, M., Mora, A.R. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 189–220. https://doi.org/10.1144/SP377.11

 

Jordan, T.E. & Allmendinger, R.W. 1986. The Sierras Pampeanas of Argentina: A modern analogue of Rockey Mountain foreland deformation. American Journal of Science, 286: 737–764. https://doi.org/10.2475/ajs.286.10.737

 

Kammer, A., Piraquive, A., Gómez, C., Mora, A. & Velásquez, A. 2020. Structural styles of the Eastern Cordillera of Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 143–183. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.06

 

Ketcham, R.A., Mora, A., & Parra, M. 2016. Deciphering exhumation and burial history with multi–sample down–well thermochronometric inverse modeling. Basin Research, 30(S1): 48–64. https://doi.org/10.1111/bre.12207

 

Malavieille, J. 2010. Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: Analog models and case studies. GSA Today, 20(1): 4–10. https://doi.org/10.1130/GSATG48A.1

 

Martínez, J.A. 2006. Structural evolution of the Llanos Foothills, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 21(4): 510–520. https://doi.org/10.1016/j.jsames.2006.07.010

 

Mitra, S. & Mount, V.S. 1998. Foreland basement–involved structures. American Association of Petroleum Geologist Bulletin, 82(1): 70–109. https://doi.org/10.1306/1D9BC39F-172D-11D7-8645000102C1865D

 

Montgomery, D.R., Balco, G. & Willett, S.D. 2001. Climate, tectonics, and the morphology of the Andes. Geology, 29(7): 579–582. https://doi.org/10.1130/0091-7613(2001)029<0579:CTATMO>2.0.CO;2

 

Mora, A. & Kammer, A. 1999. Comparación de los estilos estructurales en la sección entre Bogotá y los Farallones de Medina, cordillera Oriental de Colombia. Geología Colombiana, (24): 55–82.

 

Mora, A. & Parra, M. 2008. The structural style of footwall shortcuts along the Eastern Foothills of the Colombian Eastern Cordillera: Differences with other inversion related structures. Ciencia, Tecnología y Futuro, 3(4): 7–21.

 

Mora, A., Parra, M., Strecker, M.R., Kammer, A., Dimaté, C. & Rodríguez, F. 2006. Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25(2): 19 p. https://doi.org/10.1029/2005TC001854

 

Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V. & Vallejo–Jaramillo, J. 2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120(7–8): 930–949. https://doi.org/10.1130/B26186.1

 

Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Zeilinger, G., Jaramillo, C., Ferreira Da Silva, S. & Blanco, M. 2010a. The Eastern Foothills of the Eastern Cordillera of Colombia: An example of multiple factors controlling structural styles and active tectonics. Geological Society of America Bulletin, 112(11–12): 1846–1864. https://doi.org/10.1130/B30033.1

 

Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., Garcia, D. & Stockli, D.F. 2010b. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. American Association of Petroleum Geologists Bulletin, v. 94 (10): 1543–1580. https://doi.org/10.1306/01051009111

 

Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W. & Espurt, N. 2010c. Tectonic history of the Andes and sub–Andean zones: Implications for the development of the Amazon drainage basin. In: Hoorn, C. & Wesselingh, F.P. (editors), Amazonia: Landscape and species evolution: A look into the past. Wiley–Blackwell, p. 38–60. Oxford, UK. https://doi.org/10.1002/9781444306408.ch4

 

Mora, A., Reyes–Harker, A., Rodríguez, G., Tesón, E., Ramírez–Arias, J.C., Parra, M., Caballero, V., Mora, J.P., Quintero, I., Valencia, V., Ibañez–Mejia, M., Horton, B.K. & Stockli, D.F. 2013a. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 411–442. London. https://doi.org/10.1144/SP377.6

 

Mora, A., Blanco, V., Naranjo, J., Sanchez, N., Ketcham, R.A., Rubiano, J., Stockli, D.F., Quintero, I., Nemčok, M., Horton, B.K. & Davila, H. 2013b. On the lag time between internal strain and basement involved thrust induced exhumation: The case of the Colombian Eastern Cordillera. Journal of Structural Geology, 52: 96–118. https://doi.org/10.1016/j.jsg.2013.04.001

 

Mora, A., Ketcham, R.A., Higuera–Díaz, I.C., Bookhagen, B., Jimenez, L. & Rubiano, J. 2014. Formation of passive–roof duplexes in the Colombian Subandes and Perú. Lithosphere 6(6): 456–472. https://doi.org/10.1130/L340.1

 

Mora, A., Casallas, W., Ketcham, R.A., Gómez, D., Parra, M., Namson, J., Stockli, D., Almendral, A., Robles, W. & Ghorbal, B. 2015a. Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. American Association of Petroleum Geologists Bulletin, 99(8): 1575–1598. https://doi.org/10.1306/04281411108

 

Mora, A., Parra, M., Rodríguez–Forero, G., Blanco, V., Moreno, N., Caballero, V., Stockli, D.F., Duddy, I. & Ghorbal, B. 2015b. What drives orogenic asymmetry in the northern Andes? A case study from the apex of the northern Andean orocline. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 547–586. https://doi.org/10.1306/13531949M1083652

 

Mora, A., Gomez, R.A., Diaz, C., Caballero, V., Parra, M., Villamizar, C., Lasso, A., Ketcham, R.A., Gonzalez–Penagos, F., Rico, J. & Arias–Martinez, J.P. 2019a. Water flow, oil biodegradation, and hydrodynamic traps in the Llanos Basin. Colombia. American Association of Petroleum Geologists Bulletin, 103(5): 1225–1264. https://doi.org/10.1306/1003181611317237

 

Mora, A., García–Bautista, D.F., Reyes–Harker, A., Parra, M., Blanco, V., Sanchez, N., De la Parra, F., Caballero, V., Rodriguez, G., Ruiz, C., Naranjo, J., Teson, E., Niño, F., Quintero, I., Moreno, N., Cardozo, E., Gamba, N., Horton, B. K. & Arias–Martinez, J. P. 2019b. Tectonic evolution of petroleum systems within the onshore Llanos Basin: Insights on the presence of Orinoco heavy oil analogs in Colombia and a comparison with other heavy oil provinces worldwide. American Association of Petroleum Geologists Bulletin, 103(5): 1179–1224. https://doi.org/10.1306/1003181611417236

 

Moreno, N., Silva, A., Mora, A., Tesón, E., Quintero, I., Rojas, L.E., López, C., Blanco, V., Castellanos, J., Sánchez, J., Osorio, L., Namson, J., Stockli, D. & Casallas, W. 2013. Interaction between thin– and thick–skinned tectonics in the foothill areas of an inverted graben: The Middle Magdalena Foothill belt. In: Nemčok, M., Mora, A.R. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 221–255. London. https://doi.org/10.1144/SP377.18

 

Moreno–Lopez, M.C. & Escalona, A. 2015. Precambrian – Pleistocene tectono–stratigraphic evolution of the southern Llanos Basin, Colombia: American Association of Petroleum Geologists Bulletin, 99(8): 1473–1501. https://doi.org/10.1306/11111413138

 

Morley, C.K. 1986. A classification of thrust fronts. American Association of Petroleum Geologists Bulletin, 70(1): 12–25.

 

Mount, V.S., Martindale, K.W., Griffith, T.W. & Byrd, J.O.D. 2011. Basement–involved contractional wedge structural styles: Examples from the Hanna Basin, Wyoming. In: McClay, K., Shaw, J. & Suppe, J. (editors), Thrust fault–related folding. American Association of Petroleum Geologists, Memoir 94, p. 271–281.

 

Narr, W. & Suppe, J. 1994. Kinematics of basement involved compressive structures. American Journal of Science, 294(7): 802–860. https://doi.org/10.2475/ajs.294.7.802

 

Nemčok, M., Mora, A. & Cosgrove, J.W. 2013. Thick–skin–dominated orogens; from initial inversion to full accretion: An introduction. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 1–17. https://doi.org/10.1144/SP377.17

 

Parra, M., Mora, A., Sobel, E.R., Strecker, M.R. & González, R. 2009a. Episodic orogenic front migration in the northern Andes: Constraints from low–temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4), 27 p. https://doi.org/10.1029/2008TC002423

 

Parra, M., Mora, A., Jaramillo, C., Strecker, M.R., Sobel, E.R., Quiroz, L., Rueda, M. & Torres, V. 2009b. Orogenic wedge advance in the northern Andes: Evidence from the Oligocene – Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 121(5–6): 780–800. https://doi.org/10.1130/B26257.1

 

Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G. & Strecker, M.R. 2010. Tectonic controls on Cenozoic foreland basin development in the north–eastern Andes, Colombia. Basin Research, 22(6): 874–903. https://doi.org/10.1111/j.1365-2117.2009.00459.x

 

Parravano, V., Teixell, A. & Mora, A. 2015. Influence of salt in the tectonic development of the frontal thrust belt of the Eastern Cordillera, Guatiquía area, Colombian Andes. Interpretation, 3(4): SAA17–SAA27. https://doi.org/10.1190/INT-2015-0011.1

 

Ramírez–Arias, J.C., Mora, A., Rubiano, J., Duddy, I., Parra, M., Moreno, N., Stockli, D. & Casallas, W. 2012. The asymmetric evolution of the Colombian Eastern Cordillera. Tectonic inheritance or climatic forcing? New evidence from thermochronology and sedimentology. Journal of South American Earth Sciences, 39: 112–137. https://doi.org/10.1016/j.jsames.2012.04.008

 

Ramón, J. C. & Rosero, A. 2006. Multiphase structural evolution of the western margin of the Girardot Sub–basin, Upper Magdalena Valley, Colombia. Journal of South American Earth Sciences, 21(4): 493–509. https://doi.org/10.1016/j.jsames.2006.07.012

 

Ramos, V.A., Cristallini, E.O. & Pérez, D.J. 2002. The Pampean flat–slab of the Central Andes. Journal of South American Earth Sciences, 15(1): 59–78. https://doi.org/10.1016/S0895-9811(02)00006-8

 

Reyes–Harker, A., Ruiz–Valdivieso, C.F., Mora, A., Ramírez–Arias, J.C., Rodríguez, G., de la Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B.K., Saylor, J.E., Silva, A., Valencia, V., Stockli, D. & Blanco, V. 2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. American Association of Petroleum Geologists Bulletin, 99(8): 1407–1453. https://doi.org/10.1306/06181411110

 

Rossello, E.A., Nevistic, V.A., Araque, L., Bettini, F., Bordarampé, C., Castro, E., Colo, C., Córsico, S., Covellone, G., Haring, C., Pina, L., Pinilla, C., Ruiz, J.C. & Salvay, R.O. 2004. La sintaxis tectónica neógena de las cordilleras Oriental y Santander: Aportes de modelos analógicos y controles regionales sobre los sistemas petroleros. 3ra Convención de la Asociación Colombian de Geólogos y Geofísicos del Petróleo. Memoirs in CD ROM 16, 3 p. Bogotá.

 

Rowan, M.G. & Linares, R. 2000. Fold–evolution matrices and axial–surface analysis of fault–bend folds: Application to the Medina Anticline, Eastern Cordillera, Colombia. American Association of Petroleum Geologists Bulletin, 84(6): 741–764. https://doi.org/10.1306/A96733E2-1738-11D7-8645000102C1865D

 

Saeid, E., Bakioglu, K.B., Kellogg, J., Leier, A., Martínez, J.A. & Gue-rrero, E. 2017. Garzón Massif basement tectonics: Structural control on evolution of petroleum systems in Upper Magdalena and Putumayo Basins, Colombia. Marine and Petroleum Geology, 88: 381–401. https://doi.org/10.1016/j.marpetgeo.2017.08.035

 

Saylor, J.E., Horton, B.K., Stockli, D.F., Mora, A. & Corredor, J. 2012. Structural and thermochronological evidence for Paleogene basement–involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39: 202–215. https://doi.org/10.1016/j.jsames.2012.04.009

 

Schedl, A. & Wiltschko, D. 1987. Possible effects of pre–existing basement topography on thrust fault ramping. Journal of Structural Geology, 9(8): 1029–1037. https://doi.org/10.1016/0191-8141(87)90011-3

 

Támara, J., Mora, A., Robles, W., Kammer, A., Ortiz, A., Sánchez–Villar, N., Piraquive, A., Rueda, L.H., Casallas, W., Castellanos, J., Montaña, J., Parra, L.G., Corredor, J., Ramirez, Á. & Zambrano, E. 2015. Fractured reservoirs in the Eastern Foothills, Colombia, and their relationship with fold kinematics. American Association of Petroleum Geologists Bulletin, 99(8): 1599–1633. https://doi.org/10.1306/09291411109

 

Teixell, A., Ruiz, J.C., Teson, E. & Mora, A. 2015. The structure of an inverted back–arc rift: Insights from a transect across the Eastern Cordillera of Colombia near Bogotá. In: Bartolini, C. & Mann, P. (editors), Petroleum geology and potential of the Colombian Caribbean margin. American Association of Petroleum Geologists, Memoir 108, p. 499–516. https://doi.org/10.1306/M1081307

 

Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibañez–Mejia, M. & Valencia, V. 2013. Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (editors), Thick–skin–dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication 377, p. 257–283. London. https://doi.org/10.1144/SP377.10

 

Vásquez, M. & Altenberger, U. 2005. Mid–Cretaceous extension–related magmatism in the eastern Colombian Andes. Journal of South American Earth Sciences, 20(3): 193–210. https://doi.org/10.1016/j.jsames.2005.05.010

 

Velandia, F., Acosta, J., Terraza, R. & Villegas, H. 2005. The current tectonic motion of the northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics, 399(1–4): 313–329. https://doi.org/10.1016/j.tecto.2004.12.028

 

Velásquez, A.J. 2002. Modelamiento geofísico cortical por medio de métodos de campos potenciales con base en un modelo estructural del piedemonte llanero, Colombia. Bachelor thesis, Universidad Nacional de Colombia, 115 p. Bogotá.

 

Veloza, G., Styron, R., Taylor, M. & Mora, A. 2012. Open–source archive of active faults for northwest South America. GSA Today, 22(10): 4–10. https://doi.org/10.1130/GSAT-G156A.1

 

Wolaver, B.D., Coogan, J.C., Horton, B.K., Suarez–Bermúdez, L., Sun, A.Y., Wawrzyniec, T.F., Zhang, T., Shanahan, T.M., Dunlap, D.B., Costley, R.A. & de la Rocha, L. 2015. Structural and hydrogeologic evolution of the Putumayo Basin and adjacent fold–thrust belt, Colombia. American Association of Petroleum Geologists Bulletin, 99(10): 1893–1927. https://doi.org/10.1306/05121514186